

COPYRIGHT NOTICE

FedUni ResearchOnline
http://researchonline.ballarat.edu.au

This is the submitted for peer-review version of the following article:

Aloupis, G., Perez-roses, H., Pineda-Villavicencio, G., Taslakian, P., &
Trinchet-Almaguer, D. (2013). Fitting Voronoi diagrams to planar tesselations.
Lecture notes in computer science, 8288. 349-361

Which has been published in final form at:
http://doi.org/10.1007/978-3-642-45278-9_30

© 2013 Springer-Verlag.

 This is the author’s version of the work. It is posted here with permission
of the publisher for your personal use. No further distribution is permitted.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Federation ResearchOnline

https://core.ac.uk/display/213010322?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://researchonline.ballarat.edu.au/

Fitting Voronoi Diagrams to Planar Tesselations?

Greg Aloupis1, Hebert Pérez-Rosés2, Guillermo Pineda-Villavicencio3,
Perouz Taslakian4, and Dannier Trinchet-Almaguer5

1 Chargé de Recherches FNRS, Université Libre de Bruxelles, Belgium
aloupis.greg@gmail.com

2 Department of Mathematics, University of Lleida, Spain,
and Conjoint Fellow, University of Newcastle, Australia

hebert.perez@matematica.udl.cat
3 Center for Informatics and Applied Optimization, University of Ballarat, Australia,

and Department of Mathematics, Ben-Gurion University of the Negev, Israel
work@guillermo.com.au

4 School of Science and Engineering, American University of Armenia
ptaslakian@aua.am

5 AlessTidyCraft Software Solutions, Havana, Cuba
trinchet@gmail.com

Abstract. Given a tesselation of the plane, defined by a planar straight-
line graph G, we want to find a minimal set S of points in the plane, such
that the Voronoi diagram associated with S ‘fits’ G. This is the Gener-
alized Inverse Voronoi Problem (GIVP), defined in [12] and rediscovered
recently in [3]. Here we give an algorithm that solves this problem with
a number of points that is linear in the size of G, assuming that the
smallest angle in G is constant.

Keywords: Voronoi diagram, Dirichlet tesselation, planar tesselation,
inverse Voronoi problem

1 Introduction

Any planar straight-line graph (PSLG) subdivides the plane into cells, some of
which may be unbounded. The Voronoi diagram (also commonly referred to as
Dirichlet tesselation, or Thiessen polygon) of a set S of n points is a PSLG with
n cells, where each cell belongs to one point from S and consists of all points in
the plane that are closer to that point than to any other in S.

Let G be a given PSLG, whose cells can be considered bounded and convex
for all practical purposes. Indeed, if some cell is not convex, it can always be
partitioned into convex subcells, thus yielding a finer tesselation. The asymptotic
size complexity of the PSLG remains the same by this ‘convexification’ operation.

The Inverse Voronoi Problem (IVP) consists of deciding whether G coincides
with the Voronoi diagram of some set S of points in the plane, and if so, finding
S. This problem was first studied by Ash and Bolker [1]. Subsequently, Auren-
hammer presented a more efficient algorithm [2], which in turn was improved by

? Mathematics Subject Classification: 52C45, 65D18, 68U05.

2 Aloupis et al.

Hartvigsen, with the aid of linear programming [5], and later by Schoenberg,
Ferguson and Li [8]. Yeganova also used linear programming to determine the
location of S [13,14].

In the IVP, the set S is limited to have one point per cell; a generalized
version of this problem (GIVP) allows more than one point per cell. In this case,
new vertices and edges may be added to G, but the original ones must be kept,
as shown in Figure 1. With this relaxation the set S always exists, hence we are
interested in minimizing its size.

Fig. 1. GIVP: Thick edges represent the original input tesselation

The GIVP in R2 was indirectly mentioned in [13,14], in the context of set
separation. It was formally stated and discussed in the III Cuban Workshop on
Algorithms and Data Structures, held in Havana in 2003, where an algorithm
for solving the problem in R2 was sketched by the current authors. However,
the manuscript remained dormant for several years, and the algorithm was only
published in Spanish in 2007 [12]. Recently, the problem was revisited in [3],
where another algorithm for the GIVP in R2 is given, and the special case of
a rectangular tesselation is discussed in greater detail. The authors of [3] were
unaware of [12], however the two algorithms turn out to have certain common
aspects.

This paper is an expanded and updated English version of [12]. It contains a
description and analysis of the aforementioned algorithm for solving the GIVP
in R2. This is followed by the description of an implementation of the algorithm,
which was used to make a first (if only preliminary) experimental study of the
algorithm’s performance. Our algorithm generates O(E) sites in the worst case,
where E is the number of edges of G (provided that the smallest angle of G
is constant). This bound is asymptotically optimal for tesselations with such
angular constraints.

Fitting Voronoi Diagrams 3

In comparison, the analysis given for the algorithm in [3] states that O(V 3)
sites are generated, where V is the size of a refinement of G such that all faces
are triangles with acute angles. Given an arbitrary PSLG, there does not appear
to be any known polynomial upper bound on the size of its associated acute
triangulation. Even though it seems to us that the analysis in [3] should have
given a tighter upper bound in terms of V , even a linear bound would not make
much of a difference, given that V can be very large compared to the size of G.
The analysis in [3] is purely theoretical, so it would be interesting to perform
an experimental study to shed some light on the algorithm’s performance in
practice.

This paper is organized as follows: In Section 2 we describe the algorithm and
discuss its correctness and performance. In Section 3 we derive some variants of
the general strategy, and deal with several implementation issues of each variant.
Section 4 is devoted to an experimental analysis of the algorithm’s performance.
Finally, in Section 5 we summarize our results and discuss some open problems
arising as a result of our work.

2 The Algorithm

First we establish some notation and definitions. In that respect we have followed
some standard texts, such as [4].

Let p and q be points of the plane; as customary, pq is the segment that joins
p and q, and |pq| denotes its length. Bpq denotes the bisector of p and q, and
Hpq is the half-plane determined by Bpq, containing p. For a set S of points in
the plane, Vor(S) denotes the Voronoi diagram generated by S. The points in
S are called Voronoi sites or generators.

If p ∈ S, V (p) denotes the cell of Vor(S) corresponding to the site p. For any
point q, CS(q) is the largest empty circle centered at q, with respect to S (the
subscript S can be dropped if it is clear from the context). Two points p, q ∈ S
are said to be (strong) neighbors (with respect to S) if their cells share an edge
in Vor(S); in this case Epq denotes that edge.

We will make frequent use of the following basic property of Voronoi dia-
grams:

Lemma 1 ([4], Thm. 7.4, p. 150). The bisector Bpq defines an edge of the
Voronoi diagram if, and only if, there exists a point x on Bpq such that CS(x)
contains both p and q on its boundary, but no other site. The (open) edge in
question consists of all points x with that property.

The technique used by the algorithm is to place pairs of points (sentinels)
along each edge e of the PSLG (each pair is placed so that it is bisected by e)
in order to ‘guard’ or ‘protect’ e. The number of sentinels required to protect e
depends on its length and the relative positions of its neighboring edges. Each
pair of sentinels meant to guard e is placed on the boundary of some circle,
whose center lies on e. Furthermore this circle will not touch any other edge.
The only exception is when the circle is centered on an endpoint of e, in which

4 Aloupis et al.

case it is allowed to touch all other edges sharing that endpoint. More formally,
we have the following.

Definition 1. Let G be a PSLG, and let e be an edge of G. Let S be a set of
points, and p, q ∈ S. The pair of points p, q is said to be a pair of sentinels of
e if they are strong neighbors with respect to S, and Epq is a subsegment of e.
In this case, e (or more precisely, the segment Epq) is said to be guarded by p
and q.

The algorithm works in two stages: First, for each vertex v of G we draw a
circle centered on v. This is our set of initial circles (this is described in more
detail below). Then we proceed to cover each edge e of G by non-overlapping
inner circles, whose centers lie on e, and which do not intersect any other edges
of G.

Let u be a given vertex of G, and let λ be the length of the shortest edge of
G incident to u. We denote as ξG(u) the initial circle centered at u, which will
be taken as the largest circle with radius ρ0 ≤ λ/2 that does not intersect any
edge of G, except those that are incident to u. Once we have drawn ξG(u), for
each edge e incident to u we can choose a pair of sentinels p, q, placed on ξG(u),
one on each side of e, at a suitably small distance ε from e, as in Figure 2. Later
in this section we discuss how to choose ε appropriately.

u

p

q
w

e

Fig. 2. Initial circle ξG(u) for vertex u and sentinels of e

Let w be the point of intersection between ξG(u) and e; now p and q guard
the segment uw of e, which means that uw will appear in the Voronoi diagram
that will be constructed, provided that we do not include any new points inside
ξG(u) (see Lemma 1).

Let e = uv be an edge of G, and w1, w2 the intersection points of ξ(u) and
ξ(v) with e, respectively.6 The segments uw1 and uw2 are now guarded, whereas
the (possibly empty) segment w1w2 still remains unguarded. In order to guard

6 For convenience, we have dropped the subscript G.

Fitting Voronoi Diagrams 5

w1w2 it suffices to cover that segment with circles centered on it, not intersecting
with any edge other than e, and not including any sentinel belonging to another
circle. Then we can choose pairs of sentinels on each covering circle, each sentinel
being at distance ε from e, as shown in Figure 3.

u ve

Fig. 3. Edge covered by circles

As a consequence of Lemma 1, e will be guarded in all its length, provided that
no new point is later included inside one of the circles centered on e. To ensure
this, we will not allow an inner circle of e to get closer than ε to another edge
f , because then a sentinel of f might fall inside the circle. With this precaution,
the sentinels guarding e will not interfere with other edges, since they will not
be included in any circle belonging to another edge.

In summary, an outline of the algorithm is:

1. For each vertex u ∈ G, draw initial circle ξG(u) centered on u.
2. Choose a suitable value of ε.
3. For each vertex u and for each edge e incident to u, place a pair of sentinels

on ξG(u), symmetric to one another with respect to e, at distance ε from e.
4. For each edge e ∈ G, cover the unguarded segment of e with inner circles

centered on e, and then place pairs of sentinels on each circle.

This algorithm is a general strategy that leads to several variants when Step 4
is specified in more detail, as will be seen in Section 3. In order to prove that
the algorithm works it suffices to show that:

1. The algorithm terminates after constructing a finite number of circles (and
sentinels).

2. After termination, every edge of G is guarded (see the discussion above).

In order to show that the algorithm terminates we will establish some facts. Let
ρ0 > 0 be the radius of the smallest initial circle. Now let α be the smallest angle
formed by any two incident edges of G, say e and f . By taking ε ≤ ρ0 sin α

2 we

6 Aloupis et al.

make sure that any sentinel will be closer to the edge that it is meant to guard
than to any other edge. This is valid for all initial circles.

After all initial circles have been constructed, together with their correspond-
ing sets of sentinels, for every edge e there may be a middle segment that remains
unguarded. This segment must be covered by a finite number of inner circles.
Take one edge, say e, with middle unguarded segment of length δ. If we use cir-
cles of radius ε to cover the unguarded segment, then we can be sure that these
circles will not intersect any circle belonging to another edge. Exactly bδ/2εc+1
such circles will suffice to cover the middle segment, where the last one may have
a radius ε′ smaller than ε. For this last circle, the sentinels could be placed at
distance ε′ < ε from e (c.f. Figure 4).

u v

Fig. 4. Covering the middle segment of edge uv by inner circles of radius ε

Using circles of radius ε is, among all the possible variants mentioned here,
the one that yields the largest number of circles, and hence the largest number
of sentinels (generators of the Voronoi diagram). Now let e be the longest edge
of G, with length ∆. In the worst case, the number of inner circles that cover e
will be b(∆−2ρ0)/2εc+1, and the number of sentinels will be twice that number
plus four (corresponding to the sentinels of both initial circles). Therefore, the
algorithm generates a number of points that is linear in E, the number of edges,
which is asymptotically optimal, since a lower bound for the number of points
is the number of faces in G.

Note that by letting G become part of the problem instance, the number of
generators becomes a function of α, and it is no longer linear in E. In practice,
however, screen resolution and computer arithmetic impose lower bounds on α.
Under such constraints, the above analysis remains valid. This leads to our main
result:

Theorem 1. Let G be a planar straight-line graph, whose smallest angle α
is larger than a fixed constant. Then, the corresponding Generalized Inverse
Voronoi Problem can be solved with O(E) generators, where E is the number
of edges of G.

Fitting Voronoi Diagrams 7

3 Implementation

In step 4 of the algorithm given in the previous section, the method to construct
the inner circles was left unspecified. Taking the circles with radius ε, as suggested
in the preceding analysis, is essentially a brute-force approach, and may easily
result in too many sentinels being used. In this section we discuss two different
methods for constructing the inner circles.

First let us note that in order to reduce the number of sentinels in our
construction we may allow two adjacent circles on the same edge to overlap a
little, so that they can share a pair of sentinels (see Figure 5). This observation
is valid for all variants of the algorithm.

u ve

Fig. 5. Adjacent circles share a pair of sentinels

The first variant for the construction of the inner circles along an edge is
to place them sequentially (iteratively), letting them grow as much as possible,
provided that they do not enter the ε-wide ‘security area’ of another edge. Ob-
viously, this greedy heuristic must yield a smaller number of Voronoi generators
than the naive approach of taking all circles with radius ε.

Suppose we want to construct an inner circle χ for edge e, adjacent to another
circle on e that has already been fixed and on which we have already placed two
sentinels: a = (xa, ya), and b = (xb, yb). Let f be the first edge that will be
touched by χ as it grows, while constrained to have its center on e and a, b on its
boundary. Let f ′ be a straight line parallel to f , at distance ε from f , and closer
to χ than f . Let e be defined by the equation y = mx+n, and f ′ by the equation

Ax+By+C = 0.7 The distance of any point (x, y) to f ′ is given by |Ax+By+C|√
A2+B2

.

The radius of χ must be equal to this distance. Hence the x-coordinate of the
center satisfies the following quadratic equation:

(A2 +B2)((xa − x)2 + (ya − (mx+ n))2) = (Ax+B(mx+ n) + C)2

7 The equation of f ′ can be obtained easily after the initial circles have been con-
structed and their sentinels placed.

8 Aloupis et al.

or

−(A2 + 2ABm+B2m2 −D(m2 + 1))x2

−2(A(Bn+ C) +B2mn+BCm+D(xa −m(n− ya)))x

−B2n2 − 2BCn− C2 +D(n2 − 2nya + x2a + y2a) = 0

where D = A2 +B2.

Our second variant for constructing inner circles is also based on the princi-
ple of letting them grow until they come within distance ε of some edge. Yet,
instead of growing the circles sequentially along the edge that is to be covered,
we center the first inner circle on the midpoint of the unguarded middle segment.
This will yield at most two smaller disjoint unguarded segments, on which we
recurse. In the worst case, a branch of the recursion will end when an unguarded
segment can be covered by a circle of radius ε. The advantage of this approach
is that the coordinates of the center can be determined with much less compu-
tation, thus avoiding potential roundoff errors. Additionally, this variant is more
suitable for parallel implementation than the previous one. On the other hand,
we need an extra data structure to handle the unguarded segments.

We end this discussion with a word about the choice of ε. On one hand, ε
must be sufficiently small for the construction to be carried out. On the other
hand, for the sake of robustness to numerical errors, it is convenient to take ε
as large as possible. That is why we defer the actual choice of ε until the initial
circles have been drawn. A different approach might be to use a variable-sized ε,
which would lead to a more complicated, yet (hopefully) more robust algorithm.

A final remark: For the sake of simplicity we have assumed throughout the
whole discussion that the cells of the input tesselation are convex, but our algo-
rithm could be easily generalized to accept tesselations with non-convex cells.

4 Experimental Analysis

From the analysis in Section 2 we know that the number of sites generated by
our algorithm is linear in the size of the input, provided that the smallest angle
α is constant. However, we would like to get a more precise idea about the
algorithm’s performance, and the difference between the two strategies we have
suggested for Step 4. For that purpose, we have implemented the algorithm and
carried out a set of experiments.

Our experimental workbench consists of a Graphical User Interface, which
can generate a tesselation on a random point set, store it in a DCEL data
structure, and then apply one of the two variants of the algorithm for solving
the GIVP, described in Section 2.

The GUI is described in more detail in [11,12], and a beta Windows ver-
sion can be downloaded from https://www.researchgate.net/publication/

239994361_Voronoi_data. The file ‘Voronoi data.rar’ contains the Windows ex-
ecutable and a few DCEL files, consisting of sample tesselations. The user can

https://www.researchgate.net/publication/239994361_Voronoi_data
https://www.researchgate.net/publication/239994361_Voronoi_data

Fitting Voronoi Diagrams 9

generate additional tesselations randomly, and apply either variant of the algo-
rithm on them.

The tesselations are generated as follows: First, the vertex set of G is ran-
domly generated from the uniform distribution in a rectangular region. Then,
pairs of vertices are chosen randomly to create edges. If a new edge intersects
existing edges, then the intersection points are added as new vertices, and the
intersecting edges are decomposed into their non-intersecting segments. Finally,
some edges are added to connect disjoint connected components and dangling
vertices, so as to make the PSLG biconnected.

Table 1 displays some statistics about 40 such randomly generated tesse-
lations: Number of vertices, number of edges, number of regions, number of
Voronoi sites with the recursive version of Step 4, number of Voronoi sites with
the sequential version of Step 4, the smallest angle α, and the width ε of the
security area. The tesselations have been listed in increasing order of the number
of edges. For each parameter, the table also provides the median (MED), the
mean value (AVG), and the standard deviation (STD).

From the tabulated data we can also get empirical estimates about the corre-
lation among different parameters, especially α and ε, and about the distribution
of their values. The parameters α and ε show a weak negative correlation with
the number of edges, of −0.548 and −0.358 respectively. In turn they are pos-
itively correlated with one another, with a correlation of 0.67. These empirical
findings agree with intuition.

Figures 6 and 7 display the histograms of α and ε with 20 bins. They can
be well approximated by Poisson distributions, with λ = 4.06 and λ = 0.59,
respectively, and with 95% confidence intervals [3.437; 4.686] and [0.375; 0.8784].

Fig. 6. Histogram of α Fig. 7. Histogram of ε

The comparison between the two variants of the algorithm is shown in Figure
8. We can see that the sequential variant is slightly better than the recursive
variant, as it generates a smaller number of sites in most cases. However, the
difference between both variants is not significant. Indeed, the linear regression

10 Aloupis et al.

Num. of sites generated
Exp. Tesselation Smallest
num. Recursive Sequential angle ε-neigh.

Vertices Edges Regions version version (degrees) (pixels)

1 72 142 66 1 020 852 1.63 1.20
2 117 206 91 916 870 4.09 12.30
3 194 252 60 1 468 1 296 1.07 9.61
4 274 376 105 1 672 1 596 1.60 12.26
5 229 429 202 2 400 2 148 3.38 0.91
6 314 441 129 2 208 2 020 0.56 5.70
7 336 472 138 2 656 2 374 0.47 4.03
8 339 475 138 3 098 2 618 3.95 0.18
9 344 480 138 3 140 2 720 0.23 4.48
10 357 493 138 2 844 2 530 0.13 7.24
11 339 501 164 2 580 2 364 0.38 3.81
12 390 568 180 2 680 2 520 8.92 0.60
13 438 637 281 3 320 3 028 0.21 6.34
14 403 641 240 3 838 3 382 0.16 7.07
15 472 684 214 3 432 3 144 0.25 2.56
16 397 721 319 4 244 3 718 0.11 3.16
17 421 784 365 5 112 4 406 1.30 0.12
18 564 826 264 4 092 3 790 0.70 0.11
19 504 986 463 4 148 4 020 2.37 14.16
20 512 999 472 4 276 4 134 1.52 3.68
21 552 1 056 506 4 048 4 796 0.25 4.40
22 574 1 107 535 4 856 4 689 3.68 0.75
23 601 1 166 567 5 240 5 009 0.80 3.43
24 645 1 256 613 5 852 5 521 0.77 3.62
25 672 1 292 622 5 720 5 992 0.25 3.44
26 738 1 311 575 6 124 5 832 0.34 1.84
27 724 1 399 677 6 440 6 194 0.23 3.23
28 815 1 441 628 6 832 6 478 1.20 0.30
29 763 1 479 718 6 960 6 599 2.14 0.19
30 772 1 495 725 6 900 6 610 2.54 0.29
31 855 1 522 669 7 684 7 158 1.43 0.31
32 894 1 607 712 9 062 8 685 0.36 0.23
33 898 1 615 716 8 152 7 580 1.19 0.33
34 963 1 750 789 9 637 9 045 0.88 0.29
35 1 006 1 842 838 9 236 8 582 1.85 0.34
36 1 018 1 874 858 10 144 9 228 1.09 0.27
37 984 1 902 920 7 924 7 792 4.40 0.25
38 1 015 1 962 949 8 396 8 198 3.34 0.31
39 1 066 1 973 909 10 392 9 492 0.63 0.30
40 1 019 1 999 982 8 952 8 616 1.49 0.45

MED 558 1 027.5 489 4 566 4 547.5 3.4 0.3
AVG 590 1 054 467 5 192 4 891 0.59 4.06
STD 282.7 571.24 292.73 2 715.5 2 600 3.36 0.74

Table 1. Experimental results

Fitting Voronoi Diagrams 11

fits have very similar slopes: The linear fit for the sequential variant is y =
4.4831x + 158.59, whereas the linear fit in the recursive case is y = 4.6241x +
318.51.

5 Conclusions and Open Problems

Our results show that the Generalized Inverse Voronoi Problem can be solved
with a number of generators that is linear in the size of the input tesselation,
provided that we enforce a lower bound on the size of the smallest angle. On the
other hand, the algorithm described in [3] produces O(V 3) generators, where V
is the number of vertices of an acute triangulation of G. As the performance of
the two algorithms is given as a function of different parameters, a theoretical
comparison between them is not straightforward. An experimental study could
be helpful, but that would require an implementation of the algorithm in [3].
In practice, our algorithm generates approximately 4.48E + 159 Voronoi sites,
where E is the number of edges of the input tesselation.

In any case, the number of generators produced by both algorithms may still
be too large, and it may be possible to reduce it to a number closer to F , the
number of faces of the tesselation, which is the trivial lower bound. This lower
bound can only be achieved if the tesselation is a Voronoi tesselation. In the
more general case, how close to F can we get?

In particular, our algorithm still has plenty of room for improvement. In
Section 3 we have already mentioned several strategies that can decrease the
number of Voronoi sites produced. The design of a parallel version, and a ver-
sion that is robust against degenerate cases and numerical roundoff errors, are
other issues to consider. Roundoff errors have long been an important concern
in Computational Geometry in general, and in Voronoi diagram computation,
in particular (see e.g. [10]).

Other practical questions have to do with the experimental analysis of our al-
gorithms. We have devised a method to generate a PSLG on a random point set,
but we have not analyzed how this compares to generating such graphs uniformly
from the set of all PSLGs that can be defined on a given point set. Regarding
certain properties of our generated graphs (expected number of vertices, edges,
and faces, expected area of the faces, distribution of the smallest angle, etc.), we
have not attempted a theoretical analysis, but we have estimated some of these
parameters empirically. A more comprehensive set of experiments will reveal how
these tesselations compare with those generated by other methods.

As a final remark, we point out that our algorithm could also be generalized
to other metrics, continuous or discrete, including graph metrics. Potential ap-
plications include image representation and compression, as described in [6], and
pattern recognition (e.g. given a partition of some sample space, we could select
a set of ‘representatives’ for each class). In the case of graphs, Voronoi parti-
tions can be used to find approximate shortest paths (see [9,7], for instance). In
social networks, node clustering around a set of ‘representative’ nodes, or ‘super-

12 Aloupis et al.

Fig. 8. Plot of the results in Table 1

Fitting Voronoi Diagrams 13

vertices’, is a popular technique for network visualization and/or anonymization
[15].

Acknowledgements

Janos Pach contributed some key ideas for the algorithm, at the early stages
of this work. Hebert Pérez-Rosés was partially supported by the Spanish Min-
istry of Economy and Competitiveness, under project TIN2010-18978. Guillermo
Pineda-Villavicencio was supported by a postdoctoral fellowship funded by the
Skirball Foundation, via the Center for Advanced Studies in Mathematics at the
Ben-Gurion University of the Negev, Israel, and by an ISF grant.

References

1. Ash, P., Bolker, E.D. Recognizing Dirichlet Tesselations. Geometriae Dedicata 19,
175–206 (1985).

2. Aurenhammer, F. Recognising Polytopical Cell Complexes and Constructing Pro-
jection Polyhedra. J. Symbolic Computation 3, 249–255 (1987).

3. Banerjee, S., Bhattacharya, B.B., Das, S., Karmakar, A., Maheshwari, A., Roy, S.
On the Construction of a Generalized Voronoi Inverse of a Rectangular Tesselation.
In: Procs. 9th Int. IEEE Symp. on Voronoi Diagrams in Science and Engineering,
pp. 132–137. IEEE, New Brunswick, NJ (2012).

4. de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geometry.
Algorithms and Applications. Springer, Berlin, third ed. (2008).

5. Hartvigsen, D. Recognizing Voronoi Diagrams with Linear Programming. ORSA J.
Comput. 4, 369–374 (1992).

6. Mart́ınez, A., Mart́ınez, J., Pérez-Rosés, H., Quirós, R. Image Processing using
Voronoi diagrams. In: Procs. 2007 Int. Conf. on Image Proc., Comp. Vision, and
Pat. Rec., pp 485-491. CSREA Press (2007).

7. Ratti, B., Sommer, C. Approximating Shortest Paths in Spatial Social Networks. In:
Procs. 2012 ASE/IEEE Int. Conf. on Social Computing and 2012 ASE/IEEE Int.
Conf. on Privacy, Security, Risk and Trust, pp 585–586. IEEE Comp. Soc. (2012).

8. Schoenberg, F.P., Ferguson, T., Li, C. Inverting Dirichlet Tesselations. The Com-
puter J. 46, 76–83 (2003).

9. Sommer, C.: Approximate Shortest Path and Distance Queries in Networks. PhD
Thesis, Department of Computer Science, The University of Tokyo, Japan (2010).

10. Sugihara, K., Iri, M. Construction of the Voronoi Diagram for ‘One Million’ Gen-
erators in Single-Precision Arithmetic. Procs. IEEE 80, 1471–1484 (1992).

11. Trinchet-Almaguer, D.: Algorithm for Solving the Generalized Inverse Voronoi
Problem. Honour’s Thesis (in Spanish), Department of Computer Science, Uni-
versity of Oriente, Cuba (2005).

12. Trinchet-Almaguer, D., Pérez-Rosés, H.: Algorithm for Solving the Generalized
Inverse Voronoi Problem (in Spanish). Revista Cubana de Ciencias Informaticas 1
(4), 58–71 (2007).

13. Yeganova, L., Falk, J.E., Dandurova, Y.V. Robust Separation of Multiple Sets.
Nonlinear Analysis 47, 1845–1856 (2001).

14. Yeganova, L.E. Robust linear separation of multiple finite sets. Ph.D. Thesis,
George Washington University, 2001.

14 Aloupis et al.

15. Zhou, B., Pei, J., Luk, W-S. A brief survey on anonymization techniques for pri-
vacy preserving publishing of social network data. ACM SIGKDD Explorations
Newsletter 10, 12–22 (2008).

	Lecture Notes in Computer Science
	1 Introduction
	2 The Algorithm
	3 Implementation
	4 Experimental Analysis
	5 Conclusions and Open Problems

