57 research outputs found

    Realisation of photonic Hilbert transformer with a simple planar Bragg grating

    No full text
    Photonic Hilbert transformers (PHTs) are desirable for the direct processing of optical signals at high speeds and operation bandwidths, allowing optical networks to outperform current electronic technologies. We practically demonstrate a photonic Hilbert transformer in planar geometry; utilising a pi-phase shift planar Bragg grating with proper apodization profile. The device is fabricated by direct UV grating writing technology in silica-on-silicon [1]. The PHT has a pi-phase shift at the zero point of the frequency response, whereas the amplitude remains constant. The pi-phase shift in PHT is simply induced by placing a pi-phase shift in the refractive index modulation. The constant amplitude is achieved by precise apodization of the grating coupling strength, while the apodization profile is given by [2]. With our current direct UV writing technology, the proposed grating can be fabricated in a much higher accuracy then the conventional fibre Bragg grating manufacturing technique. We will present our latest work on more complex apodized gratings to obtain the ideal realisable frequency and temporal responses for PHTs

    Simple planar Bragg grating devices for photonic Hilbert transform

    No full text
    Hilbert transformers are important devices widely used in information processing and signal analysis in the electronic domain. For example, for spectral efficiency improvement, it is used to construct the analytic signal for single sideband (SSB) modulation from a real signal. Photonic Hilbert transformers (PHTs) are proposed for a similar range of applications and would allow the direct processing of optical signals at bandwidths far beyond current electronic technologies

    Direct optical observation of walls and disclination effects in active photonic devices

    No full text
    Liquid crystal tunable Bragg Gratings defined in planar substrates via a laser patterning technique exhibit complex wavelength tuning. This tuning displays threshold points and hysteresis. These tuning features are shown to be a manifestation of physical processes occurring in the confined geometry of our tunable devices. Such physical processes include the formation and removal of line disclinations and an associated wall. We discuss the effect of walls in the liquid crystal with regards to voltage tuning characteristics and whether they may allow faster wavelength tuning

    All-optical signal processing using planar Bragg gratings

    No full text
    The fabrication techniques of Bragg gratings broadly fall into two categories: that are holographic, and that are non-interferometric, based on the periodical UV radiation along the photosensitive medium. The fabrication technique in this work is the direct UV grating writing (DGW). This method involves focusing two crossed laser beams (lambda=244nm) into a photosensitive core layer. Precise translation of the sample and modulation of the interference pattern define the channel waveguide and simultaneously create grating structures, shown in Figure 1. First developed at Optoelectronics Research Centre in 2002, it has similarities to the UV writing techniques used for fiber Bragg grating inscription. Advanced grating properties such as chirp, phase shifts, and apodisation are introduced by adjusting the laser intensity and the translating speed

    Radioimmunotherapy of B-cell lymphoma with radiolabelled anti-CD20 monoclonal antibodies

    Get PDF
    CD20 has proven to be an excellent target for the treatment of B-cell lymphoma, first for the chimeric monoclonal antibody rituximab (Rituxan™), and more recently for the radiolabelled antibodies Y-90 ibritumomab tiuxetan (Zevalin™) and I-131 tositumomab (Bexxar™). Radiation therapy effects are due to beta emissions with path lengths of 1–5 mm; gamma radiation emitted by I-131 is the only radiation safety issue for either product. Dose-limiting toxicity for both radiolabelled antibodies is reversible bone marrow suppression. They produce response rates of 70%–90% in low-grade and follicular lymphoma and 40%–50% in transformed low-grade or intermediate-grade lymphomas. Both products produce higher response rates than related unlabelled antibodies, and both are highly active in patients who are relatively resistant to rituximab-based therapy. Median duration of response to a single course of treatment is about 1 year with complete remission rates that last 2 years or longer in about 25% of patients. Clinical trials suggest that anti- CD20 radioimmunotherapy is superior to total body irradiation in patients undergoing stem cell supported therapy for B-cell lymphoma, and that it is a safe and efficacious modality when used as consolidation therapy following chemotherapy. Among cytotoxic treatment options, current evidence suggests that one course of anti-CD20 radioimmunotherapy is as efficacious as six to eight cycles of combination chemotherapy. A major question that persists is how effective these agents are in the setting of rituximab- refractory lymphoma. These products have been underutilised because of the complexity of treatment coordination and concerns regarding reimbursement

    Strategies for Controlled Placement of Nanoscale Building Blocks

    Get PDF
    The capability of placing individual nanoscale building blocks on exact substrate locations in a controlled manner is one of the key requirements to realize future electronic, optical, and magnetic devices and sensors that are composed of such blocks. This article reviews some important advances in the strategies for controlled placement of nanoscale building blocks. In particular, we will overview template assisted placement that utilizes physical, molecular, or electrostatic templates, DNA-programmed assembly, placement using dielectrophoresis, approaches for non-close-packed assembly of spherical particles, and recent development of focused placement schemes including electrostatic funneling, focused placement via molecular gradient patterns, electrodynamic focusing of charged aerosols, and others

    Graphical and numerical representations of DNA sequences: statistical aspects of similarity

    Full text link

    Search for heavy long-lived charged R-hadrons with the ATLAS detector in 3.2 fb(-1) of proton-proton collision data at root s=13 TeV

    Get PDF
    A search for heavy long-lived charged R-hadrons is reported using a data sample corresponding to 3.2 fb−1 of proton–proton collisions at √s = 13 TeV collected by the ATLAS experiment at the Large Hadron Collider at CERN. The search is based on observables related to large ionisation losses and slow propagation velocities, which are signatures of heavy charged particles travelling significantly slower than the speed of light. No significant deviations from the expected background are observed. Upper limits at 95% confidence level are provided on the production cross section of long-lived R-hadrons in the mass range from 600 GeV to 2000 GeV and gluino, bottom and top squark masses are excluded up to 1580 GeV, 805 GeV and 890 GeV, respectively

    Rising rural body-mass index is the main driver of the global obesity epidemic in adults

    Get PDF
    Body-mass index (BMI) has increased steadily in most countries in parallel with a rise in the proportion of the population who live in cities 1,2 . This has led to a widely reported view that urbanization is one of the most important drivers of the global rise in obesity 3�6 . Here we use 2,009 population-based studies, with measurements of height and weight in more than 112 million adults, to report national, regional and global trends in mean BMI segregated by place of residence (a rural or urban area) from 1985 to 2017. We show that, contrary to the dominant paradigm, more than 55 of the global rise in mean BMI from 1985 to 2017�and more than 80 in some low- and middle-income regions�was due to increases in BMI in rural areas. This large contribution stems from the fact that, with the exception of women in sub-Saharan Africa, BMI is increasing at the same rate or faster in rural areas than in cities in low- and middle-income regions. These trends have in turn resulted in a closing�and in some countries reversal�of the gap in BMI between urban and rural areas in low- and middle-income countries, especially for women. In high-income and industrialized countries, we noted a persistently higher rural BMI, especially for women. There is an urgent need for an integrated approach to rural nutrition that enhances financial and physical access to healthy foods, to avoid replacing the rural undernutrition disadvantage in poor countries with a more general malnutrition disadvantage that entails excessive consumption of low-quality calories. © 2019, The Author(s)
    corecore