4 research outputs found

    Changes in Older and Younger Woods in West-Central Ohio

    Get PDF
    Author Institution: Dept. of Biological Sciences, Wright State University, OHThis study examines changes in two forest stands in the Quercus-Acer saccharum forest region of west central Ohio: an old-growth stand changing from Quercus-dominated to Acer saccharum-dominated and a stand established following agricultural abandonment about 1950. Both stands are in the Wright State University woods. Permanent plots were sampled in 1980 (younger stand only), 1982 (older stand only), 1993, and 2000. The older stand had more small, fewer intermediate, and more large stems than the younger stand. The plot in the new stand showed a bell-shaped distribution with most stems established shortly after land abandonment. Mortality decreased and growth increased with stem size for both stands. Acer saccharum in all sizes and large Quercus dominated the older stand. The younger stand was dominated by Robinia pseudo-acacia with Acer saccharum also important. In the older plots small stems generally were clustered, intermediate-sized stems randomly distributed, and the largest stems regularly distributed. In the younger plot small stems were aggregated while larger ones were randomly distributed. Quercus regenerated well until the late 1800s, singly or in small groups, but few stems have become established since 1900. Quercus may need fires or grazing to regenerate successfully. Both stands are changing to increased dominance by Acer saccharum and other shade-tolerant species as they lose species (Robinia pseudo-acacia in the younger stand, Quercus in the older stand) more successful under past than present conditions

    Prognostic model to predict postoperative acute kidney injury in patients undergoing major gastrointestinal surgery based on a national prospective observational cohort study.

    Get PDF
    Background: Acute illness, existing co-morbidities and surgical stress response can all contribute to postoperative acute kidney injury (AKI) in patients undergoing major gastrointestinal surgery. The aim of this study was prospectively to develop a pragmatic prognostic model to stratify patients according to risk of developing AKI after major gastrointestinal surgery. Methods: This prospective multicentre cohort study included consecutive adults undergoing elective or emergency gastrointestinal resection, liver resection or stoma reversal in 2-week blocks over a continuous 3-month period. The primary outcome was the rate of AKI within 7 days of surgery. Bootstrap stability was used to select clinically plausible risk factors into the model. Internal model validation was carried out by bootstrap validation. Results: A total of 4544 patients were included across 173 centres in the UK and Ireland. The overall rate of AKI was 14·2 per cent (646 of 4544) and the 30-day mortality rate was 1·8 per cent (84 of 4544). Stage 1 AKI was significantly associated with 30-day mortality (unadjusted odds ratio 7·61, 95 per cent c.i. 4·49 to 12·90; P < 0·001), with increasing odds of death with each AKI stage. Six variables were selected for inclusion in the prognostic model: age, sex, ASA grade, preoperative estimated glomerular filtration rate, planned open surgery and preoperative use of either an angiotensin-converting enzyme inhibitor or an angiotensin receptor blocker. Internal validation demonstrated good model discrimination (c-statistic 0·65). Discussion: Following major gastrointestinal surgery, AKI occurred in one in seven patients. This preoperative prognostic model identified patients at high risk of postoperative AKI. Validation in an independent data set is required to ensure generalizability

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    ACC/AHA guidelines for the management of patients with unstable angina and non–st-segment elevation myocardial infarction

    No full text
    corecore