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Abstract
Background and Aim: Multidrug resistance (MDR) of Escherichia coli has become an increasing concern in poultry 
farming worldwide. However, E. coli can accumulate resistance genes through gene transfer. The most problematic resistance 
mechanism in E. coli is the acquisition of genes encoding broad-spectrum β-lactamases, known as extended-spectrum 
β-lactamases, that confer resistance to broad-spectrum cephalosporins. Plasmid-mediated quinolone resistance genes 
(conferring resistance to quinolones) and mcr-1 genes (conferring resistance to colistin) also contribute to antimicrobial 
resistance. This study aimed to investigate the prevalence of antimicrobial susceptibility and to detect β-lactamase and 
colistin resistance genes of E. coli isolated from broiler farms in Egypt.

Materials and Methods: Samples from 938 broiler farms were bacteriologically examined for E. coli isolation. The 
antimicrobial resistance profile was evaluated using disk diffusion, and several resistance genes were investigated through 
polymerase chain reaction amplification.

Results: Escherichia coli was isolated and identified from 675/938 farms (72%) from the pooled internal organs (liver, heart, 
lung, spleen, and yolk) of broilers. Escherichia coli isolates from the most recent 3 years (2018–2020) were serotyped into 13 
serotypes; the most prevalent serotype was O125 (n = 8). The highest phenotypic antibiotic resistance profiles during this period 
were against ampicillin, penicillin, tetracycline, and nalidixic acid. Escherichia coli was sensitive to clinically relevant antibiotics. 
Twenty-eight selected isolates from the most recent 3 years (2018–2020) were found to have MDR, where the prevalence of the 
antibiotic resistance genes ctx, tem, and shv was 46% and that of mcr-1 was 64%. Integrons were found in 93% of the isolates.

Conclusion: The study showed a high prevalence of E. coli infection in broiler farms associated with MDR, which has a 
high public health significance because of its zoonotic relevance. These results strengthen the application of continuous 
surveillance programs.
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Introduction

Avian colibacillosis is a major poultry disease 
that affects all ages of poultry globally and is caused 
by Escherichia coli. The disease is associated with 
septicemia, pericarditis, airsacculitis, perihepatitis, 
peritonitis, and other extraintestinal lesions in poultry 
and with high economic loss due to the high mortality 
and low productivity of poultry farms. Many studies 
have reported an intensive increase in multidrug resis-
tance (MDR) in E. coli strains [1–4].

Antibiotics are used for treatment and prophy-
laxis against bacterial infections as well as growth 

promoters, particularly in chicken production; most 
antibiotics used in veterinary practices are very sim-
ilar to those used for the clinical treatment of human 
diseases [5]. During the past decade, antibiotic resis-
tance that emerged as a global problem has engaged 
international health agencies to comply with the man-
agement policies for antibiotic use to avoid exacer-
bating the problem and to ensure the protection of 
public health [6–8]. Foodborne bacteria may carry and 
transfer resistance genes to humans [9]. The resistant 
bacteria acting as a reservoir could then transfer those 
genes to commensal microorganisms in addition to 
pathogenic microorganisms inside the human diges-
tive tract [10]. Transfer of MDR in this manner would 
make it very difficult to treat bacterial infections [11].

β-lactam antibiotics are some of the most 
widely used antibiotics that produce an increase in 
antibiotic-resistant isolates because of increased 
selective pressure [12]. β-lactamases that hydro-
lyze an expanded spectrum of cephalosporins and 
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monobactams are classified as extended-spectrum 
β-lactamases (ESBLs) [13].

Extended-spectrum β-lactamases of Class  A 
mainly includes a variety of hydrolyzing enzymes, 
such as TEM, SHV, CTX-M, and VEB, and the highest 
number of variants is found in the CTX-M enzymes. 
Studies over the past 10 years have revealed that the 
most widely used CTX-M β-lactamase-producing 
bacteria were Enterobacteriaceae [14]. There are 
two classifications of β-lactamases that are currently 
in use. One is based on the amino acid sequence that 
includes a serine utilized for lactate hydrolysis. These 
enzymes are subdivided into Classes A, C,  and  D 
enzymes and Class  B, which respond to metalloen-
zymes that require divalent zinc ions for substrate 
hydrolysis. The updated classification is Group  1, 
including Class C; Group 2, including Class Al; and 
Group 3, including Group B [13, 15]. Escherichia coli 
isolated from broiler farms have been shown to be 
resistant to penicillins and cephalosporins as well as 
aztreonam mainly due to the production of CTX-M, 
TEM, and SHV β-lactamases which are encoded by 
the blaCTX-M, blaSHV, and blaTEM genes, respec-
tively [16].

Quinolone is considered one of the important 
antibiotics used in treating E. coli infections in poul-
try farms. The presence of quinolone resistance genes 
in bacteria is an evolving problem in E. coli infection 
control. Quinolones work by interfering with gyrase 
and topoisomerase IV activity, leading to fragmenta-
tion of the bacterial chromosome; this subsequently 
drives mutations in the gyrase and topoisomerase IV 
genes and the development of bacterial resistance to 
quinolones [17, 18].

Colistin resistance is encoded by the mcr-1 
gene, which has been detected in isolates of 
Enterobacteriaceae from humans, food, and live-
stock [19–21]. Colistin resistance usually develops by 
mutations in the lipid synthesis enzymes of the bacterial 
outer membrane [22–24]. Recently, colistin has been 
widely used as the drug of choice for several bacterial 
infections, especially in cases infected by MDR Gram-
negative bacteria, especially β-lactamase-resistant 
Enterobacteriaceae [19, 25]. The extensive usage of 
colistin in the animal production industry as a tool 
for productivity improvement, besides infection con-
trol, contributes to the appearance of colistin resis-
tance in E. coli, which is usually accompanied by the 
emergence of the plasmid-mediated colistin resis-
tance determinants, mcr-1, mcr-2, mcr-3, mcr-4, and 
mcr-5 [26].

Integrons are bacterial genetic elements that are 
commonly distributed between Gram-negative bac-
teria in humans and animals. Furthermore, they can 
be encoded with antimicrobial resistance factors and 
are subsequently known as resistance integrons or 
MDR integrons [27]. This class of integrons is usu-
ally detected in clinical isolates and is known as clin-
ical integrons [28] and acts as a genetic construction 

kit for bacteria [29, 30]. Furthermore, integrons are 
involved in developing and disseminating antibiotic 
resistance genes in enteric bacteria.

There are several virulence factors detected in 
E. coli strains that have been isolated from cellulitis 
and other colibacillosis lesions [31, 32]. Shiga toxins 
(Stx) are the main virulence factors that are responsi-
ble for E. coli pathogenicity, and these occur as two 
genes: stx1 and stx2 [33]. In addition, the increased 
serum survival (iss) gene found on episomes can con-
trol expression of protectins/serum resistance genes to 
enhance the ability of bacteria to survive in the host 
serum [34].

This study aimed to determine the antimicrobial 
susceptibility of E. coli isolated from broiler farms 
in different localities in Egypt and assess the degree 
of antimicrobial resistance, such as the presence of 
β-lactamase and colistin resistance genes.
Materials and Methods
Ethical approval

The study procedures were approved by the 
Animal Care Committee of the Animal Health 
Research Institute (AHRI) Dokki, Giza, Egypt under 
protocol number (AHRI-42429/2020).
Study period and location

This study was conducted from January 2014 
to December 2020 in Reference Laboratory for 
Veterinary Quality Control on Poultry production - 
Animal Health Research Institute, Egypt.
Samples

This study was conducted to trace E. coli iso-
lation. Samples were taken from 938 broiler poultry 
farms located in 25 governorates in Egypt; the num-
ber of examined farms from each governorate differs 
according to the local distribution of poultry farms in 
Egypt. From each farm, five clinically diseased birds 
from 7 to 35 days of age were inspected postmortem; 
bacteriological examination was conducted on the 
collected pooled organs (liver, lung, spleen, heart, and 
yolk) from diseased birds to represent one sample. 
The diseased birds showed different rates of mortali-
ties, diarrhea, colisepticemia, airsacculitis, perihepati-
tis, and pericarditis.
Isolation and identification of E. coli

Escherichia coli was isolated and identified 
according to Nolan et al. [1]. Briefly, all the collected 
samples were pre-enriched in buffered peptone water 
(Lab M, UK) and incubated aerobically at 37°C for 
24  h. A  loopful of the broth culture was inoculated 
onto MacConkey agar (Neogen, US) and eosin meth-
ylene blue agar (Lab M) plates, which were incubated 
at 37°C for 24 h. The isolated colonies were identi-
fied morphologically and biochemically (oxidase 
strips and triple sugar iron agar were from Oxoid, UK; 
urea, Simmons’ citrate agar, and peptone water were 
from Lab M; and Kovacs reagent was from HiMedia, 
India)  [1]. In addition, antisera against somatic (O) 
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antigens (Denka Seiken Co., Tokyo, Japan) were used 
for serotyping isolated E. coli following the manufac-
turer’s instructions.
Antimicrobial sensitivity test (AST)

An AST was conducted for all isolates using 
a disk diffusion test, as previously described [35] 
against 18 antibiotics (HiMedia®), which were amox-
icillin-clavulanate (AMC, 30  µg), ampicillin (AMP, 
10 µg), ciprofloxacin (CIP, 5 µg), cefotaxime (CTX, 
30  µg), chloramphenicol (C, 30  µg), danofloxacin 
(DFX 5 μg), doxycycline (DOX 30, µg), fosfomycin 
(FOS 200  µg), levofloxacin (LEV, 5  µg), Penicillin 
(P 10 µg), enrofloxacin (ENR 5 µg), colistin sulfate 
(CT, 10–25 µg), imipenem (IMP, 10 µg), nalidixic acid 
(NA, 30 µg), norfloxacin (NX, 10 µg), streptomycin (S, 
10 µg), sulfamethoxazole-trimethoprim (SXT, 25 µg), 
and tetracycline (T, 30 µg). The results were and inter-
preted according to CLSI [36]. The susceptibility of 
E. coli isolates to individual antimicrobial agents was 
determined and interpreted following aerobic incu-
bation at 37°C for 18–24 h, according to the Clinical 
and Laboratory Standard Institute guidelines [36]. 
The antimicrobial susceptibility of colistin was deter-
mined using disk diffusion susceptibility testing using 
colistin disks (Oxoid) containing 10 μg of antibiotic. 
The disk zone diameters were interpreted according 
to a previous report [37]. Resistant and intermedi-
ately resistant isolates were collectively referred to as 
non-susceptible, as previously described [38]. Isolates 
were considered to be MDR strains when found to be 
non-susceptible to at least one agent in three or more 
antimicrobial different classes of antimicrobial agents.
Molecular assessment

The 28 selected E. coli isolates from 2018 to 
2020 were further tested using polymerase chain 
reaction (PCR) for the presence of blaTEM, blaSHV, 
blaCTX-M, mcr-1, qnrA, qnrB, papC, integron, and 
iss genes.

DNA was extracted from culture broth using a 
QIAamp DNA Mini Kit (Qiagen, Germany, GmbH 
Catalogue No. 51304). The extracted DNA was used 
in subsequent PCR assays for species confirmation and 
to detect genes responsible for virulence and antimicro-
bial agent resistance. The polymerase chain reaction 
was performed in a final volume of 25 μL that con-
tained 12.5 μL of EmeraldAmp MAX PCR Master Mix 
(EmeraldAmp GT [2× premix], Japan), 1 μL of each 
primer (20 pmol), 4.5 μL of diethyl pyrocarbonate water, 
and 6 μL of the DNA template. The reaction was per-
formed in a Biometra thermal cycler, T3000 (Germany). 
The oligonucleotide primers (Table-1)  [39–45] were 
supplied by Metabion, Germany.

Polymerase chain reaction products were sep-
arated by electrophoresis [46] on a 1% agarose gel 
(AppliChem, Germany, GmbH) in 1× TBE buffer at 
room temperature (23℃ to 27℃) using a gradient of 
5 V/cm. Each well was loaded with 15 μL of the PCR 
product. A GelPilot 100 bp (Qiagen) ladder was used 

to determine the fragment sizes. The gel was photo-
graphed using a gel documentation system (Biometra 
BDA digital, Germany), and the data were analyzed 
using gel documentation (Alpha Innotech, Biometra, 
Germany) and specific software (automatic image 
capture software, Protein Simple, formerly Cell 
Bioscience, USA). The amplification conditions of 
the primers during PCR are shown in Table-2.

The amplification efficiency was verified for pos-
itive field samples that may contain the tested genes, 
which were previously examined in a Veterinary 
Quality Control Reference Laboratory for Poultry 
Production, Animal Health Research Institute, Egypt.
Results
Escherichia coli isolation, identification, and serotyping

Escherichia coli was isolated from 675/938 (72%) 
examined poultry farms between 2014 and 2020. The 
highest prevalence of E. coli was 98.3% in 2016 and the 
lowest prevalence of E. coli was 45.8% in 2017, while 
in other years, the prevalence ranged from 63.6% to 
73.9%, as shown in Table-3 and Figure-1. The highest 
prevalence of E. coli among poultry farms in Egyptian 
governorates was 98.3% in 2016 (175/178), as shown 
in Table-4.

The selected E coli isolates from the most recent 
years (2018–2020) were serotyped into 13 different 
serotypes. The isolate with the highest prevalence was 
O125 (n = 8) followed by 0111 (n = 5) and then the 
remaining serotypes: O55 (n = 3), O15 (n = 2), O157 
(n = 2), O 55 (n = 1), O6 (n = 1), O151 (n = 1), O 127 
(n = 1), O166 (n = 1), O 143 (n = 1), O86 (n = 1), and 
O151 (n = 1).
Antimicrobial susceptibility patterns of the isolated 
E. coli

Escherichia coli isolates were tested for their sus-
ceptibility using the disk diffusion technique against  
18 antibiotics: AMP, C, CIP, DFX, DOX, FOS, LEV, 
NA, NX, P, S, T, trimethoprim, ENR, CTX, IMP, 
AMC + clav, and CT. Most E. coli isolates showed the 
highest resistance percentage to AMP, P, T, and NA, 
while the lowest resistance percentage (49%) was 
shown with CT. Resistance to other antibiotics ranged 
from 88.5% to 69.7% during the period from 2014 to 
2020, as shown in Table-5 and Figure-2. These results 
show that all E. coli isolates were considered as MDR 
strains (Table-6).
Molecular characterization of several virulences and 
antimicrobial resistance genes of E. coli isolates

Several resistance genes were identified in 28 
phenotypically resistant E. coli isolates using PCR. 
A total of 26/28 E. coli isolates (93%) harbored one or 
more ESBLs. BlaTEM was found in 26 E. coli isolates 
(93%), followed by blaCTX-M and blaSHV (46.5% 
and 35.7%, respectively), as shown in Table-7 and 
Figure-3.

In this study, two E. coli isolates harbored the 
qnrA gene while no isolate possessed the qnrB gene 
associated with quinolone resistance. The mcr-1 
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gene  associated with CT resistance was detected in 
18 E. coli isolates (Table-6). The correlation between 
the genotypic and phenotypic antimicrobial resistance 
of E. coli is shown in Table-6. A high prevalence of 
the iss gene (93%) was found, while that of the other 
virulence gene papC was much lower (32%).
Discussion

Escherichia coli is one of the most widely dis-
tributed bacterial pathogens worldwide and causes 
severe economic losses in the poultry industry because 
of mortalities and costs expended on treatment. In 

addition, the emergence of MDR E. coli adds a further 
threat to the poultry industry because of the uncon-
trolled usage of antibiotics. Furthermore, MDR E. coli 
can spread to humans through food chains causing 
major public health dangers [47].

In total, E. coli was detected in 675/938 farms 
(72%). These results agreed with the previous report 
that demonstrated a high prevalence of E. coli in 
Egyptian poultry farms [2], where E. coli was isolated 
from 70% of chickens. Previous studies [48, 49] have 
also isolated E. coli in 34% and 26.7%, respectively, 
from chickens in Egypt. Conversely, in the results 

Table-1: Primers used for antibiotic resistance genes and virulence detection.

Primer Sequence Amplicon size Reference

(5'‑3')

Beta‑lactams
blaSHV AGGATTGACTGCCTTTTTG 392 bp [39]

ATTTGCTGATTTCGCTCG
blaTEM ATCAGCAATAAACCAGC 516 bp

CCCCGAAGAACGTTTTC
blaCTX‑M ATG TGC AGY ACC AGT AAR GTK ATG GC 593 bp [40]

TGG GTR AAR TAR GTS ACC AGA AYC AGC GG
Colistin resistance gene 

Mcr1 CGGT CAGTCCGTTTGTTC 308 bp [41]
CTTGGTCGGTCTGTAGGG

Quinolone resistance
qnrA ATTTCTCACGCCAGGATTTG 516 bp [42]

GATCGGCAAAGGTTAGGTCA
qnrB GATCGTGAAAGCCAGAAAGG 469 bp

ACGATGCCTGGTAGTTGTCC
Integron

hep TGCGGGTYAARGATBTKGATTT 491 bp [43]
CARCACATGCGTRTARAT

Virulence genes
papC TGTATCACGCAGTCAGTAGC 501 bp [44]

CCGGCCATATTCACATAA
ISS ATGTTATTTTCTGCCGCTCTG 266 bp [45]

CTATTGTGAGCAATATACCC

Table-2: Cycling conditions of the primers during PCR.

Gene Primary 
denaturation

Secondary denaturation Annealing Extension No. of cycles Final extension

Beta‑lactams
blaSHV 94°C

5 min
94°C
30 s

54°C
40 s

72°C
40 s

35 72°C
10 min

blaCTX‑m
blaTEM

94°C
5 min

94°C
30 s

54°C
40 s

72°C
45 s

35 72°C
10 min

Colistin resistance gene
Mcr1 94°C

5 min
94°C
30 s

55°C
40 s

72°C
45 s

35 72°C
10 min

Quinolone resistance
QnrA 94°C

5 min
94°C
30 s

55°C
45 s

72°C
45 s

35 72°C
10 min

QnrB 94°C
5 min

94°C
30 s

55°C
45 s

72°C
45 s

35 72°C
10 min

Integron
hep 94°C

5 min
94°C
30 s

55°C
40 s

72°C
45 s

35 72°C
10 min

Virulence genes
papC 94°C

5 min
94°C
30 s

58°C
40 s

72°C
45 s

35 72°C
10 min

Iss 94°C
5 min

94°C
30 s

54°C
30 s

72°C
30 s

35 72°C
10 min

PCR=Polymerase chain reaction
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obtained here for 2017, the prevalence of E. coli was 
low (45.8%), which agrees with a prior report [50], 

which isolated E. coli from only 35% of chickens in 
Egypt. A higher isolation percentage of E. coli (88%) 
has been reported from poultry in the USA  [19]. 
Furthermore, although the observed prevalence of 
E. coli in 2016 in our study was 98.3%, however pre-
vious studies [51, 52] reported E. coli isolation at very 
low percentages (13.4% and 11%) from poultry farms 
in Egypt and Ethiopia, respectively.

Our data showed that E. coli isolates could be 
serotyped into 13 serotypes, of which O125 (n = 8) 
and O111 (n = 5) were most prevalent. These results 
are similar to a previous study conducted by Badr 
et al. [53] but disagree with the prevalence of sero-
types (O1, O2, O25, and O78) isolated in Jordan [54].

In our study, we tested E. coli strains for anti-
microbial resistance against 18 different antibiotics. 
The highest antimicrobial resistance rates in this study 
ranged from 95% to 86.7% for AMP, P, NA, T, AMC + 
clavulanic acid, DOX, CTX, FOS, and trimethoprim. 
In contrast, the percentage of resistance for C, DFX, 
CIP, NX, LEV, ENR, S, and IMP ranged from 85.5% 
to 69.7%. The CT showed the lowest resistance per-
centage (49.7%). These phenotypic resistance rates 
have been previously reported [48, 49], although lower 
percentage rates for those phenotypic resistances have 
also been described [2, 51].

Most of the phenotypically antibiotic-resistant 
E. coli isolates harbor antibiotic resistance genes 
associated with resistance to colistin, β-lactams, and 
quinolones. The mcr-1 gene is associated with colis-
tin resistance and is widely found in different bacteria 

73.90% 72%

98.30%

45.80%

68.80%63.80%63.60%

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

2014 2015 2016 2017 2018 2019 2020

Figure-1: Prevalence of Escherichia coli isolated from 
2014 to 2020.

Table-4: Summary about investigated poultry farms in different governorates.

Governorate 2016 2017 2018 2019 2020

Tested 
farms

Positive 
farms

Tested 
farms

Positive 
farms

Tested 
farms

Positive 
farms

Tested 
farms

Positive 
farms

Tested 
farms

Positive 
farms

Al Bahr Al Ahmar 1 1 2 0 1 1 NA NA NA NA
Al Beheira 55 55 7 2 61 57 4 2 4 2
Al Dakahlia 13 12 10 7 16 9 34 27 34 27
Al Fayoum 4 3 2 2 NA NA NA NA 4 2
Al Gharbia 1 1 4 4 3 2 NA NA NA NA
Al Giza 9 6 13 7 9 4 56 29 56 29
Al Minia 2 2 NA NA NA NA NA NA NA NA
Al Monofiya 1 1 10 3 NA NA 5 2 5 2
Al Qahera 14 8 1 1 4 3 9 5 9 5
Al Qalyubia 7 4 9 4 2 1 6 4 6 4
Al Sharqiya 6 6 10 1 18 0 6 4 6 4
Alexandria 3 3 2 1 4 2 9 8 9 8
Beni Suef 2 2 4 1 1 0 NA NA NA NA
Ismailia 23 19 4 1 NA NA 7 6 7 6
Luxor 26 25 1 1 8 7 NA NA NA NA
Qena 6 6 1 1 13 12 NA NA NA NA
Kafer El Sheikh 2 2 NA NA NA NA 1 0 1 0
Suez NA NA NA NA NA NA NA NA NA NA
Mersa Matruh NA NA NA NA 1 0 NA NA NA NA
North Sinai 1 1 NA NA NA NA 1 1 1 1
South Sinai NA NA 1 0 NA NA NA NA NA NA
Port Said NA NA NA NA NA NA NA NA NA NA
Aswan NA NA 1 1 1 1 NA NA NA NA
Sohag NA NA 1 1 2 0 NA NA 1 1
Asyut NA NA NA NA NA NA NA NA NA NA
Total 178 175 83 38 144 99 138 88 143 91
Positivity rate 98.3% 45.8% 68.8% 63.8% 63.6%

NA=Not applicable , E. coli=Escherichia coli

Table-3: Prevalence of E. coli isolated from poultry farms 
in period (2014–2020).

Year/No. of 
examined samples

E. coli

No. of positive samples %

2014 (n = 134) 99 73.9
2015 (n = 118) 85 72
2016 (n = 178) 175 98.3
2017 (n = 83) 38 45.8
2018 (n = 144) 99 68.8
2019 (n = 138) 88 63.8
2020 (n = 143) 91 63.6
Total (n = 938) 675 72

E. coli=Escherichia coli
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belonging to Enterobacteriaceae isolated from vari-
ous sources [55]. Although only one of E. coli iso-
lates was phenotypically resistant to CT, the mcr-1 
gene was detected in 18 (64.3%) of all tested E. coli 
isolates. The overall percentage of phenotypic resis-
tance to CT reached 49.3%. This result agrees with 
a previous report [25], which reported mcr-1 gene 
detection at a prevalence of 41.83%. These findings 
suggest that poultry farms might be a source of colis-
tin-resistant E. coli. However, this percentage was 
lower than in E. coli isolates from chicken meat sam-
ples (19.5%) [56] and 8% (8/100) of E. coli isolates 
from healthy broilers in Pakistan [57]. Therefore, 
the emergence and spread of colistin-resistant E. coli 
in animals and animal by-products, such as chicken 
meat, may become a serious public health problem as 

quinolones and β-lactamases are extensively used to 
treat many infectious diseases [58].

Extended-spectrum β-lactamases have a global 
distribution [59]. In this study, the overall resistance to 
CTX, a member of the β-lactamase group, was 86.7%. 
However, the detection of the genes responsible for 
antimicrobial resistance for the β-lactamase group 
(blaCTX-M, blaTEM, and blaSHV) was 46.5%, 93%, 
and 35.7%, respectively. Certainly, all the strains iso-
lated here showed phenotypic resistance patterns to 
several antimicrobials related to β-lactamases. New 
ESBL-encoding genes (such as blaCTX-M, blaGES, 
or blaVEB-1) are usually located on integron-like 
structures [60].

Recent studies reported that a higher rate of inte-
grons could lead to significant antibiotic resistance 

Table-5: Antibiotics resistance profile of E. coli isolates from 2014 to 2020.

Antibiotics 2014  
(n = 99)

2015  
(n = 85)

2016  
(n = 175)

2017  
(n = 38)

2018  
(n = 99)

2019  
(n = 88)

2020  
(n = 91)

Total  
(n = 496)

Ampicillin 94% 96.5% 99% 100% 95% 100 100 97.8%
Chloramphenicol 74% 71.4% 83% 80% 78% 80 100 80.9%
Ciprofloxacin 46% 71% 77% 87.5% 76% 100 57 73.5%
Danofloxacin 91% 100% 100% 100% 79.5% NA NA 84.3%
Doxycycline 83% 90% 87.5% 60% 91% NA NA 85.5%
Fosfomycin 95% 40% 100% 100% 84% NA NA 85.5%
Levofloxacin 74% 68% 69% 62.5% 71% NA NA 69.7%
Nalidixic acid 87% 100% 91% 88% 93.5% 100 86 92.2%
Norfloxacin 83% 68.5% 78% 77% 86% 100 57 73.2%
Penicillin 83% 100% 100% 100% 100% NA NA 95%
Streptomycin 100% 82.8% 96.5% 58% 96.5% 80 64 82.5%
Tetracycline 91% 91.4% 99% 93% 89% 100 100 94.8%
Sulfamethoxazole‑trimethoprim 91% 87.2% 83.5% 84% 88% 100 86 88.5%
Enrofloxacin 91% 80% 80% 64% 86% NA NA 82.4%
Cefotaxime NA NA NA NA 100% 60% 100% 86.7%
Imipenem NA NA NA NA 100% 40% 78.5% 72.8%
Amoxicillin ‑ clavulanate NA NA NA NA 67% 100% 100% 89%
Colistin sulfate NA NA NA NA 67% 60% 21.5% 49.3%

NA=Not applicable, E. coli=Escherichia coli
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Figure-2: Antibiotics resistance profile of Escherichia coli isolated from 2014 to 2020.
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and, consequently, the emergence of ESBL and MDR 
isolates, which could be a serious risk to healthcare 
systems as well as the livestock and poultry indus-
tries [61, 62]. The blaTEM and blaSHV genes were 
detected in E. coli isolated from broilers suffering from 
septicemia in Egypt [63]. In this study, the blaTEM 
resistance gene was detected in 93% of E.  coli iso-
lates, which is lower than that detected in E. coli iso-
lates from healthy broilers in Egypt (20.6%)  [51]. 

Furthermore, a previous study revealed a high prev-
alence of integron 1 in E. coli isolates from different 
animal sources in Iraq [64].

Quinolones are mostly used for controlling 
infections, including those of Gram-negative bacteria 
such as Enterobacteriaceae. Fluoroquinolones have a 
broad-spectrum intrinsic activity that is greater than 
that of quinolones [65]. Plasmid quinolone resistance 
genes harbor many qnr alleles, which have been found 

Table-6: Phenotypic resistance, resistance determinants and virulence genes found in E. coli isolates.

No. of 
strain

Serotype Year Phenotypic antibiotic resistance Resistance genes 
identified

Virulence 
genes

1 O6 2018 AMC30, AMP10, CTX30, CIP5, NX10, NA10, TE30, SXT CTX, TEM,  
mcr‑1, hep

ISS

2 O151 2018 AMP10, IMP10, NA10, TE30, SXT TEM, hep ISS, papC
3 O143 2018 AMP10, IMP10, NA10, TE30, SXT TEM, mcr‑1, hep ISS
4 O125 2018 AMP10, CTX30, IMP10, NA10, TE30, SXT TEM, SHV, hep ISS
5 O151 2018 AMP10, IMP10, NA10, TE30, SXT TEM ISS papC
6 O15 2018 AMC30, AMP10, CTX30, IMP10, C30, CIP5, NX10, NA10, 

TE30, SXT, S10 
CTX, TEM,  
Qrna, hep

ISS papC

7 O125 2018 AMC30, AMP10, CTX30, IMP10, C30, CIP5, NX10, NA10, 
TE30, SXT, S10 

CTX, TEM,  
mcr‑1, hep

ISS

8 O15 2018 AMC30, AMP10, CTX30, IMP10, C30, CIP5, NA10, TE30, 
SXT, S10 

CTX, TEM,  
Qrna, hep

ISS, papC

9 O 125 2018 AMP10, CTX30, IMP10, NA10, TE30, SXT, S10 TEM, hep ISS, papC
10 O125 2019 AMC30, AMP10, CTX30, IMP10, C30, CIP5, NX10, NA10, 

TE30, SXT, S10 
TEM, hep ISS

11 O125 2019 AMC30, AMP10, CTX30, C30, CIP5, NX10, NA10, TE30, SXT, 
S10 

CTX, TEM, SHV, 
MCR‑1, hep

ISS, papC

12 O125 2019 AMC30, AMP10, CTX30, C30, CIP5, NA10, TE30, SXT, S10 TEM, MCR‑1, hep ISS, papC
13 O125 2019 AMC30, AMP10, IMP10, C30, CIP5, NX10, NA10, TE30, SXT, 

S10 
TEM, MCR‑1, hep ISS, papC

14 O 55 2019 AMC30, AMP10, CTX30, CIP5, NX10, NA10, TE30, SXT TEM, MCR‑1, hep ISS
15 O125 2020 AMC30, AMP10, CTX30, C30, CIP5, NX10, NA10, TE30, SXT CTX, TEM,  

MCR‑1, hep
ISS

16 O125 2020 AMC30, AMP10, C30, TE30, S10 MCR‑1 ISS
17 O111 2020 AMC30, AMP10, CTX30, C30, CT, CIP5, NX10, NA10, TE30, 

SXT
CTX, TEM, SHV, 
MCR‑1, hep

ISS

18 O111 2020 AMC30, AMP10, CTX30, NX10, NA10, TE30, SXT, S10 CTX, TEM, SHV, 
MCR‑1, hep

ISS

19 O111 2020 AMC30, AMP10, CTX30, C30, NA10, TE30, S10 CTX, TEM,  
MCR‑1, hep

ISS

20 O111 2020 AMC30, AMP10, CTX30, C30, NA10, TE30, SXT, S10 CTX, TEM,  
MCR‑1, hep

ISS

21 O111 2020 AMC30, AMP10, CTX30, C30, NA10, TE30, SXT, S10 CTX, TEM, SHV, hep
22 O127 2020 AMC30, AMP10, CTX30, IMP10, C30, NA10, TE30, SXT, S10 CTX, TEM, SHV, hep
23 O157 2020 AMC30, AMP10, CTX30, IMP10, C30, NA10, TE30, S10 TEM, SHV,  

MCR‑1, hep
ISS

24 O55 2020 AMC30, C30, NA10, TE30, SXT, S10 hep ISS, PAPC
25 O166 2020 AMC30, AMP10, CTX30, NA10, SXT TEM, SHV, MCR‑1, 

hep
ISS

26 O86 2020 AMC30, AMP10, CTX30, IMP10, C30, TE30, S10 TEM, SHV, MCR‑1, 
hep

ISS

27 O55 2020 AMC30, AMP10, CTX30, C30, CIP5, NX10, NA10, TE30, S10 CTX, TEM, SHV, 
MCR‑1, hep

ISS

28 O157 2020 AMC30, AMP10, C30, NA10, TE30, SXT, S10 TEM, MCR‑1, hep ISS

E. coli=Escherichia coli, AMC=Amoxicillin‑clavulanate, AMP=Ampicillin, CIP=Ciprofloxacin, CTX=Cefotaxime, 
C=Chloramphenicol, CT=Colistin sulfate, IMP=Imipenem, NA=Nalidixic acid, NX=Norfloxacin, S=Streptomycin, 
SXT=Sulfamethoxazole‑trimethoprim, T=Tetracycline

Table-7: The positive percentage of different examined antibiotic‑resistant genes for isolated E. coli strains.

Results Colistin (mrc1) blaCTX‑m blaTEM blaSHV Qnra Qnrb Integron (hep)

No. of positive 18 13 26 10 2 0 26
Percentage (n = 28) 64.3 46.5 93 35.7 7 0 93

E. coli=Escherichia coli
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on plasmids or bacterial chromosomes that are mainly 
associated with Enterobacteriaceae and are grouped 
into five distinct families: qnrA, qnrB, qnrC, qnrD, 
and qnrS [66, 67].

Resistance to the antimicrobials NX, CIP, LEV, 
and NZ, and the isolates were present in 73.2%, 
73.5%, 69.7%, and 92.2% of the isolates, respectively. 
The same examined strains showed low percentages 
of 7% and 0% for qnrA and qnrB, respectively, but 
this may be because quinolone resistance is controlled 
by another group of genes, such as integrons, which 
were detected in 93% of isolates. These findings are 
lower than those described previously by Belotindos 
et al.  [18], who detected the Qnr family (qnrA1, 
qnrB4, and qnrS1) in all tested isolates.

Integrons were detected in 93% of E. coli isolates 
in this study, which disagrees with a previous study by 
Moawad et al. [68], who did not record integrons in 
E. coli isolates from raw chicken samples in Egypt.

Avian pathogenic E. coli (APEC) isolates carry 
a wide range of virulence genes, such as adhesions, 
toxins, siderophores, iron transport systems, and inva-
sions that increase pathogenicity in avian colibacil-
loses [50, 69]. Several virulence genes, including 
papC, are important in adherence [69]. A  high per-
centage (93%) of the isolates contained the iss gene, 
as shown in Figure-4, although the papC gene was 
present at a lower percentage (32%). A previous study 
conducted by Sedeek et al. [70] reported that there is 
neither a uniform nor an absolute combination of the 
virulence genes that can distinguish between APEC 
and non-APEC strains of E. coli.

Furthermore, detecting the iss, tsh, and papC 
genes exclusively in the APEC strains could be 
consistent as important colibacillosis virulent fac-
tors [71, 72]. Our findings were similar to those previ-
ously reported by Johar et al. [73] for examination of 
different virulence genes from healthy and unhealthy 
chickens in Qatar, where the iss gene was more pre-
dominant in APEC in healthy birds (97%) than among 
unhealthy ones (16%).

In 2006, Avian Influenza outbreak occurred 
in Egypt, and consequently, all efforts were made 

to confront this at the expense of other diseases. 
Furthermore, a repeated problem is a lack of control 
and monitoring of indiscriminate use of antibiotics in 
treatment or as growth promoters to increase produc-
tivity, which all contribute to the high percentage of 
antimicrobial resistance [74].
Conclusion

The high prevalence of E. coli in poultry farms in 
Egypt and the development of MDR E. coli are of con-
siderable concern which has been developed from the 
uncontrolled usage of antimicrobials. Furthermore, 
the detection of different antibiotic resistance genes, 
such as colistin resistance, poses a significant threat to 
public health. Consequently, additional investigation 
and surveillance programs are required to focus on the 
development of antimicrobial resistance in the field, 
which facilitates its transmission to humans through 
the food chain. Improved regulatory control of admin-
istration of these antibiotics to avoid the generation of 
antibiotic-resistant strains is needed to protect public 
health.
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