87 research outputs found

    Metformin Preconditioning and Postconditioning to Reduce Ischemia Reperfusion Injury in an IsolatedEx VivoRat and Porcine Kidney Normothermic Machine Perfusion Model

    Get PDF
    Metformin may act renoprotective prior to kidney transplantation by reducing ischemia-reperfusion injury (IRI). This study examined whether metformin preconditioning and postconditioning duringex vivonormothermic machine perfusion (NMP) of rat and porcine kidneys affect IRI. In the rat study, saline or 300 mg/kg metformin was administered orally twice on the day before nephrectomy. After 15 minutes of warm ischemia, kidneys were preserved with static cold storage for 24 hours. Thereafter, 90 minutes of NMP was performed with the addition of saline or metformin (30 or 300 mg/L). In the porcine study, after 30 minutes of warm ischemia, kidneys were preserved for 3 hours with oxygenated hypothermic machine perfusion. Subsequently, increasing doses of metformin were added during 4 hours of NMP. Metformin preconditioning of rat kidneys led to decreased injury perfusate biomarkers and reduced proteinuria. Postconditioning of rat kidneys resulted, dose-dependently, in less tubular cell necrosis and vacuolation. Heat shock protein 70 expression was increased in metformin-treated porcine kidneys. In all studies, creatinine clearance was not affected. In conclusion, both metformin preconditioning and postconditioning can be done safely and improved rat and porcine kidney quality. Because the effects are minor, it is unknown which strategy might result in improved organ quality after transplantation

    Significant reduction in heart rate variability is a feature of acute decompensation of cirrhosis and predicts 90-day mortality

    Get PDF
    Background: Heart rate variability (HRV) is reduced in cirrhosis and in conditions of systemic inflammation. Whether HRV is associated with cirrhosis decompensation and development of acute‐on‐chronic liver failure (ACLF) is unknown. // Aims: To (a) validate wireless remote HRV monitoring in cirrhosis decompensation; (b) determine if severely reduced HRV is a surrogate for inflammation and progression of cirrhosis decompensation; (c) assess if measuring HRV determines prognosis in cirrhosis decompensation. // Methods: One hundred and eleven patients at risk of cirrhosis decompensation at two clinical sites were monitored for HRV. Standard deviation of all normal beat‐beat intervals (SDNN) reflecting HRV was assessed using remote monitoring (Isansys Lifetouch) and/or Holter ECG recording. Clinical outcomes and major prognostic scores were recorded during 90‐day follow‐up. // Results: Reduced HRV denoted by lower baseline SDNN, correlated with severity of decompensation (median 14 (IQR 11‐23) vs 33 (25‐42); P < 0.001, decompensated patients vs stable outpatient cirrhosis). Furthermore, SDNN was significantly lower in patients developing ACLF compared to those with only decompensation (median 10 (IQR9‐12) vs 16 (11‐24); P = 0.02), and correlated inversely with MELD and Child‐Pugh scores, and C‐reactive protein (all P < 0.0001) and white cell count (P < 0.001). SDNN predicted disease progression on repeat measures and appeared an independent predictor of 90‐day mortality (12 patients). An SDNN cut‐off of 13.25 ms had a 98% negative predictive value. // Conclusions: This study demonstrates that remote wireless HRV monitoring identifies cirrhosis patients at high risk of developing ACLF and death, and suggests such monitoring might guide the need for early intervention in such patients. Clinical Trial number: NIHR clinical research network CPMS ID 4949

    Increasing metformin concentrations and its excretion in both rat and porcine ex vivo normothermic kidney perfusion model

    Get PDF
    INTRODUCTION: Metformin can accumulate and cause lactic acidosis in patients with renal insufficiency. Metformin is known to inhibit mitochondria, while renal secretion of the drug by proximal tubules indirectly requires energy. We investigated whether addition of metformin before or during ex vivo isolated normothermic machine perfusion (NMP) of porcine and rat kidneys affects its elimination.RESEARCH DESIGN AND METHODS: First, Lewis rats were pretreated with metformin or saline the day before nephrectomy. Subsequently, NMP of the kidney was performed for 90 min. Metformin was added to the perfusion fluid in one of three different concentrations (none, 30 mg/L or 300 mg/L). Second, metformin was added in increasing doses to the perfusion fluid during 4 hours of NMP of porcine kidneys. Metformin concentration was determined in the perfusion fluid and urine by liquid chromatography-tandem mass spectrometry.RESULTS: Metformin clearance was approximately 4-5 times higher than creatinine clearance in both models, underscoring secretion of the drug. Metformin clearance at the end of NMP in rat kidneys perfused with 30 mg/L was lower than in metformin pretreated rats without the addition of metformin during perfusion (both p≤0.05), but kidneys perfused with 300 mg/L trended toward lower metformin clearance (p=0.06). Creatinine clearance was not different between treatment groups. During NMP of porcine kidneys, metformin clearance peaked at 90 min of NMP (18.2±13.7 mL/min/100 g). Thereafter, metformin clearance declined, while creatinine clearance remained stable. This observation can be explained by saturation of metformin transporters with a Michaelis-Menten constant (95% CI) of 23.0 (10.0 to 52.3) mg/L.CONCLUSIONS: Metformin was secreted during NMP of both rat and porcine kidneys. Excretion of metformin decreased under increasing concentrations of metformin, which might be explained by saturation of metformin transporters rather than a self-inhibitory effect. It remains unknown whether a self-inhibitory effect contributes to metformin accumulation in humans with longer exposure times.</p

    Diffuse reflectance spectroscopy accurately quantifies various degrees of liver steatosis in murine models of fatty liver disease

    Get PDF
    Background: A real-time objective evaluation for the extent of liver steatosis during liver transplantation is currently not available. Diffuse reflectance spectroscopy (DRS) rapidly and accurately assesses the extent of steatosis in human livers with mild steatosis. However, it is yet unknown whether DRS accurately quantifies moderate/severe steatosis and is able to distinguish between micro-and macrovesicular steatosis. Methods: C57BL/6JolaHsd mice were fed wit a choline-deficient l-amino acid-defined diet (CD-AA) or a choline-sufficient l-amino acid-defined control diet (CS-AA) for 3, 8, and 20 weeks. In addition B6. V-Lepob/OlaHsd (ob/ob) mice and their lean controls were studied. A total of 104 DRS measurements were performed in liver tissue ex vivo. The degree of steatosis was quantified from the DRS data and compared with histopathological analysis. Results: When assessed by histology, livers of mice fed with a CD-AA and CS-AA diet displayed macrovesicular steatosis (range 0-74 %), ob/ob mice revealed only microvesicular steatosis (range 75-80 %), and their lean controls showed no steatosis. The quantification of steatosis by DRS correlated well with pathology (correlation of 0.76 in CD-AA/CS-AA fed mice and a correlation of 0.75 in ob/ob mice). DRS spectra did not distinguish between micro-and macrovesicular steatosis. In samples from CD-AA/CS-AA fed mice, the DRS was able to distinguish between mild and moderate/severe steatosis with a sensitivity and specificity of 86 and 81 %, respectively. Conclusion: DRS can quantify steatosis with good agreement to histopathological analysis. DRS may be useful for real-time objective evaluation of liver steatosis during liver transplantation, especially to differentiate between mild and moderate/severe steatosis

    Search for scalar leptoquarks and T-odd quarks in the acoplanar jet topology using 2.5 fb-1 of ppbar collision data at sqrt(s)=1.96 TeV

    Get PDF
    A search for new physics in the acoplanar jet topology has been performed in 2.5 fb-1 of data from ppbar collisions at sqrt(s)=1.96 TeV, recorded by the D0 detector at the Fermilab Tevatron Collider. The numbers of events with exactly two acoplanar jets and missing transverse energy are in good agreement with the standard model expectations. The result of this search has been used to set a lower mass limit of 205 GeV at the 95% C.L. on the mass of a scalar leptoquark when this particle decays exclusively into a quark and a neutrino. In the framework of the Little Higgs model with T-parity, limits have also been obtained on the T-odd quark mass as a function of the T-odd photon mass

    Genetic association study of QT interval highlights role for calcium signaling pathways in myocardial repolarization.

    Get PDF
    The QT interval, an electrocardiographic measure reflecting myocardial repolarization, is a heritable trait. QT prolongation is a risk factor for ventricular arrhythmias and sudden cardiac death (SCD) and could indicate the presence of the potentially lethal mendelian long-QT syndrome (LQTS). Using a genome-wide association and replication study in up to 100,000 individuals, we identified 35 common variant loci associated with QT interval that collectively explain ∼8-10% of QT-interval variation and highlight the importance of calcium regulation in myocardial repolarization. Rare variant analysis of 6 new QT interval-associated loci in 298 unrelated probands with LQTS identified coding variants not found in controls but of uncertain causality and therefore requiring validation. Several newly identified loci encode proteins that physically interact with other recognized repolarization proteins. Our integration of common variant association, expression and orthogonal protein-protein interaction screens provides new insights into cardiac electrophysiology and identifies new candidate genes for ventricular arrhythmias, LQTS and SCD

    Towards host-directed therapies for tuberculosis

    Get PDF
    The treatment of tuberculosis is based on combinations of drugs that directly target Mycobacterium tuberculosis. A new global initiative is now focusing on a complementary approach of developing adjunct host-directed therapies. Despite the availability of effective antibiotics for tuberculosis (TB) for the past half century, it remains an important global health problem; there are ~9 million active TB cases and ~1.5 million TB-induced deaths per year (see the World Health Organization (WHO) Global Tuberculosis Report in Further information). Health services around the world face major barriers to achieving optimal outcomes from current TB treatment regimens. These barriers include: the spread of multidrug-resistant TB (MDR-TB) and extensively drug-resistant TB (XDR-TB); complex and toxic treatment regimens for MDR-TB; HIV co-infection; pharmacokinetic interactions between TB drugs and antiretroviral drugs; relapse; permanent damage to lung and other tissues; long-term functional disability; immune reconstitution inflammatory syndrome (IRIS); and co-morbidity with non-communicable diseases such as diabetes and chronic obstructive airway diseases. Another fundamental problem is the long duration of TB drug treatment (6 months for drug-sensitive TB and at least 18 months for drug-resistant TB) to achieve a cure, owing to the presence of dormant Mycobacterium tuberculosis bacilli that are phenotypically resistant to current classes of anti-TB drugs, which can only target bacterial replication. There is therefore an urgent need for new TB treatments. However, the TB drug pipeline is thin1, 2. For the past 60 years, efforts to develop new treatments have focused on compounds and regimens that target M. tuberculosis directly. Recently, however, attention has focused on investigating a range of adjunct treatment interventions known as host-directed therapies (HDTs) that instead target the host response to infection. Here, we highlight the rationale for HDTs, the current portfolio of HDTs and their mechanisms of action, and a consortium-based approach to drive forward their evaluation in clinical trials

    Phenome-wide association analysis of LDL-cholesterol lowering genetic variants in PCSK9

    Get PDF
    Abstract: Background: We characterised the phenotypic consequence of genetic variation at the PCSK9 locus and compared findings with recent trials of pharmacological inhibitors of PCSK9. Methods: Published and individual participant level data (300,000+ participants) were combined to construct a weighted PCSK9 gene-centric score (GS). Seventeen randomized placebo controlled PCSK9 inhibitor trials were included, providing data on 79,578 participants. Results were scaled to a one mmol/L lower LDL-C concentration. Results: The PCSK9 GS (comprising 4 SNPs) associations with plasma lipid and apolipoprotein levels were consistent in direction with treatment effects. The GS odds ratio (OR) for myocardial infarction (MI) was 0.53 (95% CI 0.42; 0.68), compared to a PCSK9 inhibitor effect of 0.90 (95% CI 0.86; 0.93). For ischemic stroke ORs were 0.84 (95% CI 0.57; 1.22) for the GS, compared to 0.85 (95% CI 0.78; 0.93) in the drug trials. ORs with type 2 diabetes mellitus (T2DM) were 1.29 (95% CI 1.11; 1.50) for the GS, as compared to 1.00 (95% CI 0.96; 1.04) for incident T2DM in PCSK9 inhibitor trials. No genetic associations were observed for cancer, heart failure, atrial fibrillation, chronic obstructive pulmonary disease, or Alzheimer’s disease – outcomes for which large-scale trial data were unavailable. Conclusions: Genetic variation at the PCSK9 locus recapitulates the effects of therapeutic inhibition of PCSK9 on major blood lipid fractions and MI. While indicating an increased risk of T2DM, no other possible safety concerns were shown; although precision was moderate
    corecore