534 research outputs found

    Wavelength-dependent spatial variation in the reflectance of 'homogeneous' ground calibration targets (Paper presented at XIX ISPRS Congress, 16-22 July, 2000, Amsterdam, The Netherlands)

    No full text
    Remotely sensed data are most useful if calibrated to spectral reflectance of known features. One simple method of calibration is regression of remote data on the reflectance of several ground targets as measured in the field, the so called empirical line method (ELM). The ideal situation would be one where a range of ground targets representing all the features of interest in the remote image were available for ground measurements (Lawless et al., 1998). The identification of suitable ground targets is constrained by several limitations, such as their size (to minimise edge effects), their absolute reflectance (to represent spectral characteristics of the image) and their effective spatial variability (to extract reflectance characteristics representative of the target). The size of a ground target is dependent on the spatial resolution of the image that must be calibrated (Justice & Townshend, 1981) and the number of observations needed to represent features in the image has been suggested to depend upon the spatial resolution of the remotely sensed image (Justice & Townshend, 1981) and on the spatial variability of the ground target (Harlan et al., 1979; Curran & Williamson, 1986). Although ground targets used for calibration should be spectrally “bland” and spatially uniform by definition (Clark et al., 1999), it is sometimes very difficult to find such places available for calibrating remotely sensed images. When surfaces that apparently satisfy these conditions are available in suitable size, their sampling needs to be designed to optimise representation of the whole surface and available resources (e.g., effort and time). Surfaces that look spatially uniform by eye may actually contain spatial variation, and this spatial variation may depends on wavelength (Atkinson & Emery, 1999). Such variability can be detected using geostatistics, which is concerned with issues such as spatial correlation and analyses of spatial data. Geostatistical tools have been used in a variety of studies and the variogram has been applied in remote sensing and ecology to design optimal sampling strategies for variables sampled in space (Atkinson, 1991; Rossi et al., 1992) and time (Salvatori et al., 1999). This study investigates the spatial variability of potentially suitable ground calibration targets (GCT) using a geostatistical approach, which gives results that can be used to design optimal sampling strategies for such surfaces. The targets were selected from an area where an Itres Instruments Compact Airborne Spectral Imager (casi) with ground resolution of about 1.5 metres was flown at the same time as ground data were acquired

    A Parallel Deconvolution Algorithm in Perfusion Imaging

    Get PDF

    Generic meta-modelling with concepts, templates and mixin layers

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-642-16145-2_2Proceedings of 13th International Conference, MODELS 2010, Oslo, Norway, October 3-8, 2010.Meta-modelling is a key technique in Model Driven Engineering, where it is used for language engineering and domain modelling. However, mainstream approaches like the OMG’s Meta-Object Facility provide little support for abstraction, modularity, reusability and extendibility of (meta-)models, behaviours and transformations. In order to alleviate this weakness, we bring three elements of generic programming into meta-modelling: concepts, templates and mixin layers. Concepts permit an additional typing for models, enabling the definition of behaviours and transformations independently of meta-models, making specifications reusable. Templates use concepts to express requirements on their generic parameters, and are applicable to models and meta-models. Finally, we define functional layers by means of meta-model mixins which can extend other meta-models. As a proof of concept we also report on MetaDepth, a multi-level meta-modelling framework that implements these ideas.Work sponsored by the Spanish Ministry of Science, project TIN2008-02081 and mobility grants JC2009-00015 and PR2009-0019, and by the R&D programme of the Community of Madrid, project S2009/TIC-165

    Power-law distributions and Levy-stable intermittent fluctuations in stochastic systems of many autocatalytic elements

    Full text link
    A generic model of stochastic autocatalytic dynamics with many degrees of freedom wiw_i i=1,...,Ni=1,...,N is studied using computer simulations. The time evolution of the wiw_i's combines a random multiplicative dynamics wi(t+1)=λwi(t)w_i(t+1) = \lambda w_i(t) at the individual level with a global coupling through a constraint which does not allow the wiw_i's to fall below a lower cutoff given by cwˉc \cdot \bar w, where wˉ\bar w is their momentary average and 0<c<10<c<1 is a constant. The dynamic variables wiw_i are found to exhibit a power-law distribution of the form p(w)w1αp(w) \sim w^{-1-\alpha}. The exponent α(c,N)\alpha (c,N) is quite insensitive to the distribution Π(λ)\Pi(\lambda) of the random factor λ\lambda, but it is non-universal, and increases monotonically as a function of cc. The "thermodynamic" limit, N goes to infty and the limit of decoupled free multiplicative random walks c goes to 0, do not commute: α(0,N)=0\alpha(0,N) = 0 for any finite NN while α(c,)1 \alpha(c,\infty) \ge 1 (which is the common range in empirical systems) for any positive cc. The time evolution of wˉ(t){\bar w (t)} exhibits intermittent fluctuations parametrized by a (truncated) L\'evy-stable distribution Lα(r)L_{\alpha}(r) with the same index α\alpha. This non-trivial relation between the distribution of the wiw_i's at a given time and the temporal fluctuations of their average is examined and its relevance to empirical systems is discussed.Comment: 7 pages, 4 figure

    The β3-integrin endothelial adhesome regulates microtubule-dependent cell migration

    Get PDF
    Integrin β3 is seen as a key anti-angiogenic target for cancer treatment due to its expression on neovasculature, but the role it plays in the process is complex; whether it is pro- or anti-angiogenic depends on the context in which it is expressed. To understand precisely β3's role in regulating integrin adhesion complexes in endothelial cells, we characterised, by mass spectrometry, the β3-dependent adhesome. We show that depletion of β3-integrin in this cell type leads to changes in microtubule behaviour that control cell migration. β3-integrin regulates microtubule stability in endothelial cells through Rcc2/Anxa2-driven control of active Rac1 localisation. Our findings reveal that angiogenic processes, both in vitro and in vivo, are more sensitive to microtubule targeting agents when β3-integrin levels are reduced

    Observation of a New J(PC)=1(+-) Isoscalar State in the Reaction Pi- Proton -> Omega Eta Neutron at 18 GeV/c

    Full text link
    Results are presented on a partial wave analysis of the Omega Eta final state produced in Pi- Proton interactions at 18 GeVc where Omega -> Pi+ Pi- Pi0, Pi0 -> 2 Gammas, and Eta -> 2 Gammas. We observe the previously unreported decay mode Omega(1650) -> Omega Eta and a new 1(+-) meson state h1(1595) with a mass M=1594(15)(+10)(-60) MeV/c^2 and a width Gamma=384(60)(+70)(-100) MeV/c^2. The h1(1595) state exhibits resonant-like phase motion relative to the Omega(1650).Comment: Submitted to Physics Letters B Eight total pages including 11 figures and 1 tabl

    The Gribov-Zwanziger action in the presence of the gauge invariant, nonlocal mass operator Trd4xFμν(D2)1FμνTr \int d^4x F_{\mu\nu} (D^2)^{-1} F_{\mu\nu} in the Landau gauge

    Full text link
    We prove that the nonlocal gauge invariant mass dimension two operator Fμν(D2)1FμνF_{\mu\nu} (D^2)^{-1} F_{\mu\nu} can be consistently added to the Gribov-Zwanziger action, which implements the restriction of the path integral's domain of integration to the first Gribov region when the Landau gauge is considered. We identify a local polynomial action and prove the renormalizability to all orders of perturbation theory by employing the algebraic renormalization formalism. Furthermore, we also pay attention to the breaking of the BRST invariance, and to the consequences that this has for the Slavnov-Taylor identity.Comment: 30 page

    Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results

    Equations for the estimation of strong ground motions from shallow crustal earthquakes using data from Europe and the Middle East : vertical peak ground acceleration and spectral acceleration

    Get PDF
    This article presents equations for the estimation of vertical strong ground motions caused by shallow crustal earthquakes with magnitudes M w 5 and distance to the surface projection of the fault less than 100km. These equations were derived by weighted regression analysis, used to remove observed magnitude-dependent variance, on a set of 595 strong-motion records recorded in Europe and the Middle East. Coefficients are included to model the effect of local site effects and faulting mechanism on the observed ground motions. The equations include coefficients to model the observed magnitude-dependent decay rate. The main findings of this study are that: short-period ground motions from small and moderate magnitude earthquakes decay faster than the commonly assumed 1/r, the average effect of differing faulting mechanisms is similar to that observed for horizontal motions and is not large and corresponds to factors between 0.7 (normal and odd) and 1.4 (thrust) with respect to strike-slip motions and that the average long-period amplification caused by soft soil deposits is about 2.1 over those on rock sites
    corecore