3,184 research outputs found

    A strategy for efficiently collecting aerosol condensate using silica fibers:application to carbonyl emissions from e-cigarettes

    Get PDF
    Analysing harmful constituents in e-cigarette aerosols typically involves adopting a methodology used for analysing tobacco smoke. Cambridge filter pads (CFP) are the basis of numerous protocols for analysing the various classes of compounds representing 93 harmful and potentially harmful constituents identified in tobacco smoke by the FDA. This paper describes a simplified method for trapping the low volatility components of e-cigarette aerosols using a single trapping procedure followed by physical extraction. The trap is a plug of amorphous silica fibres (0.75 g of 4 µm diameter) within a 10mL syringe inserted between the e-cigarette mouthpiece and the pump of the vaping machine. The method is evaluated for emissions from three generations of e-cigarette device (Kangertech CE4, EVOD and Subox Mini-C). On average the silica wool traps about 94% of the vapourised liquid mass in the three devices and higher levels of condensate is retained before reaching saturation compared with CFP. The condensate is then physically extracted from the silica wool plug using a centrifuge. Condensate is then available for use directly in multiple analytical procedures or toxicological experiments. The method is tested by comparison with published analyses of carbonyls, among the most potent toxicants and carcinogens in e-cigarette emissions. Ranges for HPLC-DAD analyses of carbonyl-DNPH derivatives in a laboratory formulation of e-liquid are formaldehyde (0.182±0.023 to 9.896±0.709 µg puff-1), acetaldehyde (0.059±0.005 to 0.791±0.073 µg puff-1) and propionaldehyde (0.008±0.0001 to 0.033±0.023 µg puff-1); other carbonyls are identified and quantified. Carbonyls concentrations are also consistent with published experiments showing marked increases in with variable power settings (10W - 50W). Compared with CFPs, e-cigarette aerosol collection by silica wool requires only one vaping session for multiple analyte groups, traps more condensate per puff, collects more condensate before saturating

    Fitting Voronoi Diagrams to Planar Tesselations

    Get PDF
    Given a tesselation of the plane, defined by a planar straight-line graph GG, we want to find a minimal set SS of points in the plane, such that the Voronoi diagram associated with SS "fits" \ GG. This is the Generalized Inverse Voronoi Problem (GIVP), defined in \cite{Trin07} and rediscovered recently in \cite{Baner12}. Here we give an algorithm that solves this problem with a number of points that is linear in the size of GG, assuming that the smallest angle in GG is constant.Comment: 14 pages, 8 figures, 1 table. Presented at IWOCA 2013 (Int. Workshop on Combinatorial Algorithms), Rouen, France, July 201

    Sixteen years of Collaborative Learning through Active Sense-making in Physics (CLASP) at UC Davis

    Full text link
    This paper describes our large reformed introductory physics course at UC Davis, which bioscience students have been taking since 1996. The central feature of this course is a focus on sense-making by the students during the five hours per week discussion/labs in which the students take part in activities emphasizing peer-peer discussions, argumentation, and presentations of ideas. The course differs in many fundamental ways from traditionally taught introductory physics courses. After discussing the unique features of CLASP and its implementation at UC Davis, various student outcome measures are presented showing increased performance by students who took the CLASP course compared to students who took a traditionally taught introductory physics course. Measures we use include upper-division GPAs, MCAT scores, FCI gains, and MPEX-II scores.Comment: Also submitted to American Journal of Physic

    Tensions and paradoxes in electronic patient record research: a systematic literature review using the meta-narrative method

    Get PDF
    Background: The extensive and rapidly expanding research literature on electronic patient records (EPRs) presents challenges to systematic reviewers. This literature is heterogeneous and at times conflicting, not least because it covers multiple research traditions with different underlying philosophical assumptions and methodological approaches. Aim: To map, interpret and critique the range of concepts, theories, methods and empirical findings on EPRs, with a particular emphasis on the implementation and use of EPR systems. Method: Using the meta-narrative method of systematic review, and applying search strategies that took us beyond the Medline-indexed literature, we identified over 500 full-text sources. We used ‘conflicting’ findings to address higher-order questions about how the EPR and its implementation were differently conceptualised and studied by different communities of researchers. Main findings: Our final synthesis included 24 previous systematic reviews and 94 additional primary studies, most of the latter from outside the biomedical literature. A number of tensions were evident, particularly in relation to: [1] the EPR (‘container’ or ‘itinerary’); [2] the EPR user (‘information-processer’ or ‘member of socio-technical network’); [3] organizational context (‘the setting within which the EPR is implemented’ or ‘the EPR-in-use’); [4] clinical work (‘decision-making’ or ‘situated practice’); [5] the process of change (‘the logic of determinism’ or ‘the logic of opposition’); [6] implementation success (‘objectively defined’ or ‘socially negotiated’); and [7] complexity and scale (‘the bigger the better’ or ‘small is beautiful’). Findings suggest that integration of EPRs will always require human work to re-contextualize knowledge for different uses; that whilst secondary work (audit, research, billing) may be made more efficient by the EPR, primary clinical work may be made less efficient; that paper, far from being technologically obsolete, currently offers greater ecological flexibility than most forms of electronic record; and that smaller systems may sometimes be more efficient and effective than larger ones. Conclusions: The tensions and paradoxes revealed in this study extend and challenge previous reviews and suggest that the evidence base for some EPR programs is more limited than is often assumed. We offer this paper as a preliminary contribution to a much-needed debate on this evidence and its implications, and suggest avenues for new research

    Coarse-grained simulation of transmembrane peptides in the gel phase

    Get PDF
    We use Dissipative Particle Dynamics simulations, combined with parallel tempering and umbrella sampling, to investigate the potential of mean force between model transmembrane peptides in the various phases of a lipid bilayer, including the low-temperature gel phase. The observed oscillations in the effective interaction between peptides are consistent with the different structures of the surrounding lipid phases

    On optimal completions of incomplete pairwise comparison matrices

    Get PDF
    An important variant of a key problem for multi-attribute decision making is considered. We study the extension of the pairwise comparison matrix to the case when only partial information is available: for some pairs no comparison is given. It is natural to define the inconsistency of a partially filled matrix as the inconsistency of its best, completely filled completion. We study here the uniqueness problem of the best completion for two weighting methods, the Eigen-vector Method and the Logarithmic Least Squares Method. In both settings we obtain the same simple graph theoretic characterization of the uniqueness. The optimal completion will be unique if and only if the graph associated with the partially defined matrix is connected. Some numerical experiences are discussed at the end of the paper

    Investigation of four-year chemical composition and organic aerosol sources of submicron particles at the ATOLL site in northern France

    Get PDF
    This study presents the first long-term online measurements of submicron (PM1) particles at the ATOLL (ATmospheric Observations in liLLe) platform, in northern France. The ongoing measurements using an Aerosol Chemical Speciation Monitor (ACSM) started at the end of 2016 and the analysis presented here spans through December 2020. At this site, the mean PM1 concentration is 10.6 μg m-3, dominated by organic aerosols (OA, 42.3%) and followed by nitrate (28.9%), ammonium (12.3%), sulfate (8.6%), and black carbon (BC, 8.0%). Large seasonal variations of PM1 concentrations are observed, with high concentrations during cold seasons, associated with pollution episodes (e.g. over 100 μg m-3 in January 2017). To study OA origins over this multiannual dataset we performed source apportionment analysis using rolling positive matrix factorization (PMF), yielding two primary OA factors, a traffic-related hydrocarbon-like OA (HOA) and biomass-burning OA (BBOA), and two oxygenated OA (OOA) factors. HOA showed a homogeneous contribution to OA throughout the seasons (11.8%), while BBOA varied from 8.1% (summer) to 18.5% (winter), the latter associated with residential wood combustion. The OOA factors were distinguished between their less and more oxidized fractions (LO-OOA and MO-OOA, on average contributing 32% and 42%, respectively). During winter, LO-OOA is identified as aged biomass burning, so at least half of OA is associated with wood combustion during this season. Furthermore, ammonium nitrate is also a predominant aerosol component during cold-weather pollution episodes - associated with fertilizer usage and traffic emissions. This study provides a comprehensive analysis of submicron aerosol sources at the recently established ATOLL site in northern France from multiannual observations, depicting a complex interaction between anthropogenic and natural sources, leading to different mechanisms of air quality degradation in the region across different seasons

    Could Large CP Violation Be Detected at Colliders?

    Full text link
    We argue that CP--violation effects below a few tenths of a percent are probably undetectable at hadron and electron colliders. Thus only operators whose contributions interfere with tree--level Standard Model amplitudes are detectable. We list these operators for Standard Model external particles and some two and three body final state reactions that could show detectable effects. These could test electroweak baryogenesis scenarios.Comment: 11pp, LaTeX, UM--TH--92--27(massaged to make TeX output cleaner), no picture

    Incidence and survival of remnant disks around main-sequence stars

    Get PDF
    We present photometric ISO 60 and 170um measurements, complemented by some IRAS data at 60um, of a sample of 84 nearby main-sequence stars of spectral class A, F, G and K in order to determine the incidence of dust disks around such main-sequence stars. Of the stars younger than 400 Myr one in two has a disk; for the older stars this is true for only one in ten. We conclude that most stars arrive on the main sequence surrounded by a disk; this disk then decays in about 400 Myr. Because (i) the dust particles disappear and must be replenished on a much shorter time scale and (ii) the collision of planetesimals is a good source of new dust, we suggest that the rapid decay of the disks is caused by the destruction and escape of planetesimals. We suggest that the dissipation of the disk is related to the heavy bombardment phase in our Solar System. Whether all stars arrive on the main sequence surrounded by a disk cannot be established: some very young stars do not have a disk. And not all stars destroy their disk in a similar way: some stars as old as the Sun still have significant disks.Comment: 16 pages, 9 figures, Astron & Astrophys. in pres
    corecore