26 research outputs found

    Long-term impact risk for (101955) 1999 RQ36

    Full text link
    The potentially hazardous asteroid (101955) 1999 RQ36 has the possibility of collision with the Earth in the latter half of the 22nd century, well beyond the traditional 100-year time horizon for routine impact monitoring. The probabilities accumulate to a total impact probability of approximately 10E-3, with a pair of closely related routes to impact in 2182 comprising more than half of the total. The analysis of impact possibilities so far in the future is strongly dependent on the action of the Yarkovsky effect, which raises new challenges in the careful assessment of longer term impact hazards. Even for asteroids with very precisely determined orbits, a future close approach to Earth can scatter the possible trajectories to the point that the problem becomes like that of a newly discovered asteroid with a weakly determined orbit. If the scattering takes place late enough so that the target plane uncertainty is dominated by Yarkovsky accelerations then the thermal properties of the asteroid,which are typically unknown, play a major role in the impact assessment. In contrast, if the strong planetary interaction takes place sooner, while the Yarkovsky dispersion is still relatively small compared to that derived from the measurements, then precise modeling of the nongravitational acceleration may be unnecessary.Comment: Reviewed figures and some text change

    Induced Representations of Quantum Kinematical Algebras and Quantum Mechanics

    Full text link
    Unitary representations of kinematical symmetry groups of quantum systems are fundamental in quantum theory. We propose in this paper its generalization to quantum kinematical groups. Using the method, proposed by us in a recent paper (olmo01), to induce representations of quantum bicrossproduct algebras we construct the representations of the family of standard quantum inhomogeneous algebras Uλ(isoω(2))U_\lambda(iso_{\omega}(2)). This family contains the quantum Euclidean, Galilei and Poincar\'e algebras, all of them in (1+1) dimensions. As byproducts we obtain the actions of these quantum algebras on regular co-spaces that are an algebraic generalization of the homogeneous spaces and qq--Casimir equations which play the role of qq--Schr\"odinger equations.Comment: LaTeX 2e, 20 page

    Representations of Quantum Bicrossproduct Algebras

    Full text link
    We present a method to construct induced representations of quantum algebras having the structure of bicrossproduct. We apply this procedure to some quantum kinematical algebras in (1+1)--dimensions with this kind of structure: null-plane quantum Poincare algebra, non-standard quantum Galilei algebra and quantum kappa Galilei algebra.Comment: LaTeX 2e, 35 page

    Bicrossproduct structure of the null-plane quantum Poincare algebra

    Full text link
    A nonlinear change of basis allows to show that the non-standard quantum deformation of the (3+1) Poincare algebra has a bicrossproduct structure. Quantum universal R-matrix, Pauli-Lubanski and mass operators are presented in the new basis.Comment: 7 pages, LaTe

    una mirada desde las Ciencias de la Conducta

    Get PDF
    Este libro es el resultado de los trabajos presentados en el 1er Congreso Internacional "Convivencia y bienestar con sentido humanista para una cultura de paz"

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    Measurement of jet fragmentation in Pb+Pb and pppp collisions at sNN=2.76\sqrt{{s_\mathrm{NN}}} = 2.76 TeV with the ATLAS detector at the LHC

    Get PDF
    corecore