27 research outputs found

    Neural Stem Cell Plasticity: Advantages in Therapy for the Injured Central Nervous System

    Get PDF
    The physiological and pathological properties of the neural germinal stem cell niche have been well-studied in the past 30 years, mainly in animals and within given limits in humans, and knowledge is available for the cyto-architectonic structure, the cellular components, the timing of development and the energetic maintenance of the niche, as well as for the therapeutic potential and the cross talk between neural and immune cells. In recent years we have gained detailed understanding of the potentiality of neural stem cells (NSCs), although we are only beginning to understand their molecular, metabolic, and epigenetic profile in physiopathology and, further, more can be invested to measure quantitatively the activity of those cells, to model in vitro their therapeutic responses or to predict interactions in silico. Information in this direction has been put forward for other organs but is still limited in the complex and very less accessible context of the brain. A comprehensive understanding of the behavior of endogenous NSCs will help to tune or model them toward a desired response in order to treat complex neurodegenerative diseases. NSCs have the ability to modulate multiple cellular functions and exploiting their plasticity might make them into potent and versatile cellular drugs

    Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London

    The polymorphism L412F in TLR3 inhibits autophagy and is a marker of severe COVID-19 in males

    Get PDF
    The polymorphism L412F in TLR3 has been associated with several infectious diseases. However, the mechanism underlying this association is still unexplored. Here, we show that the L412F polymorphism in TLR3 is a marker of severity in COVID-19. This association increases in the sub-cohort of males. Impaired macroautophagy/autophagy and reduced TNF/TNFα production was demonstrated in HEK293 cells transfected with TLR3L412F-encoding plasmid and stimulated with specific agonist poly(I:C). A statistically significant reduced survival at 28 days was shown in L412F COVID-19 patients treated with the autophagy-inhibitor hydroxychloroquine (p = 0.038). An increased frequency of autoimmune disorders such as co-morbidity was found in L412F COVID-19 males with specific class II HLA haplotypes prone to autoantigen presentation. Our analyses indicate that L412F polymorphism makes males at risk of severe COVID-19 and provides a rationale for reinterpreting clinical trials considering autophagy pathways. Abbreviations: AP: autophagosome; AUC: area under the curve; BafA1: bafilomycin A1; COVID-19: coronavirus disease-2019; HCQ: hydroxychloroquine; RAP: rapamycin; ROC: receiver operating characteristic; SARS-CoV-2: severe acute respiratory syndrome coronavirus 2; TLR: toll like receptor; TNF/TNF-α: tumor necrosis factor

    Surgical site infection after gastrointestinal surgery in high-income, middle-income, and low-income countries: a prospective, international, multicentre cohort study

    Get PDF
    Background: Surgical site infection (SSI) is one of the most common infections associated with health care, but its importance as a global health priority is not fully understood. We quantified the burden of SSI after gastrointestinal surgery in countries in all parts of the world. Methods: This international, prospective, multicentre cohort study included consecutive patients undergoing elective or emergency gastrointestinal resection within 2-week time periods at any health-care facility in any country. Countries with participating centres were stratified into high-income, middle-income, and low-income groups according to the UN's Human Development Index (HDI). Data variables from the GlobalSurg 1 study and other studies that have been found to affect the likelihood of SSI were entered into risk adjustment models. The primary outcome measure was the 30-day SSI incidence (defined by US Centers for Disease Control and Prevention criteria for superficial and deep incisional SSI). Relationships with explanatory variables were examined using Bayesian multilevel logistic regression models. This trial is registered with ClinicalTrials.gov, number NCT02662231. Findings: Between Jan 4, 2016, and July 31, 2016, 13 265 records were submitted for analysis. 12 539 patients from 343 hospitals in 66 countries were included. 7339 (58·5%) patient were from high-HDI countries (193 hospitals in 30 countries), 3918 (31·2%) patients were from middle-HDI countries (82 hospitals in 18 countries), and 1282 (10·2%) patients were from low-HDI countries (68 hospitals in 18 countries). In total, 1538 (12·3%) patients had SSI within 30 days of surgery. The incidence of SSI varied between countries with high (691 [9·4%] of 7339 patients), middle (549 [14·0%] of 3918 patients), and low (298 [23·2%] of 1282) HDI (p < 0·001). The highest SSI incidence in each HDI group was after dirty surgery (102 [17·8%] of 574 patients in high-HDI countries; 74 [31·4%] of 236 patients in middle-HDI countries; 72 [39·8%] of 181 patients in low-HDI countries). Following risk factor adjustment, patients in low-HDI countries were at greatest risk of SSI (adjusted odds ratio 1·60, 95% credible interval 1·05–2·37; p=0·030). 132 (21·6%) of 610 patients with an SSI and a microbiology culture result had an infection that was resistant to the prophylactic antibiotic used. Resistant infections were detected in 49 (16·6%) of 295 patients in high-HDI countries, in 37 (19·8%) of 187 patients in middle-HDI countries, and in 46 (35·9%) of 128 patients in low-HDI countries (p < 0·001). Interpretation: Countries with a low HDI carry a disproportionately greater burden of SSI than countries with a middle or high HDI and might have higher rates of antibiotic resistance. In view of WHO recommendations on SSI prevention that highlight the absence of high-quality interventional research, urgent, pragmatic, randomised trials based in LMICs are needed to assess measures aiming to reduce this preventable complication

    Genetic mechanisms of critical illness in COVID-19.

    Get PDF
    Host-mediated lung inflammation is present1, and drives mortality2, in the critical illness caused by coronavirus disease 2019 (COVID-19). Host genetic variants associated with critical illness may identify mechanistic targets for therapeutic development3. Here we report the results of the GenOMICC (Genetics Of Mortality In Critical Care) genome-wide association study in 2,244 critically ill patients with COVID-19 from 208 UK intensive care units. We have identified and replicated the following new genome-wide significant associations: on chromosome 12q24.13 (rs10735079, P = 1.65 × 10-8) in a gene cluster that encodes antiviral restriction enzyme activators (OAS1, OAS2 and OAS3); on chromosome 19p13.2 (rs74956615, P = 2.3 × 10-8) near the gene that encodes tyrosine kinase 2 (TYK2); on chromosome 19p13.3 (rs2109069, P = 3.98 ×  10-12) within the gene that encodes dipeptidyl peptidase 9 (DPP9); and on chromosome 21q22.1 (rs2236757, P = 4.99 × 10-8) in the interferon receptor gene IFNAR2. We identified potential targets for repurposing of licensed medications: using Mendelian randomization, we found evidence that low expression of IFNAR2, or high expression of TYK2, are associated with life-threatening disease; and transcriptome-wide association in lung tissue revealed that high expression of the monocyte-macrophage chemotactic receptor CCR2 is associated with severe COVID-19. Our results identify robust genetic signals relating to key host antiviral defence mechanisms and mediators of inflammatory organ damage in COVID-19. Both mechanisms may be amenable to targeted treatment with existing drugs. However, large-scale randomized clinical trials will be essential before any change to clinical practice

    Characterization of immune responses in the meninges

    No full text
    Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS), which is characterized by plaque-like demyelination in both white and grey matter and diffuse neurodegeneration. A T cell-driven autoimmune response against CNS antigens is the initiating event in the MS pathogenesis, as demonstrated in the animal model of MS, experimental autoimmune encephalomyelitis (EAE). In EAE, CNS-reactive T cells reach the CNS through pial vessels and accumulate in the leptomeninges, from where they invade the CNS parenchyma. Also in human MS, the leptomeninges were shown to be a site of inflammation, and their involvement correlates with disease severity. The role of the leptomeninges as a crucial checkpoint for the initiation of the disease has been therefore well documented. On the other hand, it remains unknown whether the outer meningeal layers, i.e. the dura mater, can contribute to the development of neuro-inflammation in EAE and be a site for T-cell trafficking to and from the CNS. Moreover, it has not been investigated whether CNS-invading T cells can also possibly leave the CNS via the dura. Recent studies proposed that the dura might represent an exit route for cells and solutes from the CNS, which could travel to the deep cervical lymph nodes via the dura lymphatics. In this work we show that, unlike the leptomeninges, the dura is largely spared by the neuro-inflammatory process of EAE. We were able to identify several properties of the dura which may account for its marginal involvement. First, dura vessels were not permissive to T cell trafficking due to the lower expression of ligands that are necessary for the adhesion of effector CNS-reactive T cells. Further, activation of T cells in the dura during EAE was lower when compared to the leptomeninges and prevented the formation of a local inflammatory process. This was not due to intrinsic defects in T cells reaching the dura, nor to incompetence of the dura antigen presenting cells (APCs) in activating the T cells. In fact, when inflammation was induced in the dura, T cells readily accumulated there. Instead, the low activation of CNS-reactive T cells in the dura was due to the low availability of the cognate antigen: dura APCs failed to spontaneously present myelin or neuronal antigens to autoreactive T cells, while APCs of the leptomeninges or CNS parenchyma were able to spontaneously reactivate CNS-reactive T cells. We also found that trafficking of CNS-reactive T cells through the lymphatic vessels of the dura and deep cervical lymph nodes is very limited during EAE. More importantly, we did not detect neither antigen drainage nor T cell activation in these structures. Consequently, depletion of the lymphatic system did not have any effect on EAE clinical course or immune cell infiltration in the CNS. These data allowed us to conclude that the dura lymphatics and deep cervical lymph nodes play a marginal role, if any, in EAE development and severity. In conclusion, this work highlights the uneven involvement of the meningeal compartments to the neuro-inflammatory process of EAE. Although the dura possesses all the cellular and anatomical components to mount an effective immune response, T cell trafficking and activation during EAE is functionally confined to the leptomeninges, where endothelial vessels are permissive to T cell adhesion and local APCs can process and present CNS antigens.2022-07-0

    Angiopoietin-2 blockade ameliorates autoimmune neuroinflammation by inhibiting leukocyte recruitment into the CNS

    Get PDF
    Angiopoietin-2 (Ang2), a ligand of the endothelial Tie2 tyrosine kinase, is involved in vascular inflammation and leakage in critically ill patients. However, the role of Ang2 in demyelinating central nervous system (CNS) autoimmune diseases is unknown. Here, we report that Ang2 is critically involved in the pathogenesis of experimental autoimmune encephalomyelitis (EAE), a rodent model of multiple sclerosis. Ang2 expression was induced in CNS autoimmunity, and transgenic mice overexpressing Ang2 specifically in endothelial cells (ECs) developed a significantly more severe EAE. In contrast, treatment with Ang2-blocking Abs ameliorated neuroinflammation and decreased spinal cord demyelination and leukocyte infiltration into the CNS. Similarly, Ang2-binding and Tie2-activating Ab attenuated the development of CNS autoimmune disease. Ang2 blockade inhibited expression of EC adhesion molecules, improved blood-brain barrier integrity, and decreased expression of genes involved in antigen presentation and proinflammatory responses of microglia and macrophages, which was accompanied by inhibition of α5β1 integrin activation in microglia. Taken together, our data suggest that Ang2 provides a target for increasing Tie2 activation in ECs and inhibiting proinflammatory polarization of CNS myeloid cells via α5β1 integrin in neuroinflammation. Thus, Ang2 targeting may serve as a therapeutic option for the treatment of CNS autoimmune disease.Peer reviewe

    Distinct roles of the meningeal layers in CNS autoimmunity

    No full text
    The meninges, comprising the leptomeninges (pia and arachnoid layers) and the pachymeninx (dura layer), participate in central nervous system (CNS) autoimmunity, but their relative contributions remain unclear. Here we report on findings in animal models of CNS autoimmunity and in patients with multiple sclerosis, where, in acute and chronic disease, the leptomeninges were highly inflamed and showed structural changes, while the dura mater was only marginally affected. Although dural vessels were leakier than leptomeningeal vessels, effector T cells adhered more weakly to the dural endothelium. Furthermore, local antigen-presenting cells presented myelin and neuronal autoantigens less efficiently, and the activation of autoreactive T cells was lower in dural than leptomeningeal layers, preventing local inflammatory processes. Direct antigen application was required to evoke a local inflammatory response in the dura. Together, our data demonstrate an uneven involvement of the meningeal layers in CNS autoimmunity, in which effector T cell trafficking and activation are functionally confined to the leptomeninges, while the dura remains largely excluded from CNS autoimmune processes. This work shows a distinct involvement of the meningeal layers in CNS autoimmunity. In animal models and in patients with multiple sclerosis, the leptomeninges were highly inflamed and showed structural changes, while the dura was only marginally affected.Peer reviewe

    Neural stem cells derived from iPSCs represent a safe and effective source for stem cell therapy in experimental autoimmune encephalomyelitis

    No full text
    Neural stem cell (NSCs) transplantation is a promising therapy for Multiple Sclerosis (MS). The clinical translation of such approach is limited by the lack of expandable autologous precursors. Induced pluripotent stem cells (iPSCs) may overcome this limitation. In our work we investigated whether the transplantation of NSCs derived from iPSCs (NS iPSCs) could represent a safe and effective therapeutic strategy in a mouse model of MS, namely experimental autoimmune encephalomyelitis (EAE). Methods: NS iPSCs were derived from iPSCs obtained by lentiviral reprogramming of mouse fibroblasts. EAE was induced in C57/BL6 mice by subcutaneous immunization with myelin oligodendrocyte glycoprotein (MOG)35-55. At 25 days post immunization (dpi), EAE mice were intrathecally transplanted with GFP-labelled NS iPSCs. Neuropathology was assessed at 40 and 80 dpi while the influence of NS iPSCs on remyelination was further evaluated in vitro on primary oligodendrocyte precursor cell (OPC) cultures. Results: Upon transplantation in EAE mice, NS iPSCs did not induce any tumour formation and significantly reduced clinical severity, demyelination, axonal loss and neuroinflammation when compared to shamtreatment. Since transplanted NS iPSCs remained undifferentiated in close contact with perivascular inflammatory infiltrates, we investigated whether the inflammatory environment could induce NS iPSCs to promote endogenous repair mechanisms. Indeed we observed that, in vitro, the conditioned medium of NS iPSCs – challenged with inflammatory cytokines (IFNγ and TNFα) – markedly increased survival and differentiation of OPC primary cultures. This effect was not dependent on IFNγ or TNFα, as these cytokines alone were not able to sustain OPC survival. Conclusions: Our work provides the first evidence of the safety and efficacy of NS iPSCs in EAE. We showed that transplanted NS iPSCs exert their therapeutic bystander effect by persisting undifferentiated near the perivascular infiltrate. In vitro experiments suggest that the inflammatory environment could induce NS iPSC to secrete a variety of molecules that might promote endogenous remyelination
    corecore