210 research outputs found
Genome-wide transcriptomic responses of the seagrasses Zostera marina and Nanozostera noltii under a simulated heatwave confirm functional types
Genome-wide transcription analysis between related species occurring in overlapping ranges can provide insights into the molecular basis underlying different ecological niches. The co-occurring seagrass species, Zostera marina and Nanozostera noltii, are found in marine coastal environments throughout the northern hemisphere. Z. marina is often dominant in subtidal environments and subjected to fewer temperature extremes compared to the predominately intertidal and more stress-tolerant N. noltii.
We exposed plants of both species to a realistic heat wave scenario in a common-stress-garden experiment. Using RNA-seq (~ 7 million reads/library), four Z. marina and four N. noltii libraries were compared representing northern (Denmark) and southern (Italy) locations within the co-occurring range of the species' European distribution.
A total of 8977 expressed genes were identified, of which 78 were directly related to heat stress. As predicted, both species were negatively affected by the heat wave, but showed markedly different molecular responses. In Z. marina the heat response was similar across locations in response to the heatwave at 26 °C, with a complex response in functions related to protein folding, synthesis of ribosomal chloroplast proteins, proteins involved in cell wall modification and heat shock proteins (HSPs). In N. noltii the heat response markedly differed between locations, while HSP genes were not induced in either population.
Our results suggest that as coastal seawater temperatures increase, Z. marina will disappear along its southern most ranges, whereas N. noltii will continue to move north. As a consequence, sub- and intertidal habitat partitioning may weaken in more northern regions because the higher thermal tolerance of N. noltii provides a competitive advantage in both habitats. Although previous studies have focused on HSPs, the present study clearly demonstrates that a broader examination of stress related genes is necessary
Improved chromosome-level genome assembly and annotation of the seagrass, Zostera marina (eelgrass)
Background: Seagrasses (Alismatales) are the only fully marine angiosperms. Zostera marina (eelgrass) plays a crucial role in the functioning of coastal marine ecosystems and global carbon sequestration. It is the most widely studied seagrass and has become a marine model system for exploring adaptation under rapid climate change. The original draft genome (v.1.0) of the seagrass Z. marina (L.) was based on a combination of Illumina mate-pair libraries and fosmid-ends. A total of 25.55 Gb of Illumina and 0.14 Gb of Sanger sequence was obtained representing 47.7× genomic coverage. The assembly resulted in ~2000 unordered scaffolds (L50 of 486 Kb), a final genome assembly size of 203MB, 20,450 protein coding genes and 63% TE content. Here, we present an upgraded chromosome-scale genome assembly and compare v.1.0 and the new v.3.1, reconfirming previous results from Olsen et al. (2016), as well as pointing out new findings.
Methods: The same high molecular weight DNA used in the original sequencing of the Finnish clone was used. A high-quality reference genome was assembled with the MECAT assembly pipeline combining PacBio long-read sequencing and Hi-C scaffolding.
Results: In total, 75.97 Gb PacBio data was produced. The final assembly comprises six pseudo-chromosomes and 304 unanchored scaffolds with a total length of 260.5Mb and an N50 of 34.6 MB, showing high contiguity and few gaps (~0.5%). 21,483 protein-encoding genes are annotated in this assembly, of which 20,665 (96.2%) obtained at least one functional assignment based on similarity to known proteins.
Conclusions: As an important marine angiosperm, the improved Z. marina genome assembly will further assist evolutionary, ecological, and comparative genomics at the chromosome level. The new genome assembly will further our understanding into the structural and physiological adaptations from land to marine life
Improved chromosome-level genome assembly and annotation of the seagrass, Zostera marina (eelgrass)
BACKGROUND : Seagrasses (Alismatales) are the only fully marine
angiosperms. Zostera marina (eelgrass) plays a crucial role in the
functioning of coastal marine ecosystems and global carbon
sequestration. It is the most widely studied seagrass and has become
a marine model system for exploring adaptation under rapid climate
change. The original draft genome (v.1.0) of the seagrass Z. marina
(L.) was based on a combination of Illumina mate-pair libraries
and fosmid-ends. A total of 25.55 Gb of Illumina and 0.14 Gb of Sanger
sequence was obtained representing 47.7× genomic coverage. The
assembly resulted in ~2000 unordered scaffolds (L50 of 486 Kb), a final
genome assembly size of 203MB, 20,450 protein coding genes and
63% TE content. Here, we present an upgraded chromosome-scale
genome assembly and compare v.1.0 and the new v.3.1, reconfirming
previous results from Olsen et al. (2016), as well as pointing out new
findings.
METHODS : The same high molecular weight DNA used in the original
sequencing of the Finnish clone was used. A highquality
reference genome was
assembled with the MECAT assembly pipeline combining PacBio longread
sequencing and Hi-C scaffolding.
RESULTS : In total, 75.97 Gb PacBio data was produced. The final assembly comprises six pseudo-chromosomes and 304 unanchored
scaffolds with a total length of 260.5Mb and an N50 of 34.6 MB,
showing high contiguity and few gaps (~0.5%). 21,483 proteinencoding
genes are annotated in this assembly, of which 20,665
(96.2%) obtained at least one functional assignment based on
similarity to known proteins.
CONCLUSIONS : As an important marine angiosperm, the improved Z.
marina genome assembly will further assist evolutionary,
ecological, and comparative genomics at the chromosome
level. The new genome assembly will further our understanding into
the structural and physiological adaptations from land to marine life.The DOE-Joint Genome Institute, Berkeley, CA, USA, Community Sequencing Program 2019.http://f1000research.com/am2022BiochemistryGeneticsMicrobiology and Plant Patholog
Soil nutrients and beta diversity in the Bornean Dipterocarpaceae: evidence for niche partitioning by tropical rain forest trees
1 The relative importance of niche- and dispersal-mediated processes in structuring diverse tropical plant communities remains poorly understood. Here, we link mesoscale beta diversity to soil variation throughout a lowland Bornean watershed underlain by alluvium, sedimentary and granite parent materials ( c . 340 ha, 8–200 m a.s.l.). We test the hypothesis that species turnover across the habitat gradient reflects interspecific partitioning of soil resources. 2 Floristic inventories (≥ 1 cm d.b.h.) of the Dipterocarpaceae, the dominant Bornean canopy tree family, were combined with extensive soil analyses in 30 (0.16 ha) plots. Six samples per plot were analysed for total C, N, P, K, Ca and Mg, exchangeable K, Ca and Mg, extractable P, texture, and pH. 3 Extractable P, exchangeable K, and total C, N and P varied significantly among substrates and were highest on alluvium. Thirty-one dipterocarp species ( n = 2634 individuals, five genera) were recorded. Dipterocarp density was similar across substrates, but richness and diversity were highest on nutrient-poor granite and lowest on nutrient-rich alluvium. 4 Eighteen of 22 species were positively or negatively associated with parent material. In 8 of 16 abundant species, tree distribution (≥ 10 cm d.b.h.) was more strongly non-random than juveniles (1–10 cm d.b.h.), suggesting higher juvenile mortality in unsuitable habitats. The dominant species Dipterocarpus sublamellatus (> 50% of stems) was indifferent to substrate, but nine of 11 ‘subdominant’ species (> 8 individuals ha −1 ) were substrate specialists. 5 Eighteen of 22 species were significantly associated with soil nutrients, especially P, Mg and Ca. Floristic variation was significantly correlated with edaphic and geographical distance for all stems ≥ 1 cm d.b.h. in Mantel analyses. However, juvenile variation (1–10 cm d.b.h.) was more strongly related to geographical distance than edaphic factors, while the converse held for established trees (≥ 10 cm d.b.h.), suggesting increased importance of niche processes with size class. 6 Pervasive dipterocarp associations with soil factors suggest that niche partitioning structures dipterocarp tree communities. Yet, much floristic variation unrelated to soil was correlated with geographical distance between plots, suggesting that dispersal and niche processes jointly determine mesoscale beta diversity in the Bornean Dipterocarpaceae. Journal of Ecology (2005) doi: 10.1111/j.1365-2745.2005.01077.xPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72822/1/j.1365-2745.2005.01077.x.pd
Centrality dependence of charged particle production at large transverse momentum in Pb-Pb collisions at TeV
The inclusive transverse momentum () distributions of primary
charged particles are measured in the pseudo-rapidity range as a
function of event centrality in Pb-Pb collisions at
TeV with ALICE at the LHC. The data are presented in the range
GeV/ for nine centrality intervals from 70-80% to 0-5%.
The Pb-Pb spectra are presented in terms of the nuclear modification factor
using a pp reference spectrum measured at the same collision
energy. We observe that the suppression of high- particles strongly
depends on event centrality. In central collisions (0-5%) the yield is most
suppressed with at -7 GeV/. Above
GeV/, there is a significant rise in the nuclear modification
factor, which reaches for GeV/. In
peripheral collisions (70-80%), the suppression is weaker with almost independently of . The measured nuclear
modification factors are compared to other measurements and model calculations.Comment: 17 pages, 4 captioned figures, 2 tables, authors from page 12,
published version, figures at
http://aliceinfo.cern.ch/ArtSubmission/node/284
Measurement of charm production at central rapidity in proton-proton collisions at TeV
The -differential production cross sections of the prompt (B
feed-down subtracted) charmed mesons D, D, and D in the rapidity
range , and for transverse momentum GeV/, were
measured in proton-proton collisions at TeV with the ALICE
detector at the Large Hadron Collider. The analysis exploited the hadronic
decays DK, DK, DD, and their charge conjugates, and was performed on a
nb event sample collected in 2011 with a
minimum-bias trigger. The total charm production cross section at TeV and at 7 TeV was evaluated by extrapolating to the full phase space
the -differential production cross sections at TeV
and our previous measurements at TeV. The results were compared
to existing measurements and to perturbative-QCD calculations. The fraction of
cdbar D mesons produced in a vector state was also determined.Comment: 20 pages, 5 captioned figures, 4 tables, authors from page 15,
published version, figures at
http://aliceinfo.cern.ch/ArtSubmission/node/307
Particle-yield modification in jet-like azimuthal di-hadron correlations in Pb-Pb collisions at = 2.76 TeV
The yield of charged particles associated with high- trigger
particles ( GeV/) is measured with the ALICE detector in
Pb-Pb collisions at = 2.76 TeV relative to proton-proton
collisions at the same energy. The conditional per-trigger yields are extracted
from the narrow jet-like correlation peaks in azimuthal di-hadron correlations.
In the 5% most central collisions, we observe that the yield of associated
charged particles with transverse momenta GeV/ on the
away-side drops to about 60% of that observed in pp collisions, while on the
near-side a moderate enhancement of 20-30% is found.Comment: 15 pages, 2 captioned figures, 1 table, authors from page 10,
published version, figures at
http://aliceinfo.cern.ch/ArtSubmission/node/350
Seagrass genomes reveal ancient polyploidy and adaptations to the marine environment
DATA AVAILABILITY : The DNA sequencing data for the C. nodosa genome assembly have been deposited in the NCBI database under BioProject PRJNA1041560 via the link https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA1041560. All assemblies and annotations for all seagrass species discussed in the current paper can be found at https://bioinformatics.psb.ugent.be/gdb/seagrasses/. The transcriptome data (including raw data and clean data) and sequencing QC reports for C. nodosa can be found at https://genome.jgi.doe.gov/portal/pages/dynamicOrganismDownload.jsf?organism=Cymnodnscriptome_2, the transcriptome data and sequencing QC reports for P. oceanica can be found at https://genome.jgi.doe.gov/portal/pages/dynamicOrganismDownload.jsf?organism=Posocenscriptome_2, the transcriptome data and sequencing QC reports for T. testudinum can be found at https://genome.jgi.doe.gov/portal/pages/dynamicOrganismDownload.jsf?organism=Thatesnscriptome_4 and the transcriptome data for Z. marina are from ref. 15. For the public databases, the RFAM database v.14.7 can be downloaded at https://ftp.ebi.ac.uk/pub/databases/Rfam/14.7/, the UniProt database can be accessed from the web at http://www.uniprot.org and downloaded from http://www.uniprot.org/downloads and the NCBI nucleotide database can be accessed via https://www.ncbi.nlm.nih.gov/.We present chromosome-level genome assemblies from representative species of three independently evolved seagrass lineages: Posidonia oceanica, Cymodocea nodosa, Thalassia testudinum and Zostera marina. We also include a draft genome of Potamogeton acutifolius, belonging to a freshwater sister lineage to Zosteraceae. All seagrass species share an ancient whole-genome triplication, while additional whole-genome duplications were uncovered for C. nodosa, Z. marina and P. acutifolius. Comparative analysis of selected gene families suggests that the transition from submerged-freshwater to submerged-marine environments mainly involved fine-tuning of multiple processes (such as osmoregulation, salinity, light capture, carbon acquisition and temperature) that all had to happen in parallel, probably explaining why adaptation to a marine lifestyle has been exceedingly rare. Major gene losses related to stomata, volatiles, defence and lignification are probably a consequence of the return to the sea rather than the cause of it. These new genomes will accelerate functional studies and solutions, as continuing losses of the ‘savannahs of the sea’ are of major concern in times of climate change and loss of biodiversity.The DOE, JGI, Berkeley, California, USA, under the Community Sequencing Program 2018; the European Research Council under the European Union’s Horizon 2020 research and innovation programme ; Ghent University (Methusalem funding); the Deutsche Forschungsgemeinschaft (German Research Foundation); the Helmholtz School for Marine Data Science; partially supported by the project Marine Hazard, PON03PE_00203_1 (MUR, Italian Ministry of University and Research) and by the National Biodiversity Future Centre Program, Italian Ministry of University and Research, PNRR, Missione 4 Componente 2 Investimento 1.4; and Universiti Malaysia Terengganu.https://www.nature.com/nplants2024-07-26hj2024BiochemistryGeneticsMicrobiology and Plant PathologySDG-14:Life below wate
- …