130 research outputs found

    The Neural Basis for Spatial Relations

    Get PDF
    Studies in semantics traditionally focus on knowledge of objects. By contrast, less is known about how objects relate to each other. In an fMRI study, we tested the hypothesis that the neural processing of categorical spatial relations between objects is distinct from the processing of the identity of objects. Attending to the categorical spatial relations compared with attending to the identity of objects resulted in greater activity in superior and inferior parietal cortices (especially on the left) and posterior middle frontal cortices bilaterally. In an accompanying lesion study, we tested the hypothesis that comparable areas would be necessary to represent categorical spatial relations and that the hemispheres differ in their biases to process categorical or coordinate spatial relations. Voxelbased lesion symptom mapping results were consistent with the fMRI observations. Damage to a network comprising left inferior frontal, supramarginal, and angular gyri resulted in behavioral impairment on categorical spatial judgments. Homologous right brain damage also produced such deficits, albeit less severely. The reverse pattern was observed for coordinate spatial processing. Right brain damage to the middle temporal gyrus produced more severe deficits than left hemisphere damage. Additional analyses suggested that some areas process both kinds of spatial relations conjointly and others distinctly. The left angular and inferior frontal gyrus processes coordinate spatial information over and above the categorical processing. The anterior superior temporal gyrus appears to process categorical spatial information uniquely. No areas within the right hemisphere processed categorical spatial information uniquely. Taken together, these findings suggest that the functional neuroanatomy of categorical and coordinate processing is more nuanced than implied by a simple hemispheric dichotomy

    The new Mobile Universal Lexicon Evaluation System (MULES): A test of rapid picture naming for concussion sized for the sidelines

    Get PDF
    © 2018 Objective: Measures of rapid automatized naming (RAN) have been used for over 50 years to capture vision-based aspects of cognition. The Mobile Universal Lexicon Evaluation System (MULES) is a test of rapid picture naming under investigation for detection of concussion and other neurological disorders. MULES was designed as a series of 54 grouped color photographs (fruits, random objects, animals) that integrates saccades, color perception and contextual object identification. Recent changes to the MULES test have been made to improve ease of use on the athletic sidelines. Originally an 11 × 17-inch single-sided paper, the test has been reduced to a laminated 8.5 × 11-inch double-sided version. We identified performance changes associated with transition to the new, MULES, now sized for the sidelines, and examined MULES on the sideline for sports-related concussion. Methods: We administered the new laminated MULES to a group of adult office volunteers as well as youth and collegiate athletes during pre-season baseline testing. Athletes with concussion underwent sideline testing after injury. Time scores for the new laminated MULES were compared to those for the larger version (big MULES). Results: Among 501 athletes and office volunteers (age 16 ± 7 years, range 6–59, 29% female), average test times at baseline were 44.4 ± 14.4 s for the new laminated MULES (n = 196) and 46.5 ± 16.3 s for big MULES (n = 248). Both versions were completed by 57 participants, with excellent agreement (p \u3c 0.001, linear regression, accounting for age). Age was a predictor of test times for both MULES versions, with longer times noted for younger participants (p \u3c 0.001). Among 6 athletes with concussion thus far during the fall sports season (median age 15 years, range 11–21) all showed worsening of MULES scores from pre-season baseline (median 4.0 s, range 2.1–16.4). Conclusion: The MULES test has been converted to an 11 × 8.5-inch laminated version, with excellent agreement between versions across age groups. Feasibly administered at pre-season and in an office setting, the MULES test shows preliminary evidence of capacity to identify athletes with sports-related concussion

    Effects of affective picture viewing on postural control

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Emotion theory holds that unpleasant events prime withdrawal actions, whereas pleasant events prime approach actions. Recent studies have suggested that passive viewing of emotion eliciting images results in postural adjustments, which become manifest as changes in body center of pressure (COP) trajectories. From those studies it appears that posture is modulated most when viewing pictures with negative valence. The present experiment was conducted to test the hypothesis that pictures with negative valence have a greater impact on postural control than neutral or positive ones. Thirty-four healthy subjects passively viewed a series of emotion eliciting images, while standing either in a bipedal or unipedal stance on a force plate. The images were adopted from the International Affective Picture System (IAPS). We analysed mean and variability of the COP and the length of the associated sway path as a function of emotion.</p> <p>Results</p> <p>The mean position of the COP was unaffected by emotion, but unipedal stance resulted in overall greater body sway than bipedal stance. We found a modest effect of emotion on COP: viewing pictures of mutilation resulted in a smaller sway path, but only in unipedal stance. We obtained valence and arousal ratings of the images with an independent sample of viewers. These subjects rated the unpleasant images as significantly less pleasant than neutral images, and the pleasant images as significantly more pleasant than neutral images. However, the subjects rated the images as overall less pleasant and less arousing than viewers in a closely comparable American study, pointing to unknown differences in viewer characteristics.</p> <p>Conclusion</p> <p>Overall, viewing emotion eliciting images had little effect on body sway. Our finding of a reduction in sway path length when viewing pictures of mutilation was indicative of a freezing strategy, i.e. fear bradycardia. The results are consistent with current knowledge about the neuroanatomical organization of the emotion system and the neural control of behavior.</p

    The Relationship between Amygdala Activation and Passive Exposure Time to an Aversive Cue during a Continuous Performance Task

    Get PDF
    The allocation of attention modulates negative emotional processing in the amygdala. However, the role of passive exposure time to emotional signals in the modulation of amygdala activity during active task performance has not been examined. In two functional Magnetic Resonance Imaging (fMRI) experiments conducted in two different groups of healthy human subjects, we examined activation in the amygdala due to cued anticipation of painful stimuli while subjects performed a simple continuous performance task (CPT) with either a fixed or a parametrically varied trial duration. In the first experiment (N = 16), engagement in the CPT during a task with fixed trial duration produced the expected attenuation of amygdala activation, but close analysis suggested that the attenuation occurred during the period of active engagement in CPT, and that amygdala activity increased proportionately during the remainder of each trial, when subjects were passively exposed to the pain cue. In the second experiment (N = 12), the duration of each trial was parametrically varied, and we found that amygdala activation was linearly related to the time of passive exposure to the anticipatory cue. We suggest that amygdala activation during negative anticipatory processing depends directly on the passive exposure time to the negative cue

    Hippocampal involvement in contextual modulation of fear extinction

    Full text link
    Extinction of fear conditioning in animals is an excellent model for the study of fear inhibition in humans. Substantial evidence has shown that extinction is a new learning process that is highly context-dependent. Several recovery effects (renewal, spontaneous recovery, and reinstatement) after extinction suggest that the contextual modulation of extinction is a critical behavioral mechanism underlying fear extinction. In addition, recent studies demonstrate a critical role for hippocampus in the context control of extinction. A growing body of evidence suggests that the hippocampus not only plays a role in contextual encoding and retrieval of fear extinction memories, but also interacts with other brain structures to regulate context-specificity of fear extinction. In this article, the authors will first discuss the fundamental behavioral features of the context effects of extinction and its underlying behavioral mechanisms. In the second part, the review will focus on the brain mechanisms for the contextual control of extinction. © 2007 Wiley-Liss, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/56147/1/20331_ftp.pd

    Tracking Down Abstract Linguistic Meaning: Neural Correlates of Spatial Frame of Reference Ambiguities in Language

    Get PDF
    This functional magnetic resonance imaging (fMRI) study investigates a crucial parameter in spatial description, namely variants in the frame of reference chosen. Two frames of reference are available in European languages for the description of small-scale assemblages, namely the intrinsic (or object-oriented) frame and the relative (or egocentric) frame. We showed participants a sentence such as “the ball is in front of the man”, ambiguous between the two frames, and then a picture of a scene with a ball and a man – participants had to respond by indicating whether the picture did or did not match the sentence. There were two blocks, in which we induced each frame of reference by feedback. Thus for the crucial test items, participants saw exactly the same sentence and the same picture but now from one perspective, now the other. Using this method, we were able to precisely pinpoint the pattern of neural activation associated with each linguistic interpretation of the ambiguity, while holding the perceptual stimuli constant. Increased brain activity in bilateral parahippocampal gyrus was associated with the intrinsic frame of reference whereas increased activity in the right superior frontal gyrus and in the parietal lobe was observed for the relative frame of reference. The study is among the few to show a distinctive pattern of neural activation for an abstract yet specific semantic parameter in language. It shows with special clarity the nature of the neural substrate supporting each frame of spatial reference

    Synaptic E3 Ligase SCRAPPER in Contextual Fear Conditioning: Extensive Behavioral Phenotyping of Scrapper Heterozygote and Overexpressing Mutant Mice

    Get PDF
    SCRAPPER, an F-box protein coded by FBXL20, is a subunit of SCF type E3 ubiquitin ligase. SCRAPPER localizes synapses and directly binds to Rab3-interacting molecule 1 (RIM1), an essential factor for synaptic vesicle release, thus it regulates neural transmission via RIM1 degradation. A defect in SCRAPPER leads to neurotransmission abnormalities, which could subsequently result in neurodegenerative phenotypes. Because it is likely that the alteration of neural transmission in Scrapper mutant mice affect their systemic condition, we have analyzed the behavioral phenotypes of mice with decreased or increased the amount of SCRAPPER. We carried out a series of behavioral test batteries for Scrapper mutant mice. Scrapper transgenic mice overexpressing SCRAPPER in the hippocampus did not show any significant difference in every test argued in this manuscript by comparison with wild-type mice. On the other hand, heterozygotes of Scrapper knockout [SCR (+/−)] mice showed significant difference in the contextual but not cued fear conditioning test. In addition, SCR (+/−) mice altered in some tests reflecting anxiety, which implies the loss of functions of SCRAPPER in the hippocampus. The behavioral phenotypes of Scrapper mutant mice suggest that molecular degradation conferred by SCRAPPER play important roles in hippocampal-dependent fear memory formation

    Spatial Language Processing in the Blind: Evidence for a Supramodal Representation and Cortical Reorganization

    Get PDF
    Neuropsychological and imaging studies have shown that the left supramarginal gyrus (SMG) is specifically involved in processing spatial terms (e.g. above, left of), which locate places and objects in the world. The current fMRI study focused on the nature and specificity of representing spatial language in the left SMG by combining behavioral and neuronal activation data in blind and sighted individuals. Data from the blind provide an elegant way to test the supramodal representation hypothesis, i.e. abstract codes representing spatial relations yielding no activation differences between blind and sighted. Indeed, the left SMG was activated during spatial language processing in both blind and sighted individuals implying a supramodal representation of spatial and other dimensional relations which does not require visual experience to develop. However, in the absence of vision functional reorganization of the visual cortex is known to take place. An important consideration with respect to our finding is the amount of functional reorganization during language processing in our blind participants. Therefore, the participants also performed a verb generation task. We observed that only in the blind occipital areas were activated during covert language generation. Additionally, in the first task there was functional reorganization observed for processing language with a high linguistic load. As the visual cortex was not specifically active for spatial contents in the first task, and no reorganization was observed in the SMG, the latter finding further supports the notion that the left SMG is the main node for a supramodal representation of verbal spatial relations

    The preparatory Set: A Novel Approach to Understanding Stress, Trauma, and the Bodymind Therapies

    Get PDF
    Basic to all motile life is a differential approach/avoid response to perceived features of environment. The stages of response are initial reflexive noticing and orienting to the stimulus, preparation, and execution of response. Preparation involves a coordination of many aspects of the organism: muscle tone, posture, breathing, autonomic functions, motivational/emotional state, attentional orientation, and expectations. The organism organizes itself in relation to the challenge. We propose to call this the preparatory set (PS). We suggest that the concept of the PS can offer a more nuanced and flexible perspective on the stress response than do current theories. We also hypothesize that the mechanisms of body-mind therapeutic and educational systems (BTES) can be understood through the PS framework. We suggest that the BTES, including meditative movement, meditation, somatic education, and the body-oriented psychotherapies, are approaches that use interventions on the PS to remedy stress and trauma. We discuss how the PS can be adaptive or maladaptive, how BTES interventions may restore adaptive PS, and how these concepts offer a broader and more flexible view of the phenomena of stress and trauma. We offer supportive evidence for our hypotheses, and suggest directions for future research. We believe that the PS framework will point to ways of improving the management of stress and trauma, and that it will suggest directions of research into the mechanisms of action of BTES
    corecore