114 research outputs found

    Chemical and natural stressors combined::from cryptic effects to population extinction

    Get PDF
    In addition to natural stressors, populations are increasingly exposed to chemical pollutants released into the environment. We experimentally demonstrate the loss of resilience for Daphnia magna populations that are exposed to a combination of natural and chemical stressors even though effects on population size of a single stressor were cryptic, i.e. hard to detect statistically. Data on Daphnia population demography and along with model-based exploration of our predator-prey system revealed that direct trophic interactions changed the population size-structure and thereby increased population vulnerability to the toxicant which acts in a size selective manner. Moreover, population vulnerability to the toxicant increases with predator size and predation intensity whereas indirect trait-mediated interactions via predator kairomones may buffer chemical effects to a certain extent. Our study demonstrates that population size can be a poor endpoint for risk assessments of chemicals and that ignoring disturbance interactions can lead to severe underestimation of extinction risk

    Diagnostic and Prognostic Implications of FGFR3(high)/Ki67(high) Papillary Bladder Cancers

    Get PDF
    Prognostic/therapeutic stratification of papillary urothelial cancers is solely based upon histology, despite activated FGFR3-signaling was found to be associated with low grade tumors and favorable outcome. However, there are FGFR3-overexpressing tumors showing high proliferation-a paradox of coexisting favorable and adverse features. Therefore, our study aimed to decipher the relevance of FGFR3-overexpression/proliferation for histopathological grading and risk stratification. N = 142 (n = 82 pTa, n = 42 pT1, n = 18 pT2-4) morphologically G1-G3 tumors were analyzed for immunohistochemical expression of FGFR3 and Ki67. Mutation analysis of FGFR3 and TP53 and FISH for FGFR3 amplification and rearrangement was performed. SPSS 23.0 was used for statistical analysis. Overall FGFR3(high)/Ki67(high) status (n = 58) resulted in a reduced Delta mean progression-free survival (PFS) (p < 0.01) of 63.92 months, and shorter progression-free survival (p < 0.01;mean PFS: 55.89 months) in pTa tumors (n = 50). FGFR3(mut)/TP53(mut) double mutations led to a reduced Delta mean PFS (p < 0.01) of 80.30 months in all tumors, and FGFR3(mut)/TP53(mut) pTa tumors presented a dramatically reduced PFS (p < 0.001;mean PFS: 5.00 months). Our results identified FGFR3(high)/Ki67(high) papillary pTa tumors as a subgroup with poor prognosis and encourage histological grading as high grade tumors. Tumor grading should possibly be augmented by immunohistochemical stainings and suitable clinical surveillance by endoscopy should be performed

    The Fight against Cancer by Microgravity: The Multicellular Spheroid as a Metastasis Model

    Get PDF
    Cancer is a disease exhibiting uncontrollable cell growth and spreading to other parts of the organism. It is a heavy, worldwide burden for mankind with high morbidity and mortality. Therefore, groundbreaking research and innovations are necessary. Research in space under microgravity (µg) conditions is a novel approach with the potential to fight cancer and develop future cancer therapies. Space travel is accompanied by adverse effects on our health, and there is a need to counteract these health problems. On the cellular level, studies have shown that real (r-) and simulated (s-) µg impact survival, apoptosis, proliferation, migration, and adhesion as well as the cytoskeleton, the extracellular matrix, focal adhesion, and growth factors in cancer cells. Moreover, the µg-environment induces in vitro 3D tumor models (multicellular spheroids and organoids) with a high potential for preclinical drug targeting, cancer drug development, and studying the processes of cancer progression and metastasis on a molecular level. This review focuses on the effects of r- and s-µg on different types of cells deriving from thyroid, breast, lung, skin, and prostate cancer, as well as tumors of the gastrointestinal tract. In addition, we summarize the current knowledge of the impact of µg on cancerous stem cells. The information demonstrates that µg has become an important new technology for increasing current knowledge of cancer biology

    Clinical Conditions “Suggestive of Progressive Supranuclear Palsy”—Diagnostic Performance

    Get PDF
    Background: The Movement Disorder Society diagnostic criteria for progressive supranuclear palsy introduced the diagnostic certainty level “suggestive of progressive supranuclear palsy” for clinical conditions with subtle signs, suggestive of the disease. This category aims at the early identification of patients, in whom the diagnosis may be confirmed as the disease evolves. Objective: To assess the diagnostic performance of the defined clinical conditions suggestive of progressive supranuclear palsy in an autopsy-confirmed cohort. Methods: Diagnostic performance of the criteria was analyzed based on retrospective clinical data of 204 autopsy-confirmed patients with progressive supranuclear palsy and 216 patients with other neurological diseases. Results: The conditions suggestive of progressive supranuclear palsy strongly increased the sensitivity compared to the National Institute of Neurological Disorders and Stroke and Society for Progressive Supranuclear Palsy criteria. Within the first year after symptom onset, 40% of patients with definite progressive supranuclear palsy fulfilled criteria for suggestive of progressive supranuclear palsy. Two-thirds of patients suggestive of progressive supranuclear palsy evolved into probable progressive supranuclear palsy after an average of 3.6 years. Application of the criteria for suggestive of progressive supranuclear palsy reduced the average time to diagnosis from 3.8 to 2.2 years. Conclusions: Clinical conditions suggestive of progressive supranuclear palsy allow earlier identification of patients likely to evolve into clinically possible or probable progressive supranuclear and to have underlying progressive supranuclear palsy pathology. Further work needs to establish the specificity and positive predictive value of this category in real-life clinical settings, and to develop specific biomarkers that enhance their diagnostic accuracy in early disease stages

    Prediction of Locally Advanced Urothelial Carcinoma of the Bladder Using Clinical Parameters before Radical Cystectomy - A Prospective Multicenter Study

    Get PDF
    Introduction: We aimed at developing and validating a pre-cystectomy nomogram for the prediction of locally advanced urothelial carcinoma of the bladder (UCB) using clinicopathological parameters. Materials and Methods: Multicenter data from 337 patients who underwent radical cystectomy (RC) for UCB were prospectively collected and eligible for final analysis. Univariate and multivariate logistic regression models were applied to identify significant predictors of locally advanced tumor stage (pT3/4 and/or pN+) at RC. Internal validation was performed by bootstrapping. The decision curve analysis (DCA) was done to evaluate the clinical value. Results: The distribution of tumor stages pT3/4, pN+ and pT3/4 and/or pN+ at RC was 44.2, 27.6 and 50.4%, respectively. Age (odds ratio (OR) 0.980; p < 0.001), advanced clinical tumor stage (cT3 vs. cTa, cTis, cT1; OR 3.367; p < 0.001), presence of hydronephrosis (OR 1.844; p = 0.043) and advanced tumor stage T3 and/or N+ at CT imaging (OR 4.378; p < 0.001) were independent predictors for pT3/4 and/or pN+ tumor stage. The predictive accuracy of our nomogram for pT3/4 and/or pN+ at RC was 77.5%. DCA for predicting pT3/4 and/or pN+ at RC showed a clinical net benefit across all probability thresholds. Conclusion: We developed a nomogram for the prediction of locally advanced tumor stage pT3/4 and/or pN+ before RC using established clinicopathological parameters

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    Search for single production of vector-like quarks decaying into Wb in pp collisions at s=8\sqrt{s} = 8 TeV with the ATLAS detector

    Get PDF

    Measurement of the W boson polarisation in ttˉt\bar{t} events from pp collisions at s\sqrt{s} = 8 TeV in the lepton + jets channel with ATLAS

    Get PDF
    corecore