78 research outputs found

    The effect of Bi doping on the thermal conductivity of ZnO and ZnO:Al thin films

    Get PDF
    The dissipation of heat generation has been one of the largest obstacles in the design of semiconductor devices and reducing the thermal conductivity is vital for improving thermoelectric efficiency. This work focuses on the Bi doping effect on ZnO, and ZnO:Al thin films produced by magnetron sputtering with thickness varying between 500 and 900 nm. The approach introduces Bi ions, a higher mass element, into the ZnO metal-oxide matrix, to hinder phonon-mediated heat conduction and, consequently, reduce thermal conductivity. Atom probe tomography (APT) was employed to survey Bi doping distribution in ZnO:Al:Bi and ZnO:Bi thin films and to study the morphology of the grain boundaries. The thermal properties of the thin films were measured by frequency-domain thermoreflectance. Based on thermal conductivity results, it is concluded that the doping of ZnO films with Al has a significant effect on thermal conductivity, being reduced from 6.0 W m1^{−1} K1{^−1} in its undoped state to 3.3 W m1^{−1} K1^{−1} for ZnO with ∼3 at.% of Al, mainly due to alloy scattering of phonons in the wurtzite cell. Further doping with Bi contributes to a slight reduction in the thermal conductivity of ZnO:Al.Bi films (2.9 W m1^{−1} K1^{−1}), due to grain boundary scattering by Bi/Bi2_2O3_3 phases. This result is understood as the confluence of two counteracting effects. On the one hand, the thermal conductivity of the film decreases because Bi, unlike Al, is segregated to grain boundaries and does not substitute Zn in the wurtzite crystal lattice, which is unequivocally demonstrated by APT results. On the other hand, the simultaneous presence of Al and Bi triggers a morphological change with the film\u27s microstructure becoming more columnar. This change in microstructure from 3D island growth in ZnO:Al and ZnO:Bi to a more regular columnar structure in ZnO:Al,Bi limits further reduction in the thermal conductivity

    Search for diboson resonances in hadronic final states in 139 fb −1 of pp collisions at s = 13 TeV with the ATLAS detector

    Get PDF
    Abstract: Narrow resonances decaying into W W, W Z or ZZ boson pairs are searched for in 139 fb−1 of proton-proton collision data at a centre-of-mass energy of s = 13 TeV recorded with the ATLAS detector at the Large Hadron Collider from 2015 to 2018. The diboson system is reconstructed using pairs of high transverse momentum, large-radius jets. These jets are built from a combination of calorimeter- and tracker-inputs compatible with the hadronic decay of a boosted W or Z boson, using jet mass and substructure properties. The search is performed for diboson resonances with masses greater than 1.3 TeV. No significant deviations from the background expectations are observed. Exclusion limits at the 95% confidence level are set on the production cross-section times branching ratio into dibosons for resonances in a range of theories beyond the Standard Model, with the highest excluded mass of a new gauge boson at 3.8 TeV in the context of mass-degenerate resonances that couple predominantly to gauge bosons

    Measurement of hadronic event shapes in high-p T multijet final states at √s = 13 TeV with the ATLAS detector

    Get PDF
    A measurement of event-shape variables in proton-proton collisions at large momentum transfer is presented using data collected at s = 13 TeV with the ATLAS detector at the Large Hadron Collider. Six event-shape variables calculated using hadronic jets are studied in inclusive multijet events using data corresponding to an integrated luminosity of 139 fb−1. Measurements are performed in bins of jet multiplicity and in different ranges of the scalar sum of the transverse momenta of the two leading jets, reaching scales beyond 2 TeV. These measurements are compared with predictions from Monte Carlo event generators containing leading-order or next-to-leading order matrix elements matched to parton showers simulated to leading-logarithm accuracy. At low jet multiplicities, shape discrepancies between the measurements and the Monte Carlo predictions are observed. At high jet multiplicities, the shapes are better described but discrepancies in the normalisation are observed. [Figure not available: see fulltext.

    Measurement of the azimuthal anisotropy of charged-particle production in Xe+Xe collisions at sNN =5.44 TeV with the ATLAS detector

    Get PDF
    This paper describes the measurements of flow harmonics v2-v6 in 3μb-1 of Xe+Xe collisions at sNN=5.44 TeV performed using the ATLAS detector at the Large Hadron Collider (LHC). Measurements of the centrality, multiplicity, and pT dependence of the vn obtained using two-particle correlations and the scalar product technique are presented. The measurements are also performed using a template-fit procedure, which was developed to remove nonflow correlations in small collision systems. This nonflow removal is shown to have a significant influence on the measured vn at high pT, especially in peripheral events. Comparisons of the measured vn with measurements in Pb+Pb collisions and p+Pb collisions at sNN=5.02 TeV are also presented. The vn values in Xe+Xe collisions are observed to be larger than those in Pb+Pb collisions for n=2, 3, and 4 in the most central events. However, with decreasing centrality or increasing harmonic order n, the vn values in Xe+Xe collisions become smaller than those in Pb+Pb collisions. The vn in Xe+Xe and Pb+Pb collisions are also compared as a function of the mean number of participating nucleons, (Npart), and the measured charged-particle multiplicity in the detector. The v3 values in Xe+Xe and Pb+Pb collisions are observed to be similar at the same (Npart) or multiplicity, but the other harmonics are significantly different. The ratios of the measured vn in Xe+Xe and Pb+Pb collisions, as a function of centrality, are also compared to theoretical calculations

    Complement component C4 structural variation and quantitative traits contribute to sex-biased vulnerability in systemic sclerosis

    Get PDF
    Altres ajuts: Fondo Europeo de Desarrollo Regional (FEDER), "A way of making Europe".Copy number (CN) polymorphisms of complement C4 play distinct roles in many conditions, including immune-mediated diseases. We investigated the association of C4 CN with systemic sclerosis (SSc) risk. Imputed total C4, C4A, C4B, and HERV-K CN were analyzed in 26,633 individuals and validated in an independent cohort. Our results showed that higher C4 CN confers protection to SSc, and deviations from CN parity of C4A and C4B augmented risk. The protection contributed per copy of C4A and C4B differed by sex. Stronger protection was afforded by C4A in men and by C4B in women. C4 CN correlated well with its gene expression and serum protein levels, and less C4 was detected for both in SSc patients. Conditioned analysis suggests that C4 genetics strongly contributes to the SSc association within the major histocompatibility complex locus and highlights classical alleles and amino acid variants of HLA-DRB1 and HLA-DPB1 as C4-independent signals
    corecore