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Abstract

An important variant of a key problem for multi-attribute deci-

sion making is considered. We study the extension of the pairwise

comparison matrix to the case when only partial information is avail-

able: for some pairs no comparison is given. It is natural to define

the inconsistency of a partially filled matrix as the inconsistency of

its best, completely filled completion. We study here the uniqueness

problem of the best completion for two weighting methods, the Eigen-

vector Method and the Logarithmic Least Squares Method. In both

settings we obtain the same simple graph theoretic characterization of

the uniqueness. The optimal completion will be unique if and only if

the graph associated with the partially defined matrix is connected.

Some numerical experiences are discussed at the end of the paper.

Keywords: Multiple criteria analysis, Incomplete pairwise compari-

son matrix, Perron eigenvalue, Convex programming

1 Introduction

Pairwise comparisons are often used in reflecting cardinal preferences, es-
pecially in multi-attribute decision making, for computing the weights of
criteria or evaluating the alternatives with respect to a criterion. It is as-
sumed that decision makers do not know the weights of criteria (values of
the alternatives) explicitly. However, they are able to compare any pairs of
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the criteria (alternatives). Pairwise comparison matrix [26, 27] is defined as
follows. Given n objects (criteria or alternatives) to compare, the pairwise
comparison matrix is A = [aij ]i,j=1,...,n

, where aij is the numerical answer
given by the decision maker for the question ’How many times Criterion i
is more important than Criterion j?’, or, analogously, ’How many times Al-
ternative i is better or preferred than Alternative j with respect to a given
criterion?’. A pairwise comparison matrix

A =




1 a12 a13 . . . a1n

a21 1 a23 . . . a2n

a31 a32 1 . . . a3n

...
...

...
. . .

...
an1 an2 an3 . . . 1




, (1)

is positive and reciprocal, i.e.,

aij > 0,

aij =
1

aji

, (2)

for i, j = 1, . . . , n.
The problem is to determine the positive weight vector w = (w1, w2, . . . , wn)

T

∈ R
n
+, (Rn

+ denotes the positive orthant of the n-dimensional Euclidean
space), such that the appropriate ratios of the components of w reflect all
the pairwise comparisons, given by the decision maker, as well as possible.
In fact, there are several mathematical models for the objective ’as well as
possible’. A comparative study of weighting methods is done by Golany and
Kress [10] and a more recent one by Ishizaka and Lusti [16]. In the present
paper, two well-known methods, the Eigenvector Method (EM) [26, 27] and
the Logarithmic Least Squares Method (LLSM) [6, 7] are considered.

In the Eigenvector Method (EM) the approximation wEM of w is
defined by

AwEM = λmaxw
EM ,

where λmax denotes the maximal eigenvalue, also known as Perron eigenvalue,
of A and wEM denotes the the right-hand side eigenvector of A correspond-
ing to λmax. By Perron’s theorem, wEM is positive and unique up to a scalar

multiplication [23]. The most often used normalization is
n∑

i=1

wEM
i = 1.
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The Logarithmic Least Squares Method (LLSM) gives wLLSM as
the optimal solution of

min

n∑

i=1

n∑

j=1

[
log aij − log

(
wi

wj

)]2

n∑

i=1

wi = 1, (3)

wi > 0, i = 1, 2, . . . , n.

The optimization problem (3) is known to be solvable, and has a unique
optimal solution, which can be explicitly computed by taking the geometric
means of rows’ elements [7, 6].

Both the Eigenvector and Logarithmic Least Squares Methods are defined
for complete pairwise comparison matrices, that is, when all the n2 elements
of the matrix are known.

Both complete and incomplete pairwise comparisons may be modelled not
only in multiplicative form (1)-(2) but also in additive way as in [8, 9, 33, 34].
Additive models of cardinal preferences are not included in the scope of this
investigation. However, some of the main similarities and differences between
multiplicative and additive models are indicated.

In the paper, we consider an incomplete version of the models discussed
above (Section 2). We assume that our expert has given estimates aij only
for a subset of the pairs (i, j). This may indeed be the case in practical
situations. If the number n of objects is large, then it may be a prohibitively
large task to to give as many as

(
n

2

)
thoughtful estimates. Also, it may be the

case that the expert agent is less certain about ranking certain pairs (i′, j′)
than others, and is willing to give estimates only for those of the pairs, where
s/he is confident enough as to the quality of the estimate.

Harker proposed a method for determining the weights from incomplete
matrices, based on linear algebraic equations that could be interpreted not
only in the complete case [12, 13]. Kwiesielewicz [20] considered the Logarith-
mic Least Squares Method for incomplete matrices and proposed a weighting
method based on the generalized pseudoinverse matrices.

A pairwise comparison matrix in (1) is called consistent if the transitivity
aijajk = aik holds for all indices i, j, k = 1, 2, . . . , n. Otherwise, the matrix
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is inconsistent. However, there are different levels of inconsistency, some of
which are acceptable in solving real decision problems, some are not. Mea-
suring, or, at least, indexing inconsistency is still a topic of recent research
[4].

Saaty [26, 27] defined the inconsistency ratio as CR =
λmax−n

n−1

RIn
, where λmax

is the Perron eigenvalue of the complete pairwise comparison matrix given by
the decision maker, and RIn is defined as λmax−n

n−1
, where λmax is an average

value of the Perron eigenvalues of randomly generated n×n pairwise compar-
ison matrices. It is well known that λmax ≥ n and equals to n if and only if
the matrix is consistent, i.e., the transitivity property holds. It follows from
the definition that CR is a positive linear transformation of λmax. According
to Saaty, larger value of CR indicates higher level of inconsistency and the
10%-rule (CR ≤ 0.10) separates acceptable matrices from unacceptable ones.

Based on the idea above, Shiraishi, Obata and Daigo [28, 29] consid-
ered the eigenvalue optimization problems as follows. In case of one missing
element, denoted by x, the λmax(A(x)) to be minimized:

min
x>0

λmax(A(x)).

In case of more than one missing elements, arranged in vector x, the aim is
to solve

min
x>0

λmax(A(x)). (4)

For a given incomplete matrix A, the notations λmax(A(x)) and λmax(x)
are both used with the same meaning.

Pairwise comparisons may be represented not only by numbers arranged
in a matrix but also by directed and undirected graphs with weighted edges
[17]. A natural correspondence is presented between pairwise comparison
matrices and edge weighted graphs.

A generalization of the Eigenvector Method for the incomplete case is
introduced in Section 3. A basic concept of EM is that λmax is strongly
related to the level of inconsistency: larger λmax value indicates that the
pairwise comparison matrix is more inconsistent. Based on this idea, the
aim is to minimize the maximal eigenvalue among the complete positive re-
ciprocal matrices extending the partial matrix specified by the agent. Here
the minimum is taken over all possible positive reciprocal completions of
the partial matrix. Based on Kingman’s theorem [18], Aupetit and Gen-
est pointed out that when all entries of A are held constant except aij and
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aji = 1
aij

for fixed i 6= j, then λmax(A) is a logconvex (hence convex) function
of log aij . We show that this result can be easily extended to the case when
several entries of A are considered simultaneously as variables. This makes
it possible to reformulate the maximal eigenvalue minimization problem (4)
as an unconstrained convex minimization problem.

The question of uniqueness of the optimal solution occurs naturally. The
first main result of the paper is solving the eigenvector optimization problem
(4) and giving necessary and sufficient conditions for the uniqueness.

In Section 4, a distance minimizing method, the Logarithmic Least Squares
Method (LLSM) is considered. The extension of (3) to the incomplete case
appears to be straightforward. In calculating the optimal vector w we con-

sider in the objective function the terms
(
log aij − log wi

wj

)2

only for those

pairs (i, j) for which there exists an estimate aij .
The second main result of the paper is solving and discussing the incom-

plete LLSM problem. Analogously to EM , the same necessary and sufficient
condition for the existence and uniqueness of the optimal solution is provided.
In both settings the connectedness of the associated graph characterizes the
unique solvability of the problem.

Connectedness is a natural and elementary necessary condition but suffi-
ciency is not trivial. Harker’s approximation of a missing comparison between
items i and j is based on the product of known matrix elements which con-
nect i to j [13]. This idea is also applied in our proof of Theorem 2. Fedrizzi
and Giove apply connected subgraphs for indicating the dependence or inde-
pendence of missing variables [9](Section 3., pp. 308-309). However, in the
paper, the connectedness of known elements is analyzed.

The third main result of the paper is a new algorithm proposed in Section
5, based on the results of Section 3 for finding the best completion accord-
ing to the EM model (i.e., with minimal λmax) of an incomplete pairwise
comparison matrix. The well-known method of cyclic coordinates [3] is used.

In Section 6, numerical examples are presented for both incomplete EM
and LLSM models. It is also shown that van Uden’s rule ([31],[21]) provides
a very good approximation for the missing elements and may be used as a
starting point for the optimization algorithm of Section 5.

All the results of the paper hold for arbitrary ratio scales including but
not restricted to {1/9, . . . , 1/2, 1, 2, . . . , 9} proposed by Saaty [26, 27].

The conclusions of Section 7 ponder the questions of applicability from
decision theoretical points of view.
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2 Incomplete pairwise comparison matrices and

graph representation

2.1 Incomplete pairwise comparison matrices

Let us assume that our pairwise comparison matrices are not completely
given. It may happen that one or more elements are not given by the decision
maker for various reasons. As we have pointed out in the Introduction, there
may be several realistic reasons for this to happen.

Incomplete pairwise comparison matrices were defined by Harker [12, 13]
and investigated in [5, 20, 21, 28, 28, 30, 31]. Additive models are analyzed
in [8, 9, 33, 34]. The reference list of Fedrizzi and Giove [9] is offered for
more models, both multiplicative and additive.

Incomplete pairwise comparison matrix is very similar to the form (1) but
one or more elements, denoted here by ∗, are not given:

A =




1 a12 ∗ . . . a1n

1/a12 1 a23 . . . ∗
∗ 1/a23 1 . . . a3n

...
...

...
. . .

...
1/a1n ∗ 1/a3n . . . 1




. (5)

Most of the linear algebraic concepts, tools and formulas are defined for
complete matrices rather than for incomplete ones. We introduce variables
x1, x2, . . . , xd ∈ R+ for the missing elements in the upper triangular part of
A. Their reciprocals, 1/x1, 1/x2, . . . , 1/xd are written in the lower triangular
part of A as in (6). The total number of missing elements in matrix A is 2d.
Let

A(x) = A(x1, x2, . . . , xd) =




1 a12 x1 . . . a1n

1/a12 1 a23 . . . xd

1/x1 1/a23 1 . . . a3n

...
...

...
. . .

...
1/a1n 1/xd 1/a3n . . . 1




, (6)

where x = (x1, x2, . . . , xd)
T ∈ R

d
+. The form (6) is also called incomplete

pairwise comparison matrix. However, it will be useful to consider them
as a class of (complete) pairwise comparison matrices as realizations of A,
generated by all the values of x ∈ R

d
+. Our notation involving variables cor-

responds to the view that an incomplete pairwise comparison matrix A is
actually the collection of all fully specified comparison matrices which are
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identical to A at the previously specified entries.

From decision theoretical and practical points of view, the really im-
portant and exciting questions are: how to estimate weights and the level
of inconsistency based on the known elements rather than somehow obtain
possible, assumed, computed or generated values of the missing entries. Nev-
ertheless, in many cases, ’optimal’ values of x resulted in by an algorithm
may be informative as well.

2.2 Graph representation

Assume that the decision maker is asked to compare the relative importance
of n criteria and s/he is filling in the pairwise comparison matrix. In each
comparison, a direct relation is defined between two criteria, namely, the
estimated ratio of their weights. However, two criteria, not compared yet,
consequently, having no direct relation, can be in indirect relation, through
further criteria and direct relations. It is a natural idea to associate graph
structures to (in)complete pairwise comparison matrices.

Given an (in)complete pairwise comparison matrix A of size n × n, two
graphs, G and

−→
G are defined as follows:

G := (V, E), where V = {1, 2, . . . , n}, the vertices correspond to the
objects to compare and E = {e(i, j) | aij (and aji) is given and i 6= j}, the
undirected edges correspond to the matrix elements. There are no edges cor-
responding to the missing elements in the matrix. G is an undirected graph.−→

G := (V,
−→
E ), where

−→
E = {

−−−→
e(i, j) | aij is given and i 6= j} ∪ {

−−−→
e(i, i) | i =

1, 2, . . . , n}, the directed edges correspond to the matrix elements. There
are no edges corresponding to the missing elements in the matrix.

−→
G is a

directed graph, which can be obtained from G by orienting the edges of G in
both ways. Moreover, we add loops to the vertices.

Example 1. Let C be a 6×6 incomplete pairwise comparison matrix as
follows:

C =




1 a12 a13 ∗ ∗ a16

a21 1 a23 ∗ ∗ ∗
a31 a32 1 a34 a35 a36

∗ ∗ a43 1 ∗ ∗
∗ ∗ a53 ∗ 1 a56

a61 ∗ a63 ∗ a65 1




.

Then, the corresponding graphs G and
−→
G are presented in Figures 1 and 2.
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Figure 1. The undirected graph G corresponding to matrix C

Figure 2. The directed graph
−→
G corresponding to matrix C

Remark 1. In the case of a complete matrix, G is the complete undi-
rected graph of n vertices and

−→
G is the complete directed graph of n vertices,

the edges of which are oriented in both ways and loops are added at the ver-
tices.
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3 The eigenvector method for incomplete ma-

trices

In this section, the eigenvalue optimization problem (4) is discussed. Starting
from an incomplete pairwise comparison matrix in form (6), we show that
problem (4) can be transformed into a convex optimization problem, more-
over, under a natural condition, into a strictly convex optimization problem.
This latter statement is our main result here.

Let us parameterize the entries of the (complete or incomplete) pairwise
comparison matrix A(x) = A(x1, x2, . . . , xd) of form (6) as xi = eyi, (i =
1, 2, . . . , d). This way we obtain a matrix

A(x) = B(y) = B(y1, y2, . . . , yd). (7)

Definition 1. Let C ⊆ R
k be a convex set and f : C → R+. A function

f is called logconvex (or superconvex), if log f : C → R is a convex function.

It is easy to see that a logconvex function is convex as well.

Proposition 1. For the parametrized matrix B(y) from (7) the Perron
eigenvalue λmax(B(y)) is a logconvex (hence convex) function of y.

Proposition 1 has been proved by Aupetit and Genest [2], for the case
when d = 1. The proof is based on Kingman’s theorem as follows.

Theorem 1. (Kingman [18]): If the elements of matrix A ∈ R
n×n,

denoted by aij(t), (i, j = 1, 2, . . . , n) are logconvex functions of t, then
λmax(A(t)) is logconvex (hence convex).

Proposition 1 for general d can also be proved by applying Theorem 1.
It is enough to show the logconvexity along the lines in the space y. The
pairwise comparison matrices along any line in the y space can be written as

B(t) =
[
ecijt+dij

]
i,j=1,...,n

, (8)

where t is a scalar variable, and cij , dij ∈ R. Note that a matrix of this form is
a pairwise comparison matrix for every value of t if and only if cii = dii = 0;
and cij = −cji, dij = −dji hold for every i, j.
Note also, that if the value aij is known, then we have cij = 0, and dij =
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log aij . Using the parametrization of the line, Proposition 1 follows imme-
diately from Theorem 1. However, for the reader’s convenience, and since
some ideas of the proof will be used later, we outline a simple direct proof of
Proposition 1.

Proof of Proposition 1: It suffices to show logconvexity along lines in
the y space. It is sufficient to prove that λmax(B(t)) is a logconvex function
of the real variable t.

It is known (see, e.g., in [15], take the trace in Theorem 8.2.8) that for a
strictly positive matrix A one has

λmax(A) = lim
m→∞

m
√

Tr(Am).

Write
f(t) = fm(t) = Tr((B(t))m).

It suffices to prove that fm(t) is a logconvex function of t. Indeed, then
1
m

log fm(t) is convex, hence the limit, log λmax(t) is convex [25]. Here we use
also the fact, that λmax ≥ n [26], hence fm(t) can be bounded away from 0.

It remains to verify that f(t) = fm(t) is logconvex. From the definition
of the parametrization (8) we see that

f(t) =

N∑

i=1

ecit+di ,

where N is a positive integer and ci, di ∈ R (i, j = 1, 2, . . . , N), all depend
also on m. We have to prove that log f(t) is convex.

Lemma 1. The function f(t) above is logconvex.

Proof of Lemma 1: The convexity of log f(t) is to be proved.

[log f(t)]′ =
f ′(t)

f(t)

[log f(t)]′′ =
f ′′(t)f(t) − f ′(t)f ′(t)

f 2(t)

It is enough to prove the non-negativity of the numerator, that is, the
inequality f ′′(t)f(t) − f ′(t)f ′(t) ≥ 0.

Since

f ′(t) =

N∑

i=1

cie
cit+di ,
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f ′′(t) =
N∑

i=1

c2
i e

cit+di ,

we have (
N∑

i=1

c2
i e

cit+di

)(
N∑

i=1

ecit+di

)
−
(

N∑

i=1

cie
cit+di

)2

=

∑

i6=j

(c2
i + c2

j − 2cicj)e
(ci+cj)t+di+dj ≥ 0,

which completes the proof of Lemma 1 as well as of Proposition 1.

Corollary 1. The tools of convex optimization can be used for solving
the eigenvalue minimization problem (4).

Proposition 2: λmax(B(y)) is either strictly convex or constant along
any line in the y space.

Proof of Proposition 2: Consider the parametrization of a line in the
y space according to (8) and let

g(t) = λmax(B(t)), t ∈ R.

The function g is logconvex and we shall show that it is either strictly convex
or constant.
Assume that g is not strictly convex. Then there exist t1, t2 ∈ R, t1 < t2 and
0 < κ0 < 1 such that

g(κ0t1 + (1 − κ0)t2) = κ0g(t1) + (1 − κ0)g(t2). (9)

Since the logarithmic function is strictly concave, we get from (9) that

log g(κ0t1 + (1 − κ0)t2) = log(κ0g(t1) + (1 − κ0)g(t2)) ≥
≥ κ0 log g(t1) + (1 − κ0) log g(t2), (10)

furthermore, the inequality in (10) holds as an equality if and only if
g(t1) = g(t2). On the other hand, from the logconvexity of g we have

log g(κ0t1 + (1 − κ0)t2) ≤ κ0 log g(t1) + (1 − κ0) log g(t2), (11)

Now, (10) and (11) imply that g(t1) = g(t2) and taking (9) also into consid-
eration:

g(κ0t1 + (1 − κ0)t2) = g(t1) = g(t2).
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Since g is convex, g(t) is constant on the interval [t1, t2]. Let

Λ = g(t1).

Then Λ is the minimal value of g over the real line R. Let

S = {t ∈ R|g(t) = Λ}. (12)

Clearly [t1, t2] ⊆ S, S is a convex and close subset of R, furthermore, since
t1 < t2, S has a nonempty interior.

If S = R, we are done. Otherwise, we have either max{t|t ∈ S} < ∞
or min{t|t ∈ S} > −∞. It suffices to detail the proof for one of these cases.
Assume that

t = max{t|t ∈ S} < ∞.

Since Λ = g(t) = λmax(B(t)), ∀t ∈ S, we have

det(B(t) − ΛI) = 0, ∀t ∈ S. (13)

From the parametrization (8), we obtain

det(B(t) − ΛI) = α0 +
L∑

l=1

αle
βlt, (14)

where the values of L and αl, βl come from the expansion of the determinant,
and they depend on B(t) and Λ. Let

p(t) = α0 +

L∑

l=1

αle
βlt.

p(t) is an analytical function, which equals to zero on a segment [t1, t2]. By
the Identity Theorem for complex analytic functions (Theorem 1.3.7 in Ash
[1]) we have p(t) = det(B(t)−ΛI) = 0 for all t ∈ R. This means that Λ is an
eigenvalue of B(t) for all t ∈ R. However, due to the properties that Perron
eigenvalue of a positive matrix has multiplicity 1 (see Theorem 37.3 in [24])
and that the eigenvalues change continuously with t even when multiplicities
are taken into consideration (see for example Rouché’s Theorem in [1]), it
cannot happen that Λ is the Perron eigenvalue in t = t, but it is not for any
t > t. Consequently, we cannot have t < ∞, thus S = R and

g(t) = λmax(B(t)) = Λ

12



for all t ∈ R. This completes the proof of Proposition 2.

The main result of this section is the following uniqueness theorem.

Theorem 2: The optimal solution of problem (4) is unique if and only
if the graph G corresponding to the incomplete pairwise comparison matrix
is connected.

Proof of Theorem 2: Necessity is based on elementary linear algebra.
If G is not connected, then the incomplete pairwise comparison matrix A

can be rearranged by simultaneous changes of the rows and the columns into
a decomposable form D:

D =




J X

X′ K


 , (15)

where the square matrices J,K contain all the known elements of the incom-
plete pairwise comparison matrix A and X contains variables only. Matrix
X′ contains the componentwise reciprocals of the variables in X. Note that
matrices J,K may also contain variables.

Assume that J is a u × u matrix. Let α > 0 be an arbitrary scalar and
P = diag(α, α, . . . , α︸ ︷︷ ︸

u

, 1, 1, . . . , 1︸ ︷︷ ︸
n−u

). Then, the similarity transformation by P

results in the matrix

PDP−1 = E =




J α · (X)

1
α
· (X′) K


 ,

For any fixed values of the variables in X the matrices A, D and E are
similar. Since α > 0 is arbitrary, one may construct an infinite number of
completions of A having the same eigenvalues, including the largest one.

For sufficiency, the directed graph representation introduced in Section 2
is considered.

We call a sequence of integers i0, i1, . . . , ik−1, i0 a closed walk of length k,
provided that 0 < ij ≤ n holds for j = 0, . . . , k − 1.

Let A = [aij ] be an n × n matrix and γ = i0, i1, . . . , ik−1, i0 be a closed
walk. The value vγ of γ is defined as the product of the entries of A along
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the walk:
vγ := ai0i1ai1i2 · · ·aik−1i0.

Lemma 2. Let A = [aij ] be a strictly positive n × n matrix and
γ = i0, i1, . . . ik−1, i0 be a closed walk of length k. Then λmax(A) ≥ (vγ)

1
k .

Proof of Lemma 2: The formula

λmax(A) = lim
m→∞

m
√

Tr(Am)

is used again.
Set m = ℓk, where ℓ is a positive integer. Then Tr(Am) =

∑
δ vδ, where

the summation is for all the nm closed walks δ of length m. The terms of
the sum are positive by assumption. Let δ∗ be the walk obtained by passing
through γ exactly ℓ times. Now δ∗ is a closed walk of length m and vδ∗ = vℓ

γ.
We infer that

m
√

Tr(Am) > m
√

vδ∗ = ℓk

√
vℓ

γ = k
√

vγ .

The claim follows by taking ℓ → ∞. Lemma 2 is proved. �

Lemma 3. Let the graph G of the incomplete pairwise comparison ma-
trix A be connected. Let xh, (1 ≤ h ≤ d) be one of the missing elements and
(l, m) denote the position of xh in the matrix. Then

λmax(A(x)) ≥ max

{
(Kxh)

1
k ,

(
1

Kxh

) 1
k

}
,

where k > 1 is an integer, K > 0, and the values of k and K depend only on
the known elements of the matrix and on l, m, but not on the value of xh.

Proof of Lemma 3: Since G in connected, for some k there exists a
path l = i0, i1, . . . , ik−1 = m in G connecting l to m. Please note that the
entries airir+1 are all specified values in A for r = 0, . . . , k − 1. Let γ be the
following closed walk of length k

γ := i0, i1, . . . , ik−1, i0.

By Lemma 2 we have

λmax(A(x)) ≥ (vγ)
1
k = (K · xh)

1
k ,

where K = ai0i1ai1i2 · · ·aik−2ik−1
is a positive constant independent of the

specializations of the variables xi, (i = 1, 2, . . . , d). We obtain

λmax(A(x)) ≥
(

1

Kxh

) 1
k
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in a similar way, simply taking the reverse direction of the closed walk γ.
Lemma 3 is proved. �

Now we turn to the proof of Theorem 2. We are interested in Λ :=
min λmax(A), where the minimum is taken over all (numerical) reciprocal
matrices which are specializations of A. To put it simply, we write positive
real numbers bij in the place of the variables xh (h = 1, 2, . . . , d) in all pos-
sible ways while maintaining the relations bijbji = 1, and take the minimum
of the Perron roots of the reciprocal matrices obtained.

As before, we introduce the parametrization

x1 = ey1 , x2 = ey2 , . . . xd = eyd. (16)

This way A(x) = B(y) is parameterized by vectors y = (y1, . . . , yd) from the
space R

d. Set
Λ := min{λmax(B(y)) : y ∈ R

d}, (17)

and
S = {y ∈ R

d : λmax(B(y)) = Λ}. (18)

It follows from the connectedness of the graph G that the minimum is
indeed attained in the definition of Λ. Assume for contradiction, that infimum
exists only, then there is a sequence of vectors in R

d, denoted by {y(i)}i=1,...,∞,
such that

lim
i→∞

λmax(B(y(i))) = Λ

and
sup{y(i)

h }i=1,...,∞ = ∞, (19)

or
inf{y(i)

h }i=1,...,∞ = −∞. (20)

for some h (1 ≤ h ≤ d). It follows from reciprocal property of pairwise
comparison matrices that (19) and (20) are practically equivalent, therefore,
it is sufficient to discuss (19). After possibly renaming we may assume that

lim
i→∞

y
(i)
h = ∞,

which contradicts Lemma 3 by choosing x
(i)
h = ey

(i)
h , since Λ is a fixed finite

number.

We shall prove that if |S| > 1, then the graph G of A is not connected.
To this end, assume first that p,q ∈ R

d are two different points of S. Let L
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be the line passing through p and q. It follows from Proposition 2 that L ⊆ S.

From L ⊆ S we obtain that there exists an undefined position (l, m) in
the upper triangular part of matrix A, such that for every real M > 0 there
exists a completion C = [cij ] of A (a complete pairwise comparison matrix,
which agrees with A everywhere, where aij has been specified), such that
λmax(C) = Λ and clm > M . It contradicts to Lemma 3 by setting xh = clm,
because then λmax(C) will be unbounded if clm is arbitrarily large. This
completes the proof of Theorem 2.

Corollary 3. If the graph G corresponding to the incomplete pair-
wise comparison matrix is connected, then by using the parametrization
(16), problem (4) is transformed into a strictly convex optimization prob-
lem. Moreover, taking λmax(A(x)) at an arbitrary x > 0 as an upper bound
of the optimal value of (4), a positive lower and an upper bound can be
immediately obtained for xh, (1 ≤ h ≤ d) from Lemma 3. This makes it pos-
sible to search for the optimal solution of (4) (and (17)) over a d-dimensional
rectangle. We propose an algorithm for solving (4) in Section 5.

Consider the graph G corresponding to the incomplete pairwise compar-
ison matrix A. A subgraph G′ of G is called a connected component of G if
it is a maximal connected subgraph of G. Clearly, G can be divided into a
finite number of disjoint connected components. Let G1, . . . , Gs denote the
connected components of G. The graph G is connected when s = 1. In this
case, according to Theorem 2, the optimal solution of problem (4) (thus of
(17)) is unique. The next theorem extends this result to the general case,
namely, proves that the minimum of (4) (equivalently Λ of (17)) exists and
characterizes the set of the optimal solutions, i.e. S of (18) in the y space.

Theorem 3: The function λmax(B(y)) attains its minimum over R
d, and

the optimal solutions constitute an (s−1)-dimensional affine set of R
d, where

s is the number of the connected components in G.

Proof of Theorem 3: If s = 1, we are done. By Theorem 2, there is a
single optimal solution, and itself is a 0-dimensional affine set.

We turn now to the case s > 1. First, we show that λmax(B(y)) attains
its minimum over R

d. An idea from the proof of Theorem 2 is used here
again. For l = 1, . . . , s − 1, applying necessary simultaneous changes of the
rows and the columns, the incomplete pairwise comparison matrix A can be
rearranged into the decomposable form D of (15) such that the rows and
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the columns of J are associated with the nodes of the connected components
G1, . . . , Gl, the rows and the columns of K are associated with the nodes
of the connected components Gl+1, . . . , Gs, and X consists of the variables
whose rows and columns are associated with the nodes of G1, . . . , Gl and
Gl+1, . . . , Gs, respectively. Here again, X′ consists of the reciprocals of the
variables in X.

As shown in the proof of Theorem 2, for any x ∈ R
d
+, the value of

λmax(A(x)) does not change if all the entries of x belonging to the block
X in (15) are multiplied by the same α > 0. Choose a variable xil from the
block X arbitrarily such that its row and column are associated with Gl and
Gl+1, respectively. We can fix the value of xil at any positive level, say let
xil = vil. Then, for any x ∈ R

d
+ the vector x̄ ∈ R

d
+ obtained from x by

multiplying all the entries from the block X by α = vil/xil has the properties
x̄il = vil and λmax(A(x̄)) = λmax(A(x)).

Repeat the above idea for l = 1, . . . , s − 1. In this way, we can choose
variables xil , l = 1, . . . , s − 1, such that they belong to missing elements of
A, the row and column of xil are associated with Gl and Gl+1, respectively;
furthermore, for any x ∈ R

d
+ and for fixed values vil , l = 1, . . . , s−1, a vector

x̄ ∈ R
d
+ can be easily constructed such that x̄il = vil , l = 1, . . . , s − 1, and

λmax(A(x̄)) = λmax(A(x)).
Thus, if we are interested only in finding an optimal solution of (4), it

suffices to write arbitrary positive values into those missing entries of matrix
A which belong to xi1 , . . . , xis−1 , and of course, the reciprocal values into
the appropriate entries in the lower triangular part of A. Let Ã denote the
pairwise comparison matrix obtained in this way. Matrix Ã has d − s + 1
missing entries in the upper triangular part, and the graph G associated with
Ã is connected. Thus, the problem

min
x̃>0

λmax(Ã(x̃)) (21)

has a unique optimal solution, where x̃ is the (d− s + 1)-dimensional vector
associated with the missing entries in the upper triangular part of Ã. It is
easy to see that by completing the optimal solution of (21) by the entries
xi1 , . . . , xis−1 fixed in A, we obtain an optimal solution of (4), moreover, due
to (16), an optimal solution where λmax(B(y)) attains its minimum over R

d,
i.e. Λ of (17) exists and S of (18) is not empty.

We know that |S| > 1 if and only if s > 1. Let ȳ, ŷ ∈ S, ȳ 6= ŷ.
Since λmax(B(ȳ)) = λmax(B(ŷ)) = Λ, we have λmax(B(y)) = Λ along the
entire line passing through ȳ and ŷ. This comes from Proposition 2 since if
λmax(B(y)) was strictly convex along the line, we would have λmax(B(y)) <
Λ for any interior point of the segment [ȳ, ŷ] contradicting the minimality of
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Λ. Consequently, for any ȳ, ŷ ∈ S, ȳ 6= ŷ, the line passing through ȳ and ŷ

lies in S, thus S is an affine set in the y space.
The affine set S can be written in the form of the solution set of a finite

system of linear equalities
Fy = f , (22)

see [25]. For the sake of simplicity, assume that il = l, l = 1, . . . , s −
1, and for any y ∈ R

d, let y(1) be the vector of the first s − 1 elements,
and let y(2) be the vector of the last d − s + 1 elements of y, i.e. y =

(y(1)T ,y(2)T )T . We know that for any y(1) there exists a unique y(2) such that
y = (y(1)T ,y(2)T )T ∈ S. Let y(2) = h(y(1)) denote this relation. Since for any
ȳ(1), ŷ(1) ∈ R

s−1 and α ∈ R, the vectors (ȳ(1)T , h(ȳ(1))
T
)T , (ŷ(1)T , h(ŷ(1))

T
)T

and ((αȳ(1) + (1 − α)ŷ(1))
T
, (αh(ȳ(1)) + (1 − α)h(ŷ(1)))

T
)T are solutions of

(22), we obtain that

h(αȳ(1) + (1 − α)ŷ(1)) = αh(ȳ(1)) + (1 − α)h(ŷ(1)),

i.e. h is a linear function. Let e(l) denote the l-th unit vector. It is easy to
see that the s vectors (0T , h(0)T )

T
, (e(l)T , h(e(l))T )

T
, l = 1, . . . , s − 1, are

affinely independent, and their affine hull is the solution set of (22), i.e. S.
Consequently, S is a (s − 1)-dimensional affine set, see [25]. This completes
the proof of Theorem 3.

Corollary 4. It follows from Theorem 3 that if we are interested only
in finding an optimal solution of (4), it suffices to solve (21) that can be, as
shown before, reduced to the minimization of a strictly convex function over
a rectangle. If we are interested in generating the whole set S, the proof of
Theorem 3 shows how to construct affinely independent vectors whose affine
hull is S.

Although λmax(A(x)) is non-convex over R
d
+ it is either constant or uni-

modal over any line parallel to an axis, i.e., when a single entry of the pairwise
comparison matrix varies. This comes directly from Proposition 2 and the
parametrization (16). The advantage of this property will be used in Section
5 when the method of cyclic coordinates will be applied for solving (4).

Remark 2. The Perron eigenvalue of a pairwise comparison matrix is
non-convex function of its elements. Let Q be a 3 × 3 pairwise comparison
matrix of variable x as follows:

Q =




1 2 x
1/2 1 4
1/x 1/4 1


 .
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λmax(Q(x)) is plotted in Figure 3.a. However, by using the exponential
scaling x = et, λmax(Q(et)) becomes a convex function of t (Figure 3.b).
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Figure 3.a Non-convexity of the
function x 7→ λmax(Q(x))
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Figure 3.b Convexity of the
function t 7→ λmax(Q(et))

4 The Logarithmic Least Squares Method for

incomplete matrices

In this section, the extension of the LLSM problem (3) for incomplete ma-
trices is discussed. Having an incomplete pairwise comparison matrix A, one
should consider the terms for those pairs (i, j) only for which aij is given:

min
∑

e(i, j) ∈ E

1 ≤ i < j ≤ n

[
log aij − log

(
wi

wj

)]2

+

[
log aji − log

(
wj

wi

)]2

(23)

n∑

i=1

wi = 1, (24)

wi > 0, i = 1, 2, . . . , n. (25)

For the reader’s convenience, each pair of terms related to aij and aji is
written jointly in the objective function (23). By definition, the terms related
to i = j equal to 0, therefore, they are omitted from the objective function.
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Theorem 4: The optimal solution of the incomplete LLSM problem
(23)-(25) is unique if and only if graph G corresponding to the incomplete
pairwise comparison matrix is connected.

Proof: Since the value of the objective function is the same in an arbi-
trary point w and in αw for any α > 0 we can assume that

wn = 1, (26)

instead of normalization (24). Following Kwiesielewicz’s computations for
complete matrices [20](pp. 612-613), let us introduce the variables

rij = log aij i, j = 1, 2, . . . , n and e(i, j) ∈ E; (27)

yi = log wi i = 1, 2, . . . , n. (28)

Note that yn = log wn = 0. The new problem, equivalent to the original
one, is as follows:

min
∑

i, j :

e(i, j) ∈ E

1 ≤ i < j < n

(rij − yi + yj)
2 +

∑

i :

e(i, n) ∈ E

(rin − yi)
2 (29)

This problem is unconstrained (y1, y2, . . . , yn−1 ∈ R). The first-order
conditions of optimality can be written as:




d1 −1 0 . . . −1
−1 d2 −1 . . . 0
0 −1 d3 . . . 0
...

...
...

. . .
...

−1 0 0 . . . dn−1







y1

y2

y3
...

yn−1




=




−
∑

ri1

−
∑

ri2

−
∑

ri3
...

−∑ ri,n−1




, (30)

where di denotes the degree of the i-th node in graph G (0 < di ≤ n − 1),
and the (i, j) position equals to −1 if e(i, j) ∈ E and 0 if e(i, j) /∈ E. Note
that the summation

∑
rik denotes

∑

i :

e(i, k) ∈ E

rik

in each component (k = 1, 2, . . . , n − 1) of the right-hand side.
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The matrix of the coefficients of size (n− 1)× (n− 1) can be augmented
by the n-th row and column based on the same rules as above: (n, n) position
equals to dn, the degree of n-th node in graph G; (i, n) and (n, i) positions
equal to −1 if e(i, n) ∈ E (or, equivalently, e(n, i) ∈ E) and 0 if e(i, n) /∈ E
(or, equivalently, e(n, i) /∈ E) for all i = 1, 2, . . . , n − 1. The augmented
n× n matrix has the same rank as the (n− 1)× (n− 1) matrix of the coeffi-
cients in (30) because the number of −1’s in the i-th row/column is equal to
di (i = 1, 2, . . . , n) and the n-th column/row is the negative sum of the first
n − 1 columns/rows.

Now, the augmented matrix of size n × n, is exactly the Laplace-matrix
of graph G, denoted by Ln×n. Some of the important properties of Laplace-
matrix Ln×n are as follows (see, e.g., Section 6.5.6 in [11]):

(a) eigenvalues are real and non-negative;
(b) the smallest eigenvalue, λ1 = 0;
(c) the second smallest eigenvalue, λ2 > 0 if and only if the graph is

connected; λ2 is called Laplace-eigenvalue of the graph;
(d) rank of Ln×n is n − 1 if and only if graph G is connected.

Let L(n−1)×(n−1) denote the upper-left (n−1)×(n−1) submatrix of Ln×n.
The solution of the system of first-order conditions uniquely exists if and only
if matrix L(n−1)×(n−1) is of full rank, that is, graph G is connected.

Since the equations of the first-order conditions are linear, the Hessian
matrix is again L(n−1)×(n−1), which is always symmetric, and, following from
the properties of Laplace-matrix above, it is positive definite if and only if
graph G is connected.

Remark 3. The uniqueness of the solution depends only on the positions
of comparisons (the structure of the graph G), and does not depend on the
values of comparisons.

Remark 4. In the case of an n×n complete pairwise comparison matrix,
the solution of (30) is as follows:




y1

y2

y3
...

yn−1




=




n − 1 −1 −1 . . . −1
−1 n − 1 −1 . . . −1
−1 −1 n − 1 . . . −1
...

...
...

. . .
...

−1 −1 −1 . . . n − 1




−1


−
∑

ri1

−∑ ri2

−
∑

ri3
...

−
∑

ri,n−1




, (31)
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where
∑

rik consists of n−1 elements for every k (1 ≤ k ≤ n−1) and equals
to the logarithm of the product of the k-th row’s elements of the complete
pairwise comparison matrix. Applying (28) and (26), then renormalizing the
weight vector by (24), the optimal solution of (23)-(25) is the well known
geometric mean, also mentioned in the introduction (3).

Remark 5. Problem (29) has some similarities with additive models of
pairwise comparisons, e.g., with the constraints in Xu’s goal programming
model [33](LOP1 on p. 264). However, Xu’s objective function is linear,
while (29) is quadratic. Fedrizzi and Giove considers several penalty func-
tions originated from equations for consistency. One of their models [9]((4)
on p. 304) is also similar, but not equivalent, to our (29).

Remark 6. Theorem 4 shows similarity to Theorem 1 of Fedrizzi and
Giove [9](p. 310) regarding the uniqueness of the optimal solution and the
connectedness of graph G. In both problems a sum of quadratic functions
associated with the edges of G is minimized, although the functions are dif-
ferent in the two approaches.

Example 2. As an illustration to the incomplete LLSM problem and
our proposed solution, we introduce the partial matrix M below. In fact,
M is an incomplete modification of the frequently cited ’Buying a house’
example by Saaty [27]. The undirected graph representation of the partial
matrix M in shown in Figure 4.

M =




1 5 3 7 6 6 1/3 1/4
1/5 1 ∗ 5 ∗ 3 ∗ 1/7
1/3 ∗ 1 ∗ 3 ∗ 6 ∗
1/7 1/5 ∗ 1 ∗ 1/4 ∗ 1/8
1/6 ∗ 1/3 ∗ 1 ∗ 1/5 ∗
1/6 1/3 ∗ 4 ∗ 1 ∗ 1/6
3 ∗ 1/6 ∗ 5 ∗ 1 ∗
4 7 ∗ 8 ∗ 6 ∗ 1




. (32)
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Figure 4. The undirected graph representation of the 8 × 8 incomplete

pairwise comparison matrix M

Using the notation of (27), the system of linear equations (30) is as follows:




7 −1 −1 −1 −1 −1 −1
−1 4 0 −1 0 −1 0
−1 0 3 0 −1 0 −1
−1 −1 0 4 0 −1 0
−1 0 −1 0 3 0 −1
−1 −1 0 −1 0 4 0
−1 0 −1 0 −1 0 3







y1

y2

y3

y4

y5

y6

y7




=




− log(1/315)
− log(7/3)
− log(1/6)
− log 1120
− log 90
− log 27

− log(2/5)




, (33)

where the k-th (k = 1, 2, . . . , 7) component of the right-hand side is computed
as the negative sum of the logarithms of the k-th column’s elements in matrix
M in (32), which also equals to the logarithm of the product of the k-th row’s
elements.

The solution of (33) is y1 = −0.6485, y2 = −1.6101, y3 = −0.6485,
y4 = −2.8449, y5 = −2.2214, y6 = −2.0998, y7 = −0.8674.

Using (28), then turning back to the normalization (24), the optimal
solution of the incomplete LLSM problem concerning matrix M is as follows:
wLLSM

1 = 0.1770, wLLSM
2 = 0.0676, wLLSM

3 = 0.1770, wLLSM
4 = 0.0197,

wLLSM
5 = 0.0367, wLLSM

6 = 0.0415, wLLSM
7 = 0.1422, wLLSM

8 = 0.3385.
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5 An algorithm for the λmax-optimal comple-

tion

In this section, an algorithm is proposed for finding the best completion of an
incomplete pairwise comparison matrix by the generalization of the eigenvec-
tor method. It is shown in Section 3 that the eigenvalue minimization leads
to a convex optimization problem. However, the derivatives of λmax as func-
tions of missing elements are not easily and explicitly computable. Therefore,
one should provide an algorithm without derivatives. In our approach, the
iterative method of cyclic coordinates is proposed. Let d denote the number
of missing elements. Write variables x1, x2, . . . , xd in place of the missing
elements. Let x

(0)
i , i = 1, 2, . . . , d be arbitrary positive numbers, we will use

them as initial values. Each iteration of the algorithm consists of d steps.

In the first step of the first iteration, let variable x1 be free and the other
variables be fixed to the initial values: xi = x

(0)
i , (i = 2, 3, . . . , d). The

aim is to minimize λmax as a univariate function of x1. Since the eigenvalue
optimization can be transformed into a multivariate convex optimization
problem, it remains convex when restricting to one variable. Let x

(1)
1 denote

the optimal solution computed by a univariate minimization algorithm.
In the second step of the first iteration x2 is free, the other variables are fixed
as follows: x1 = x

(1)
1 , xi = x

(0)
i , (i = 3, 4, . . . , d).. Now we minimize λmax in

x2. Let x
(1)
2 denote the optimal solution.

After analogous steps, the d-th step of the first iteration is to minimize
λmax in xd, where all other variables are fixed by the rule xi = x

(1)
i , (i =

1, 2, . . . , d− 1). The optimal solution is denoted by x
(1)
d and it completes the

first iteration of the algorithm.

In the second iteration the initial values computed in the first iteration
are used. The univariate minimization problems are analogously written and
solved.

The stopping criteria can be modified or adjusted in different ways. In
our tests accuracy is set for 4 digits. The algorithm stops in the end of the
k-th iteration if k is the smallest integer for which max

i=1,2,...,d
‖xk

i − xk−1
i ‖ < T,

where T denotes the tolerance level.

The global convergence of cyclic coordinates is stated and proved, e.g., in
([22], pages 253-254).

In our tests, x
(0)
i = 1, (i = 1, 2, . . . , d) and T = 10−4 were applied. We
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used the function fminbnd in Matlab v.6.5 for solving univariable minimiza-
tion problems.

For the reader’s convenience, our algorithm is presented on the 8 × 8
incomplete pairwise comparison matrix M from the previous section (32).

The aim is to find the completion of M for which λmax is minimal. Write
the variables xi, (i = 1, 2, . . . , 12; xi ∈ R+) in place of the missing ele-
ments and let x = (x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12).

M(x) =




1 5 3 7 6 6 1/3 1/4
1/5 1 x1 5 x2 3 x3 1/7
1/3 1/x1 1 x4 3 x5 6 x6

1/7 1/5 1/x4 1 x7 1/4 x8 1/8
1/6 1/x2 1/3 1/x7 1 x9 1/5 x10

1/6 1/3 1/x5 4 1/x9 1 x11 1/6
3 1/x3 1/6 1/x8 5 1/x11 1 x12

4 7 1/x6 8 1/x10 6 1/x12 1




The algorithm for the optimization problem

min
x

λmax(M(x)) (34)

is as follows. Let x
(k)
i denote the value of xi in the k-th step of the iteration,

which has 12 substeps for each k.

For k = 0 :
Let the initial points be equal to 1 for every variable:

x
(0)
i := 1 (i = 1, 2, . . . , 12).

while max
i=1,2,...,12

‖xk
i − xk−1

i ‖ > T

x
(k)
i := arg min

xi

λmax(M(x
(k)
1 , . . . , x

(k)
i−1, xi, x

(k−1)
i+1 , . . . , x

(k−1)
12 )), i = 1, 2, . . . , 12

next k
end while

Table 1 presents the results of each substep of the first 20 iterations of the
algorithm. Results reach the accuracy up to 4 digits in the 19-th iteration.
After plotting the objective function’s value during the iteration steps, it may
be observed, that a significant decrease happens in the first iteration (Figure
5).
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k x
(k)
1 x

(k)
2 x

(k)
3 x

(k)
4 x

(k)
5 x

(k)
6 x

(k)
7 x

(k)
8 x

(k)
9 x

(k)
10 x

(k)
11 x

(k)
12

0 1 1 1 1 1 1 1 1 1 1 1 1
1 0.5761 1.5660 0.7158 4.7610 3.3936 0.7884 0.5895 0.1789 1.0599 0.1373 0.3029 0.3939
2 0.3889 1.8490 0.5119 9.1387 4.9089 0.5643 0.5321 0.1476 0.9444 0.1073 0.2966 0.3930
3 0.3427 1.7646 0.4763 9.7847 4.8026 0.5607 0.5324 0.1443 0.9184 0.1077 0.2947 0.3985
4 0.3343 1.7411 0.4706 9.8270 4.8078 0.5648 0.5307 0.1435 0.9225 0.1084 0.2932 0.4007
5 0.3323 1.7319 0.4688 9.8608 4.8260 0.5669 0.5285 0.1431 0.9262 0.1088 0.2924 0.4017
6 0.3314 1.7268 0.4678 9.8855 4.8373 0.5680 0.5271 0.1428 0.9283 0.1090 0.2919 0.4023
7 0.3308 1.7238 0.4672 9.9003 4.8437 0.5687 0.5263 0.1427 0.9295 0.1091 0.2916 0.4026
8 0.3305 1.7221 0.4668 9.9088 4.8474 0.5691 0.5259 0.1426 0.9302 0.1092 0.2914 0.4028
9 0.3303 1.7211 0.4666 9.9138 4.8496 0.5693 0.5256 0.1425 0.9307 0.1093 0.2913 0.4029
10 0.3302 1.7205 0.4665 9.9166 4.8508 0.5694 0.5255 0.1425 0.9309 0.1093 0.2913 0.4030
11 0.3301 1.7202 0.4664 9.9183 4.8515 0.5695 0.5254 0.1425 0.9310 0.1093 0.2913 0.4030
12 0.3301 1.7200 0.4664 9.9192 4.8520 0.5695 0.5253 0.1425 0.9311 0.1093 0.2912 0.4031
13 0.3300 1.7199 0.4664 9.9198 4.8522 0.5696 0.5253 0.1424 0.9311 0.1093 0.2912 0.4031
14 0.3300 1.7198 0.4664 9.9201 4.8523 0.5696 0.5253 0.1424 0.9312 0.1093 0.2912 0.4031
15 0.3300 1.7198 0.4664 9.9203 4.8524 0.5696 0.5253 0.1424 0.9312 0.1093 0.2912 0.4031
16 0.3300 1.7198 0.4664 9.9204 4.8525 0.5696 0.5253 0.1424 0.9312 0.1093 0.2912 0.4031
17 0.3300 1.7198 0.4664 9.9204 4.8525 0.5696 0.5253 0.1424 0.9312 0.1093 0.2912 0.4031
18 0.3300 1.7198 0.4663 9.9205 4.8525 0.5696 0.5253 0.1424 0.9312 0.1093 0.2912 0.4031
19 0.3300 1.7197 0.4663 9.9205 4.8525 0.5696 0.5253 0.1424 0.9312 0.1093 0.2912 0.4031

20 0.3300 1.7197 0.4663 9.9205 4.8525 0.5696 0.5253 0.1424 0.9312 0.1093 0.2912 0.4031

Table 1. The first 20 iterations of the algorithm applied to the 8 × 8
incomplete pairwise comparison matrix M

Based on the results of the algorithm above, the optimal solution of (34),
i.e., the λmax-optimal completion of the 8×8 incomplete pairwise comparison
matrix M is as follows (completing numbers in place of the former missing
elements are displayed up to 2 digits):

M(x∗) =




1 5 3 7 6 6 1/3 1/4
1/5 1 0.33 5 1.72 3 0.47 1/7
1/3 3.03 1 9.92 3 4.85 6 0.57
1/7 1/5 0.10 1 0.53 1/4 0.14 1/8
1/6 0.58 1/3 1.90 1 0.93 1/5 0.11
1/6 1/3 0.21 4 1.07 1 0.29 1/6
3 2.14 1/6 7.02 5 3.43 1 0.40
4 7 1.76 8 9.15 6 2.48 1




The normalized right eigenvector corresponding to the largest eigenvalue
λmax(M(x∗)) = 9.2981 is: wEM

1 = 0.1894, wEM
2 = 0.0567, wEM

3 = 0.2116,
wEM

4 = 0.0175, wEM
5 = 0.0319, wEM

6 = 0.0354, wEM
7 = 0.1509, wEM

8 =
0.3066.
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Figure 5. The decrease of λmax(M) during the first 5 iterations

6 van Uden’s approximation as a starting point

of the algorithm

An approximation of missing elements based on 3 × 3 submatrices, which
themselves are also pairwise comparison matrices, also known as triads, was
proposed by van Uden [31]. Suppose that bij is a missing element but aik

and ajk are given. In terms of the graph representation in Section 2 we have
a triangle with one edge missing. This configuration (i, j, k) is a triad. It is
natural to specify a value for bij by transitivity; set aij = aikakj .

If a missing element bij in the matrix (or, equivalently, a missing edge in
the graph) can be approximated via several triads, the geometric mean of
the approximations is applied.

Example 3. Let U be a 4 × 4 incomplete pairwise comparison matrix
with one missing element:

U =




1 1 5 2
1 1 3 4

1/5 1/3 1 ∗
1/2 1/4 ∗ 1



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The missing element, denoted by x, is contained in two triads in which
the other two elements are known:




1 5 2
1/5 1 x
1/2 1/x 1


 ,




1 3 4
1/3 1 x
1/4 1/x 1




The approximation of x using van Uden’s rule is as follows:

x̃ =

√
2

5
· 4

3
= 0.73029674334.

The optimal solution of the problem min
x

λmax(U(x)) resulted in by the

algorithm in Section 5:

x∗ = 0.7302965066047,

which equals to van Uden’s approximation up to 6 digits. Based on our nu-
merical experience, if the number of missing elements is significantly smaller
than the number of known elements, van Uden’s rule ([31],[21]) provides a
very good approximation for the missing elements, and gives suitable start-
ing points for the λmax-optimization algorithm as well. The mathematical
justification of this important observation will be a topic of further research
but is beyond the scope of this paper.

However, when the numbers of missing and known elements are of the
same order, both starting points (1-s and van Uden’s approximation) provide
more or less the same rate of convergence. In the case of the incomplete 8×8
matrix M, 22 iterations are needed in order to get the same accuracy starting
from van Uden’s initial point, while 19 iterations are enough when starting
from 1-s.

7 Conclusion

A natural necessary and sufficient condition, the connectedness of the asso-
ciated graph, is given for the uniqueness of the best completion of an incom-
plete pairwise comparison matrix regarding the Eigenvector Method and the
Logarithmic Least Squares Method.

The eigenvalue optimization problem of the Eigenvector Method can be
transformed into a convex, and, in the case of connected graph, into a strictly
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convex optimization problem. Based on our algorithm proposed in Section
5, weights and CR-inconsistency can be computed from partial informa-
tion. Moreover, the decision maker gets non-decreasing lower bound for the
CR-inconsistency level in each step of the process of filling in the pairwise
comparison matrix. This, especially in the case of a sharp jump, can be used
for detecting misprints in real time.

In the Logarithmic Least Squares problem for incomplete matrices, the
geometric means of the rows’ elements play important role in the explicit
computation of the optimal solution, like in the complete case.

The number of necessary pairwise comparisons (if it is smaller than n(n−1)
2

at all) depends on the characteristics of the real decision problem and pro-
vides an exciting topic of future research.
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