351 research outputs found
Renormalization Group Approach to the Coulomb Pseudopotential for C_{60}
A numerical renormalization group technique recently developed by one of us
is used to analyse the Coulomb pseudopotential () in
for a variety of bare potentials. We find a large reduction in due to
intraball screening alone, leading to an interesting non-monotonic dependence
of on the bare interaction strength.
We find that is positive for physically reasonable bare parameters,
but small enough to make the electron-phonon coupling a viable mechanism for
superconductivity in alkali-doped fullerides. We end with some open problems.Comment: 12 pages, latex, 7 figures available from [email protected]
Mean-field theory of Bose-Fermi mixtures in optical lattices
We determine the phase diagram of a mixture of ultracold bosons and polarized
fermions placed in an optical lattice using mean field theory. In the limit of
strong atom-atom interactions, there exist quantum phases that involve pairing
of fermions with one or more bosons, or bosonic holes, respectively. We obtain
the analytic form of the phase boundaries separating these composite fermion
phases from the bosonic superfluid coexisting with Fermi liquid. We compare the
results with numerical simulations and discuss their validity and relevance for
current experiments.Comment: 4 pages, 2 eps figures, new section on experimental requirements and
some technical details adde
Constraining Majorana neutrino electromagnetic properties from the LMA-MSW solution of the solar neutrino problem
In this paper we use solar neutrino data to derive stringent bounds on
Majorana neutrino transition moments (TMs). Should such be present, they would
contribute to the neutrino--electron scattering cross section and hence alter
the signal observed in Super-Kamiokande. Motivated by the growing robustness of
the LMA-MSW solution of the solar neutrino problem indicated by recent data,
and also by the prospects of its possible confirmation at KamLAND, we assume
the validity of this solution, and we constrain neutrino TMs by using the
latest global solar neutrino data. We find that all elements of the TM matrix
can be bounded at the same time. Furthermore, we show how reactor data play a
complementary role to the solar neutrino data, and use the combination of both
data sets to improve the current bounds. Performing a simultaneous fit of
LMA-MSW oscillation parameters and TMs we find that 6.3 times 10^{-10} mu_B and
2.0 times 10^{-10} mu_B are the 90% C.L. bounds from solar and combined solar +
reactor data, respectively. Finally, we perform a simulation of the upcoming
Borexino experiment and show that it will improve the bounds from today's data
by roughly one order of magnitude.Comment: Latex, 24 pages, 6 figures; misprints correcte
Frustration and the Kondo effect in heavy fermion materials
The observation of a separation between the antiferromagnetic phase boundary
and the small-large Fermi surface transition in recent experiments has led to
the proposal that frustration is an important additional tuning parameter in
the Kondo lattice model of heavy fermion materials. The introduction of a Kondo
(K) and a frustration (Q) axis into the phase diagram permits us to discuss the
physics of heavy fermion materials in a broader perspective. The current
experimental situation is analysed in the context of this combined "QK" phase
diagram. We discuss various theoretical models for the frustrated Kondo
lattice, using general arguments to characterize the nature of the -electron
localization transition that occurs between the spin liquid and heavy Fermi
liquid ground-states. We concentrate in particular on the Shastry--Sutherland
Kondo lattice model, for which we establish the qualitative phase diagram using
strong coupling arguments and the large- expansion. The paper closes with
some brief remarks on promising future theoretical directions.Comment: To appear in a special issue of JLT
Entanglement and Density Matrix of a Block of Spins in AKLT Model
We study a 1-dimensional AKLT spin chain, consisting of spins in the bulk
and at both ends. The unique ground state of this AKLT model is described
by the Valence-Bond-Solid (VBS) state. We investigate the density matrix of a
contiguous block of bulk spins in this ground state. It is shown that the
density matrix is a projector onto a subspace of dimension . This
subspace is described by non-zero eigenvalues and corresponding eigenvectors of
the density matrix. We prove that for large block the von Neumann entropy
coincides with Renyi entropy and is equal to .Comment: Revised version, typos corrected, references added, 31 page
Professional closure by proxy: the impact of changing educational requirements on class mobility for a cohort of Big 8 partners
Closure events impacting on class mobility may include mechanisms initiated by bodies other than the professional body. The research examines if the introduction of full-time study requirements at universities for aspiring accountants effectively introduced a closure mechanism in the accounting profession. Data was derived from an Oral History study of partners in large firms. The younger partners (born after the Second World War) completed full-time degree study at university, but did not provide evidence of class mobility into the profession. The older cohort, born between 1928 and 1946, completed part-time studies only, few completed a degree, and, in contrast to the younger cohort, shows a perceptible upward movement from lower socio-economic classes into the professional class. This suggests that changing the preferred educational routes for new accountants entering the large chartered accounting (CA) firms compromised the "stepping stone" function of accounting as a portal into the professional class
Probing exotic phenomena at the interface of nuclear and particle physics with the electric dipole moments of diamagnetic atoms: A unique window to hadronic and semi-leptonic CP violation
The current status of electric dipole moments of diamagnetic atoms which
involves the synergy between atomic experiments and three different theoretical
areas -- particle, nuclear and atomic is reviewed. Various models of particle
physics that predict CP violation, which is necessary for the existence of such
electric dipole moments, are presented. These include the standard model of
particle physics and various extensions of it. Effective hadron level combined
charge conjugation (C) and parity (P) symmetry violating interactions are
derived taking into consideration different ways in which a nucleon interacts
with other nucleons as well as with electrons. Nuclear structure calculations
of the CP-odd nuclear Schiff moment are discussed using the shell model and
other theoretical approaches. Results of the calculations of atomic electric
dipole moments due to the interaction of the nuclear Schiff moment with the
electrons and the P and time-reversal (T) symmetry violating
tensor-pseudotensor electron-nucleus are elucidated using different
relativistic many-body theories. The principles of the measurement of the
electric dipole moments of diamagnetic atoms are outlined. Upper limits for the
nuclear Schiff moment and tensor-pseudotensor coupling constant are obtained
combining the results of atomic experiments and relativistic many-body
theories. The coefficients for the different sources of CP violation have been
estimated at the elementary particle level for all the diamagnetic atoms of
current experimental interest and their implications for physics beyond the
standard model is discussed. Possible improvements of the current results of
the measurements as well as quantum chromodynamics, nuclear and atomic
calculations are suggested.Comment: 46 pages, 19 tables and 16 figures. A review article accepted for
EPJ
Poloxamer-based thermoresponsive ketorolac tromethamine in situ gel preparations : design, characterisation, toxicity and transcorneal permeation studies
This study was aimed at preparing, characterising and evaluating in situ gel formulations based on a blend of two hydrophilic polymers i.e. poloxamer 407 (P407) and poloxamer 188 (P188) for a sustained ocular delivery of ketorolac tromethamine (KT). Drug-polymer interaction studies were performed using {DSC} and FT-IR. The gelation temperature (Tsol-gel), gelation time, rheological behaviour, mucoadhesive characteristics of these gels, transcorneal permeation and ocular irritation as well as toxicity was investigated. {DSC} and FT-IR studies revealed that there may be electrostatic interactions between the drug and the polymers used. {P188} modified the Tsol/gel of {P407} bringing it close to eye temperature (35°C) compared with the formulation containing {P407} alone. Moreover, gels that comprised {P407} and {P188} exhibited a pseudoplastic behaviour at different concentrations. Furthermore, mucoadhesion study using mucin discs showed that in situ gel formulations have good mucoadhesive characteristics upon increasing the concentration of P407. When comparing formulations {PP11} and PP12, the work of adhesion decreased significantly (P < 0.001) from 377.9 ± 7.79 mN.mm to 272.3 ± 6.11 mN.mm. In vitro release and ex vivo permeation experiments indicated that the in situ gels were able to prolong and control {KT} release as only 48 of the {KT} released within 12 h. In addition, the HET-CAM and {BCOP} tests confirmed the non-irritancy of {KT} loaded in situ gels, and HET-CAM test demonstrated the ability of ocular protection against strongly irritant substances. {MTT} assay on primary corneal epithelial cells revealed that in situ gel formulations loaded with {KT} showed reasonable and acceptable percent cell viability compared with control samples
Observation of a new chi_b state in radiative transitions to Upsilon(1S) and Upsilon(2S) at ATLAS
The chi_b(nP) quarkonium states are produced in proton-proton collisions at
the Large Hadron Collider (LHC) at sqrt(s) = 7 TeV and recorded by the ATLAS
detector. Using a data sample corresponding to an integrated luminosity of 4.4
fb^-1, these states are reconstructed through their radiative decays to
Upsilon(1S,2S) with Upsilon->mu+mu-. In addition to the mass peaks
corresponding to the decay modes chi_b(1P,2P)->Upsilon(1S)gamma, a new
structure centered at a mass of 10.530+/-0.005 (stat.)+/-0.009 (syst.) GeV is
also observed, in both the Upsilon(1S)gamma and Upsilon(2S)gamma decay modes.
This is interpreted as the chi_b(3P) system.Comment: 5 pages plus author list (18 pages total), 2 figures, 1 table,
corrected author list, matches final version in Physical Review Letter
Search for displaced vertices arising from decays of new heavy particles in 7 TeV pp collisions at ATLAS
We present the results of a search for new, heavy particles that decay at a
significant distance from their production point into a final state containing
charged hadrons in association with a high-momentum muon. The search is
conducted in a pp-collision data sample with a center-of-mass energy of 7 TeV
and an integrated luminosity of 33 pb^-1 collected in 2010 by the ATLAS
detector operating at the Large Hadron Collider. Production of such particles
is expected in various scenarios of physics beyond the standard model. We
observe no signal and place limits on the production cross-section of
supersymmetric particles in an R-parity-violating scenario as a function of the
neutralino lifetime. Limits are presented for different squark and neutralino
masses, enabling extension of the limits to a variety of other models.Comment: 8 pages plus author list (20 pages total), 8 figures, 1 table, final
version to appear in Physics Letters
- …