135 research outputs found

    Validation tests of the CMS TIB/TID structures

    Get PDF
    Tracker Inner Barrel half-cylinders and Tracker Inner Disks of the CMS tracker have been integrated in three INFN sites. Integrated structures are submitted to an extensive set of tests whose main aim is to validate the functioning of the structures in CMS-like conditions. The tests have furthermore proven to be a great opportunity to study several aspects of the performance in detail. In this note the tests are described in some detail and an overview of the results is presented

    An underground Sagnac gyroscope with sub-prad/s rotation rate sensitivity: toward General Relativity tests on Earth

    Get PDF
    Measuring in a single location on Earth its angular rotation rate with respect to the celestial frame, with a sensitivity enabling access to the tiny Lense-Thirring effect is an extremely challenging task. GINGERINO is a large frame ring laser gyroscope, operating free running and unattended inside the underground laboratory of the Gran Sasso, Italy. The main geodetic signals, i.e., Annual and Chandler wobbles, daily polar motion and Length of the Day, are recovered from GINGERINO data using standard linear regression methods, demonstrating a sensitivity better than 1 prad/s, therefore close to the requirements for an Earth-based Lense-Thirring test.Comment: 7 pages, 5 figure

    Colorectal surgery in Italy during the Covid19 outbreak: a survey from the iCral study group

    Get PDF
    Background The COVID19 pandemic had a deep impact on healthcare facilities in Italy, with profound reorganization of surgical activities. The Italian ColoRectal Anastomotic Leakage (iCral) study group collecting 43 Italian surgical centers experienced in colorectal surgery from multiple regions performed a quick survey to make a snapshot of the current situation. Methods A 25-items questionnaire was sent to the 43 principal investigators of the iCral study group, with questions regard- ing qualitative and quantitative aspects of the surgical activity before and after the COVID19 outbreak. Results Two-thirds of the centers were involved in the treatment of COVID19 cases. Intensive care units (ICU) beds were partially or totally reallocated for the treatment of COVID19 cases in 72% of the hospitals. Elective colorectal surgery for malignancy was stopped or delayed in nearly 30% of the centers, with less than 20% of them still scheduling elective colo- rectal resections for frail and comorbid patients needing postoperative ICU care. A significant reduction of the number of colorectal resections during the time span from January to March 2020 was recorded, with significant delay in treatment in more than 50% of the centers. Discussion Our survey confirms that COVID19 outbreak is severely affecting the activity of colorectal surgery centers partici- pating to iCral study group. This could impact the activity of surgical centers for many months after the end of the emergency

    GINGER

    Full text link
    In this paper, we outline the scientific objectives, the experimental layout, and the collaborations envisaged for the GINGER (Gyroscopes IN GEneral Relativity) project. The GINGER project brings together different scientific disciplines aiming at building an array of Ring Laser Gyroscopes (RLGs), exploiting the Sagnac effect, to measure continuously, with sensitivity better than picorad/ s, large bandwidth (ca. 1 kHz), and high dynamic range, the absolute angular rotation rate of the Earth. In the paper, we address the feasibility of the apparatus with respect to the ambitious specifications above, as well as prove how such an apparatus, which will be able to detect strong Earthquakes, very weak geodetic signals, as well as general relativity effects like Lense-Thirring and De Sitter, will help scientific advancements in Theoretical Physics, Geophysics, and Geodesy, among other scientific fields.Comment: 21 pages, 9 figure

    Tracker Operation and Performance at the Magnet Test and Cosmic Challenge

    Get PDF
    During summer 2006 a fraction of the CMS silicon strip tracker was operated in a comprehensive slice test called the Magnet Test and Cosmic Challenge (MTCC). At the MTCC, cosmic rays detected in the muon chambers were used to trigger the readout of all CMS sub-detectors in the general data acquisition system and in the presence of the 4 T magnetic field produced by the CMS superconducting solenoid. This document describes the operation of the Tracker hardware and software prior, during and after data taking. The performance of the detector as resulting from the MTCC data analysis is also presented

    Virgo gravitational wave detector: Results and perspectives

    Get PDF
    The Virgo detector reached during the past science run a sensitivity very close to the design one. During the last year the detector has been improved by suspending the main interferometer mirrors with monolithic fibers, with the goal of reducing the thermal noise contribution and testing the new technology. At the same time the design of the next detector improvements are on-going and they will be implemented during the construction of Advanced Virgo

    Trapping in irradiated p-on-n silicon sensors at fluences anticipated at the HL-LHC outer tracker

    Get PDF
    The degradation of signal in silicon sensors is studied under conditions expected at the CERN High-Luminosity LHC. 200 μ\mum thick n-type silicon sensors are irradiated with protons of different energies to fluences of up to 310153 \cdot 10^{15} neq/cm2^2. Pulsed red laser light with a wavelength of 672 nm is used to generate electron-hole pairs in the sensors. The induced signals are used to determine the charge collection efficiencies separately for electrons and holes drifting through the sensor. The effective trapping rates are extracted by comparing the results to simulation. The electric field is simulated using Synopsys device simulation assuming two effective defects. The generation and drift of charge carriers are simulated in an independent simulation based on PixelAV. The effective trapping rates are determined from the measured charge collection efficiencies and the simulated and measured time-resolved current pulses are compared. The effective trapping rates determined for both electrons and holes are about 50% smaller than those obtained using standard extrapolations of studies at low fluences and suggests an improved tracker performance over initial expectations

    Supplement: "Localization and broadband follow-up of the gravitational-wave transient GW150914" (2016, ApJL, 826, L13)

    Get PDF
    This Supplement provides supporting material for Abbott et al. (2016a). We briefly summarize past electromagnetic (EM) follow-up efforts as well as the organization and policy of the current EM follow-up program. We compare the four probability sky maps produced for the gravitational-wave transient GW150914, and provide additional details of the EM follow-up observations that were performed in the different bands
    corecore