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a b s t r a c t

Studying aversive behaviour is critical for understanding negative emotions and associated psy-

chopathologies. However a comprehensive picture of the mechanisms underlying aversion is lacking,

with associative learning theories focusing on Pavlovian reactions and decision-making theoretic

approaches on prospective functions. We propose a computational model of aversion that combines

goal-directed and Pavlovian forms of control into a unifying framework in which their relative impor-

tance is regulated by factors such as threat distance and controllability. Using simulations, we test

whether the model can reproduce available empirical findings and discuss its relevance to understanding

factors underlying negative emotions such as fear and anxiety. Furthermore, the specific method used to

construct the model permits a natural mapping from its components to brain structure and function. Our

model provides a basis for a unifying account of aversion that can guide empirical and interventional

study contexts.

� 2015 The Authors. Published by Elsevier B.V. This is an open access articleunder the CCBY license (http://

creativecommons.org/licenses/by/4.0/).

1. Introduction

Given their fundamental importance in evolution, the strategies

adopted by living organisms to manage danger have been exten-

sively studied. Early associative-learning theorists proposed that

aversive behaviour is guided by simple instrumental principles

prescribing that punishment diminishes the probability of per-

forming an action while avoidance of, and relief from, punishment

reinforces the probability of performing a similar action

(Dinsmoor, 2001; Rescorla & Solomon, 1967; Solomon & Brush,

1956; Thorndike, 1911). Bolles (1970) criticised this framework

arguing it was based on a wrong assumption that all actions in

the animal’s repertoire have the same prior chance of being

selected and instead argued that there are species-specific defen-

sive reactions, selected by evolution, which are preferentially acti-

vated and replaced by other responses only after repeated

punishments. This derived from particular observations, for exam-

ple the fact that rats usually exhibit a specific freezing response to

fearful stimuli and can learn only a small set of responses to avoid

punishment, with each response requiring a certain amount of

learning experience (Bolles, 1970).

More recent findings argue even more strongly against a central

role for instrumental learning as they show that in some cases

repeated experience of electric shock increases (rather than dimin-

ishing) the probability of performing a pre-specified response such

as freezing (Fanselow & Lester, 1988). These data highlight the

existence of a set of innate (i.e., Pavlovian) aversive reactions eli-

cited by certain conditions of shock temporal delay, as rats froze

immediately after the presentation of a conditioned stimulus,

while just before and after a shock they exhibited a fight/flight

reaction consistent in jumping, biting and vocalizing (Fendt &

Fanselow, 1999). A similar response pattern was observed when

manipulating the spatial, instead of temporal, threat distance,

together with the observation that rats engage in cautious explo-

ration (described as risk-assessment behaviour) when a threat is

not actually present but is potential, such as in a novel context

or where a predator has been previously seen (Blanchard &

Blanchard, 1989).

Another important modulator of aversive behaviour is control-

lability. In a classic experiment on learned helplessness (Seligman

& Maier, 1967), one group of dogs learnt to press a lever to termi-

nate non-signalled electric shocks whereas a second group

received shocks exactly contemporaneously to the first group but

had no actual control on shock delivery, a procedure ensuring pun-

ishment was matched in terms of number, intensity and time

across groups. After the learning phase, the two groups were tested
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in a new environment in which a jumping response could be learnt

to avoid shocks. Here the dogs trained with controllable punish-

ments learnt the instrumental safety response whereas the other

group failed to learn this response. The finding is widely inter-

preted as indicative of a generalisation of uncontrollability beliefs

from one context to the other (Maier & Seligman, 1976) or, alterna-

tively, as due to the fact that uncontrollable punishments increase

stereotypical fear responses (e.g., freezing) which interfere with

the performance of alternative actions (Desiderato & Newman,

1971; Mineka, Cook, & Miller, 1984).

Altogether, associative learning theories view aversive beha-

viour as determined by a set of stimulus–response associations,

either shaped by experience (i.e., instrumental) or innate (i.e.,

Pavlovian), and modulated by temporal/spatial threat distance

and controllability. A striking example of Pavlovian–instrumental

interaction is negative auto-maintenance (Williams & Williams,

1969), in which pigeons trained with a light-food association exhi-

bit a conditioned response of pecking the light even when, in a test

phase, food is delivered solely as a consequence of non-responding.

These and similar findings represent the building blocks of the idea

that flexible instrumental mechanisms are activated together with

rigid Pavlovian tendencies that usually facilitate performance but,

given their rigidity, in some circumstances have maladaptive con-

sequences (Dayan, Niv, Seymour, & Daw, 2006; Guitart-Masip,

Duzel, Dolan, & Dayan, 2014; Moutoussis, Bentall, Williams, &

Dayan, 2008; Rigoli, Pavone, & Pezzulo, 2012). However, several

fundamental theoretical aspects remain to be clarified. First, in

which conditions are instrumental rather than Pavlovian responses

elicited? Second, what is the specific role of threat distance and

controllability in modulating aversive behaviour? Third, dating

back to Tolman’s notion of latent learning (1932), research in the

appetitive domain has investigated a form of instrumental beha-

viour guided by goal-directed processes which are based on

stimulus-action-outcome associations, but the part played by

these mechanisms in the aversive domain remains unclear

(Balleine & Dickinson, 1998; Dickinson & Balleine, 1994).

Here, we connect associative learning theories of aversion and

theoretical models of the instrumental–Pavlovian interaction with

a specific focus on goal-directed mechanisms. We propose that

threat distance and perceived controllability modulate a goal-

directed/Pavlovian relationship by increasing the weight one con-

troller exerts over the other. Specifically, we argue that proximal

threat distance and low controllability boost a Pavlovian weight,

based on observations of increased freezing and fight/flight

response (hallmarks of Pavlovian control) in this condition. Con-

versely, larger threat distance and higher controllability boost

goal-directed mechanisms, a process we interpret as underlying

risk-assessment behaviour observed in rodents under potential

threats. We formalise these intuitions in a biologically plausible

computational model and then test whether this model can repro-

duce reported empirical data.

2. A model of the goal-directed/Pavlovian interaction in

aversion

We introduce a theoretical model whose aim is to describe the

computational processes underlying the expression of aversive

behaviour. We highlight a link to a set of neural network models

that combine reinforcement learning principles within a biologi-

cally plausible implementation (e.g., Frank, Seeberger, & O’Reilly,

2004; Miller & Cohen, 2001; Reynolds & O’Reilly, 2009). An advan-

tage of this model is that it can be linked to neurobiology given

that each component is mapped to a specific neural structure or

set of structures. The model rests on a distinction between goal-

directed and Pavlovian control (Balleine & Dickinson, 1998;

Dayan et al., 2006; Guitart-Masip et al., 2014; Rigoli et al., 2012),

where each system uses a specific algorithm to compute an esti-

mate of the expected value linked to a given context. The Pavlovian

controller learns to associate expected values directly with stimuli,

depending on stimulus-punishment contingencies, whereas the

goal-directed controller learns to associate expected values with

stimulus-action-outcome associations. Eventually each controller

selects an action. For a given stimulus, the Pavlovian controller

always chooses the same innate reaction, whereas the goal-

directed system can flexibly choose different actions according to

a softmax rule (Daw, O’Doherty, Dayan, Seymour, & Dolan, 2006).

Finally, the innate Pavlovian response and the action selected by

the goal-directed controller are activated proportionally to the

weight of the corresponding controller, and these actions cooper-

ate or compete depending on their compatibility. Threat distance

and perceived controllability are the key variables that modulate

the engagement of a controller. The influence of threat distance

is represented as a boosting effect on goal-directed activation as

a function of increasing distance. The role of perceived controllabil-

ity is more complex as this variable is factorized into two subcom-

ponents, the first dependent on controllability related to a specific

stimulus and the second on a generalised belief independent of

stimuli.

More specifically (see Appendix A and Fig. 1), the model

describes an agent’s computations during aversive conditions as

emergent from different subsystems organised in layers each com-

posed of different nodes. An input from the environment is repre-

sented as the activation of a specific node in a Perceptive layer

(PERC). PERC activates a goal-directed subsystem composed of dif-

ferent layers, namely Action (ACT), Expected Outcome (OUT),

Expected Goal-directed Value (GDV), Working Memory (WM)

and Goal-directed Plan (GDP). ACT, representing the current simu-

lated action during planning, encodes each action as activation of a

specific node. PERC and ACT are connected to OUT, which repre-

sents likely future states of the world in which each node repre-

sents an expected outcome. A given combination of PERC and

ACT activity corresponds to a specific input to OUT. Each OUT node

activity, computed as the input value divided by the sum of all

other inputs to OUT, can be conceived as the conditional probabil-

ity of the corresponding expected outcome, given PERC and ACT

activity. All OUT nodes are connected to GDV, which is computed

as the sum of OUT node activities, each node multiplied by its

expected value (encoded by the OUT–GDV connection weights).

Once this value is computed, it is stored in WM which records

the different action values.

The goal-directed subsystem follows a cyclic dynamic through

which, once PERC is activated, an action simulation process is eli-

cited consisting in sequential activation of different ACT nodes,

and in the evaluation (encoded in GDV) of their likely conse-

quences (encoded in OUT). More specifically, when a stimulus is

presented, the first action in the repertoire is activated in ACT

and this activates OUT and in turn GDV. WM encodes the expected

value of the first action (corresponding to the activation of the first

GDV node) and, through a recursive connection to ACT, inhibits the

activation of the ACT node corresponding to the first action, elicit-

ing activation of the second-action ACT node. Therefore, a new OUT

and GDV activations are computed and the latter recorded in WM.

When all actions have been simulated and the corresponding

expected values recorded in WM, the goal-directed subsystem

makes a choice. In keeping with human evidence (Daw,

O’Doherty, Dayan, Seymour, & Dolan, 2006), action is chosen

according to a softmax rule and the chosen action is coded as acti-

vation of a specific GDP node. The activated GDP node acquires the

activation level of the higher activation WM node, even if the two

nodes do not correspond to the same action.
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So far the goal-directed subsystem is characterised within a

one-step temporal horizon. Though in simulations we focus on this

special case (see below), the model can be extended to more dis-

tant temporal horizons. However, in this case the goal-directed

subsystem needs to evaluate policies, namely sequences of actions,

rather than single actions alone. This is achieved by adding a num-

ber of ACT, OUT and GDV layers equal to the number of time steps

the agent plans ahead, plus a policy (POL) and a GDV-SUM layer.

Goal-directed planning works again in a recursive manner starting

with activation of the first node of POL, which in turns switches on

a specific combination of nodes within the different ACT layers

along time. As before, activity in the first (in temporal order) ACT

and in PERC results in a specific activation in the first OUT (in

which each input is divided by the sum of all other inputs) and

GDV. In a cascade process, activation in the first OUT and second

ACT propagates to the second OUT up to the second GDV and so

forth. Activations of all GDVs along time are summed up in GDV-

SUM (note that a discount parameter can be implemented at this

stage) and stored in WM, which, thanks to the same mechanism

described above, inhibits the first POL node and activates the sec-

ond POL node, for which the process is repeated. Eventually, all

policies are simulated and the corresponding expected values are

encoded within WM.

In parallel with recruiting the goal-directed system, PERC also

triggers the Pavlovian subsystem, composed of a Pavlovian

expected Value (PV) and Pavlovian Reaction (PR) layers. Every

stimulus is associated with a specific PV activation, depending on

the weights of the PERC–PV connection. In turn, PV activates PR

that represents the innate conditioned or unconditioned motor

response triggered by PERC and whose activation is proportional

to PV.

PERC is also connected to a modulator subsystem representing

controllability and threat distance. The former is implemented

through two layers, namely Specific Controllability (SC) and Gener-

alised Controllability (GC), and the latter corresponds to the Tem-

poral and Spatial Threat Distance (TSTD) layer. For the

implementation of controllability, we follow learned helplessness

theory (Maier & Seligman, 1976) maintaining that the controllabil-

ity associated with a specific context corresponds to the condi-

tional probability of avoiding a punishment with the best action,

minus the probability of avoiding the punishment without that

action, multiplied by the value of that punishment. The first com-

ponent (SC) represents controllability relative to a given context

and simply corresponds to the difference between the maximum

andminimum action values within theWM layer. The second com-

ponent (GC) represents a more abstract variable which depends on

past controllability experience independent of context. After each

new trial, GC is updated according to a delta rule based on the

SC value at that trial and independent of which stimulus is present.

We hypothesise that GC is important to model learned helpless-

ness effects by which animals, after repeated uncontrollable pun-

ishments, cannot learn an appropriate instrumental action in a

novel context, an effect that could arise out of an uncontrollability

bias developed after repeated experience (Huys & Dayan, 2009).

Finally, in relation to threat distance, the corresponding TSTD acti-

vation corresponds to the time or space to the threat.

The different subsystems determine the behavioural output of

the model as their activities are summed up in the so-called

Fig. 1. Architecture of the computational model. Coloured boxes indicate the subsystems (green: perceptive subsystem, red: goal-directed subsystem, yellow: Pavlovian

subsystem, blue: modulatory subsystem) and black boxes represent the computational layers. Arrows indicate the connections among layers. PERC: perception; ACT: action;

OUT: outcome; WM: working memory; GDV: goal-directed value; GDP: goal-directed plan; TSTD: temporal and spatial threat distance; SC: specific controllability; GC:

general controllability; PV: Pavlovian value; PR: Pavlovian response; IA: instrumental ability.

F. Rigoli et al. / Cognition 146 (2016) 415–425 417



Instrumental Ability (IA) node, representing the activation of the

goal-directed system. In particular, IA is positively correlated with

GDP, SC, PR, GC and TSTD. Finally, a motor output (BEHAVIOUR) is

computed based on a logistic regression of IA. The probability that

BEHAVIOUR corresponds to GDP or PR is directly and inversely

proportional to IA respectively.

So far, we have described the model structure and its decision

processes. We now explain the model’s learning mechanisms. Once

BEHAVIOUR is executed, an outcome (OUTCOME) is obtained in the

environment and is used for learning. The weight of the PERC–

ACT–OUT connection is updated based on Hebbian rules, in other

words the link between the active PERC node, the ACT node corre-

sponding to BEHAVIOUR, and the OUT node corresponding to OUT-

COME is strengthened at each new experience. The connection

between the OUT node corresponding to OUTCOME and GDV is

modified following a temporal difference algorithm (Sutton &

Barto, 1998) as well as the connection between the active PERC

node and PV. GC is updated following a delta rule based on the

value of SC in a given trial.

3. Simulations

A specific version of the model was implemented in simulation

experiments representing a scenario (Fig. 2A) wherein a simulated

rat is presented with a chain and a lever. At every trial either a red

or black visual cue appears followed, after few seconds, either by a

high or low auditory tone. Here the high and low tones are associ-

ated respectively with delivery and omission of an electric shock

stimulus with a negative value of one unit. In the time interval

between the presentation of the visual cue and the tone, the rat

is allowed to press the lever, pull the chain or do nothing. The

action selected influences which auditory tone (either high or

low) is presented and therefore whether punishment is delivered

or not. At every trial, the most advantageous action depends on

which visual cue is shown and hence, to minimise punishment,

the rat has to learn the best action to perform with each visual

cue (see below for contingencies used in simulations).

In relation to specific characteristics of the model used in sim-

ulations, PERC has two nodes, associated with the ‘red’ and ‘black’

visual cue, respectively. ACT has three nodes, associated with ‘lever

pressing’, ‘chain pulling’, and ‘no action’, respectively. OUT has two

nodes, associated with the ‘high’ and ‘low’ auditory tone, respec-

tively. WM, GDP, PR and BEHAVIOUR have three nodes each, asso-

ciated with the same actions as ACT, whereas GDV, PV, SC, GC and

TSTD have one node each. In order to describe and test key charac-

teristics of the model, we used five simulation experiments

described in detail below.

3.1. Goal-directed control

The aim of the first simulation is to test the model’s ability to

use goal-directed control to learn the correct actions in relation

to different contexts. Task contingencies are as follows: when a

red cue appears, lever pressing leads to a low tone and shock is

always avoided while all other actions, namely chain pulling and

doing nothing, lead to a high tone and shock. In the case where a

black cue appears, chain pulling is better as shock is avoided 20%

of times while it is always delivered by lever pressing or doing

nothing. Here we test whether the goal-directed system can learn

the correct actions associated with each of the two cues. In this

simulation the goal-directed system alone is allowed to affect

behaviour. Since goal-directed and Pavlovian processes are to some

degree always co-activated in ecological circumstances, this condi-

tion is unrealistic; however, here we discuss it in order to better

clarify how the goal-directed component works.

Data shown in Fig. 2B and C describe the value associated with

each of the three actions. Pavlovian values associated to stimuli are

also presented, although in this simulation by design they are not

allowed to impact on behaviour. Results indicate that the agent is

able to learn the correct policy both with the red (Fig. 2B) and black

(Fig. 2C) cue. However, the asymptotic value related to the best

Fig. 2. (A) Task used in simulations, in which for each trial a simulated rat is presented either a red or black visual cue followed either by a high auditory tone and shock or

low tone and no shock, depending on the rat’s action. (B) Action value as computed by the goal-directed system (LP in blue: lever pressing; CP in cyan: chain pulling; DN in

green: doing nothing) and Pavlovian value (PV in red) associated with the red cue (here LP always avoids shock, other actions never avoid shock) in the first simulation, in

which the Pavlovian system is not allowed to influence behaviour. (C) Action value as computed by the goal-directed system and Pavlovian value associated with the black

cue (here CP avoids shock 20% of the times, other actions never avoid shock) in the first simulation. (D) Instrumental ability (IA) for the red (here LP always avoids shock, other

actions never avoid shock) and black cue (here CP avoids shock 20% of the times, other actions never avoid shock) in the second simulation in which the Pavlovian system is

allowed to influence behaviour. (E) Action value as computed by the goal-directed system and Pavlovian value associated with the red cue in the second simulation. Colours

are as in B. (F) Action value as computed by the goal-directed system and Pavlovian value associated with the black cue in the second simulation. Colours are as in B.
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action is higher with the former than the latter cue. This is consis-

tent with the concept that asymptotic values represent the

expected value of actions (Von Neumann & Morgenstern, 1944).

Also, the asymptotic Pavlovian value is higher (i.e., less negative)

with the red than the black cue, consistent with the fact that the

Pavlovian value of each stimulus is proportional to the probability

of punishment associated with that stimulus and is independent

from the action performed. In relation to learning, the goal-

directed subsystem learns two kinds of information, namely the

causal associations between stimuli, actions, and outcomes and

the outcome-value associations. Overall, these results show that

the goal-directed subsystem can learn and choose consistent with

models of prospective decision-making (Glimcher, 2004; Glimcher

& Rustichini, 2004; Kahneman & Tversky, 1979).

3.2. Goal-directed/Pavlovian interaction

The aim of the second simulation is to analyse the relationship

between Pavlovian and goal-directed mechanisms. Here, when a

red cue is presented, lever pressing always avoids shock and shock

is always delivered with other actions. When a black cue is pre-

sented, chain pulling leads to shock avoidance 20% of times and

shock is always delivered with other actions. Contrary to the pre-

vious simulation, in this instance both goal-directed and Pavlovian

subsystems are allowed to influence behaviour. In this and follow-

ing simulations, the response triggered by the Pavlovian system is

always ‘doing nothing’ to simulate a freezing response, and is never

adaptive as it always leads to shock.

Results are reported in Fig. 2D and F showing the probability of

the goal-directed system in the control of behaviour in front of the

red (red line) and the black (black line) cues. At the beginning,

behaviour is completely goal-directed in both contexts. Contingen-

cies are unknown and hence actions are chosen randomly, leading

often to shock and thus to a more negative Pavlovian value. How-

ever, at the same time knowledge about stimulus-action-outcome-

value associations improves with learning and therefore with the

red cue an effective action (i.e., lever pressing) is acquired leading

to an increased Pavlovian value (Fig. 2D and E). By contrast, with

the black cue the best action still leads to shock most of the times

(although less than other actions) and therefore the Pavlovian

value continues to decrease triggering an innate tendency to freez-

ing corresponding to ‘do nothing’. Although this response is mal-

adaptive, nonetheless it is maintained by a vicious circle

whereby a negative Pavlovian value triggers a Pavlovian response

followed by punishment that in turn decreases further the Pavlo-

vian value.

These results are consistent with animal experiments showing

that in some circumstances Pavlovian effects are detrimental for

performance (Bolles, 1970; Guitart-Masip et al., 2014; Rigoli

et al., 2012; Williams &Williams, 1969). Note that a key prediction

stemming from this simulation is that the influence of Pavlovian

over goal-directed control increases with the level of punishment

expected, and this is consistent with empirical evidence.

Fanselow and Bolles (1979) have shown that the probability of

freezing correlates with punishment intensity, suggesting an

enhanced Pavlovian strength with large punishment expectancy.

However, a limit of this experiment is the lack of instrumental

components. This limitation is addressed in another study (Bolles

& Warren, 1965) showing that the probability of bar pressing to

avoid shock decreases with shock intensity, suggesting that goal-

directed behaviour (associated with bar pressing) is dominated

by Pavlovian control with large punishment expectancy. This result

is also consistent with a recent human study (Rigoli et al., 2012)

where a stimulus moved on a computer screen and a button

needed to be pressed when the stimulus was on a target. The col-

our of the target indicated whether an electric shock was delivered

or not with a mistake and, in different trials, the stimulus could

move fast or slow. For the fast condition, performance decreased

when comparing shock versus no-shock trials. Crucially, this effect

was enhanced in participants with poorer task performance, con-

sistent with the idea that the Pavlovian influence dominated

goal-directed behaviour in participants who expected more

punishment (given their poor performance).

3.3. Modulatory role of specific controllability

We next explore effects of controllability related to specific con-

texts. Here the red cue leads to shock avoidance 20% of times inde-

pendently of the action performed and the black cue leads to shock

avoidance 20% of times with chain pulling and never with other

actions. In this way, the red cue is associated with low controllabil-

ity as no action is better than others, while the black cue is associ-

ated with a certain degree of controllability as one action is better

than others. Crucially, the shock probability is equivalent with the

red and black cues (in the latter case conditioned on the execution

of the correct action). Here, we predict that different degrees

of specific controllability influence the balance between goal-

directed and Pavlovian activation.

Fig. 3A shows that the probability that behaviour is goal-

directed and the value of SC are asymptotically higher for the black

than the red cue. Also, Fig. 3B and C shows that with the red cue

action values remain roughly equal along trials, while with the

black cue the value of the best action remains higher. These results

show how the model implements a modulatory influence of speci-

fic controllability on the relative strength of goal-directed and

Pavlovian control, as Pavlovian strength is inhibited when a given

action is better than others (corresponding to higher controllabil-

ity) and is boosted when action values are roughly equivalent (cor-

responding to lower controllability).

This is consistent with animal findings showing fear responses

increase with uncontrollable, compared to controllable, shocks;

even when punishment amount is equivalent in the two conditions

(Desiderato & Newman, 1971; Mineka et al., 1984). However, some

aspects of the simulation proposed here represent novel predic-

tions that go beyond the available empirical data, and remain to

be tested. Indeed, Mineka et al. (1984; see also Desiderato &

Newman, 1971) trained two groups of rats with shock. While the

first group could terminate shocks with an escape response, the

second group received shock at the same time as the first group

but could not affect punishment delivery. When exposed to the

context where learning occurred, the second group of rats exhib-

ited increased freezing. This experiment shows that Pavlovian

responding is boosted by uncontrollable punishment, but leaves

open the question of whether this impairs goal-directed behaviour,

as we suggest in our simulation. In addition, previous experiments

(Desiderato & Newman, 1971; Mineka et al., 1984) are in the con-

text of shock escaping. Though our model makes similar predic-

tions for both escape and avoidance contexts, these predictions

remain to be empirically tested in avoidance.

3.4. Modulatory role of generalised controllability

In the model, controllability is factorized into two subcompo-

nents, specific and generalised controllability. Specific controllabil-

ity depends on the conditional probabilities of avoiding a

punishment by acting in a given context while generalised control-

lability depends on the probability of avoiding punishments by act-

ing independent from contexts. Here we test the role of generalised

controllability, and whether manipulating this variable allows us

to reproduce key empirical findings on learned helplessness.

We consider the same scenario as in previous simulations but

now we group trials in two blocks. In all trials of the first block a
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red cue is presented and shock is delivered 90% of times indepen-

dent of the action performed. In all trials of the second block a black

cue is presented and shock is avoided 90% of times with chain pull-

ing and 10% of times with other actions. We manipulated the

amount of learning by comparing the performance of two agents

characterised by the same parameters but experiencing a different

number of trials in the first context (500 and 7000 trials for the first

and second agent respectively). This is motivated by evidence indi-

cating that learned helplessness effects emerge only after extensive

experience in an uncontrollable environment (Seligman & Maier,

1967). Consistent with these findings, we expect the amount of

learning in the uncontrollable context to influence the level of gen-

eralised controllability and in turn determine whether learned

helplessness behaviour is exhibited in a novel context.

Agents’ performance is shown in Fig. 3D and E. In the first block,

goal-directed strength and specific and generalised controllability

decay for both agents, but generalised controllability decays more

for the agent with extensive training. With a novel context, all

quantities are reset except for generalised controllability so that

the level of this variable remains high enough to elicit goal-

directed control for the short-trained agent but not for the long-

trained agent in which Pavlovian control is elicited also in the

novel context. This manipulation reproduces data on learned help-

lessness showing that animals, after an extensive experience of

uncontrollability, are unable to learn an effective instrumental

response even in novel contexts that are potentially controllable

(Maier & Seligman, 1976; Seligman & Maier, 1967).

3.5. Modulatory role of temporal and spatial threat distance

Temporal and spatial distance constitutes the other modulatory

variable implemented in the model. We now test whether manip-

ulating this variable influences behaviour. With the red cue shock

is always avoided by lever pressing and never avoided with other

actions. For the black cue shock is avoided 60% of times by chain

pulling and never avoided with other actions. The time interval

between the cue presentation and shock delivery randomly varies

on two levels (3 and 30 s) across trials and is signalled during stim-

ulus presentation. We expect that with the black cue (associated to

higher goal-directed and Pavlovian values) behaviour is largely

under goal-directed control though to a lesser extent when shock

delivery is close in time, while with the red cue (associated to

lower goal-directed and Pavlovian values) we expect goal-

directed control to guide behaviour when the threat is far in time

and Pavlovian control to guide behaviour when the threat is close

in time.

These predictions are confirmed by results shown in Fig. 3F that

is consistent with empirical evidence about the role of temporal

and spatial threat distance played in aversive behaviour

(Blanchard & Blanchard, 1989; Fanselow & Lester, 1988). Substan-

tial evidence indicates that the probability of freezing decreases

with shock delay (Fanselow & Lester, 1988). A similar role of threat

distance is found in spatial contexts where the probability of freez-

ing increases when a predator is close in space (Blanchard &

Blanchard, 1989). These studies demonstrate that the Pavlovian

strength, expressed by freezing behaviour, is boosted with short

temporal and spatial distance. However, one limit of these studies

is the lack of instrumental aspects, leaving open the question of

whether Pavlovian control dominates goal-directed behaviour as

threat distance diminishes. Evidence in favour of this hypothesis

comes from a recent human study (Rigoli et al., 2012) where the

impairing effect of a conditioned stimulus on instrumental beha-

viour emerged only in trials with a short temporal delay between

the conditioned stimulus and the punishment.

4. Implications for neurobiology

Here we propose a connection between our model and neurobi-

ology. In general, our implementation is consistent with the

Fig. 3. (A) Instrumental ability (IA) for the red (red line) and black (black line) cue and associated specific controllability (SC; orange line for red cue and grey line for black

cue) in the third simulation. With the red cue, all actions avoid shock 20% of the time; with the black cue chain pulling avoids shock 20% of the time and other actions never

avoid shock. (B) Action value as computed by the goal-directed system with the red cue in the third simulation (LP in blue: lever pressing; CP in cyan: chain pulling; DN in

green: doing nothing). (C) Action value as computed by the goal-directed system with the black cue in the third simulation. (D) IA (in red), SC (in green) and general

controllability (GC, in blue) for the first agent during simulation four (in trials 1–500, the red square was shown and shock occurred 90% of the times independently of the

response; in trials 501–1000 the black square was shown and shock was avoided 90% of the times with chain pulling and always delivered with other actions). The grey bar

represents the trial corresponding to the shift from red to black cue presentation. (E) IA, SC and GC (same colour as in D) for the second agent during simulation four (in trials

1–7000, the red square was shown and shock occurred 90% of the times independently of the response; in trials 7001–7500 the black square was shown and shock was

avoided 90% of the times with chain pulling and always delivered with other actions). The grey bar represents the trial corresponding to the shift from red to black cue

presentation. (F) IA for the red cue and 30 s delay from shock (red line), the red cue and 3 s delay from shock (orange line), the black cue and 30 s delay from shock (black line),

and the black cue and 3 s delay from shock (grey line). For the red cue, lever pressing is followed by shock 20% of the times and shock is always delivered with other actions;

for the black cue, chain pulling is followed by shock 40% of the times and shock is always delivered with other actions.
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proposal that the aversive system is organised hierarchically in the

brain along a rostro-caudal axis where different regions are prefer-

entially recruited by specific levels of threat distance and are asso-

ciated with distinct defensive reactions (Bravo-Rivera, Roman-

Ortiz, Brignoni-Perez, Sotres-Bayon, & Quirk, 2014; Deakin &

Graeff, 1991; Fanselow, 1994; McNaughton & Corr, 2004). Evidence

shows that distal or potential threats recruit preferentially rostral

areas such as dorsolateral prefrontal cortex (DLPFC), orbitofrontal

cortex (OFC), hippocampus and ventromedial prefrontal cortex

(vmPFC), whereas amygdala and periaqueductal grey (PAG) play

a central role in processing proximal threats (Blanchard &

Blanchard, 1989; Deakin & Graeff, 1991; Fanselow, 1994; Graeff,

2004; Keay & Bandler, 2001, 2002; McNaughton & Corr, 2004).

Our model connects the neural hierarchy to the distinction

between goal-directed and Pavlovian forms of control.

More specifically, each subsystem in the model can be mapped

to a specific brain circuit, with PERC implemented in sensory cor-

tical and subcortical areas and ACT related to regions involved in

(abstract) motor representations such as the supplemental motor

area and the premotor cortex (Rizzolatti et al., 1988). A role in

ACT might be played also by the caudate nucleus and the putamen

of the basal ganglia (corresponding to the dorsolateral and dorso-

medial striatum in rodents, respectively), which are involved in

instrumental, but not Pavlovian, action selection (Pennartz, Ito,

Verschure, Battaglia, & Robbins, 2011; Yin, Ostlund, & Balleine,

2008). OUT, associated with mental simulation of future sensory

states, might recruit regions involved in processing abstract state

representations such as (i) the hippocampus, where cells encoding

the spatial position of an animal (the so-called place cells) sweep

forward at decision points and can code future trajectories when

the animal rests or sleeps, consistent with planning and the mental

simulation of possible future positions (Diba & Buzsáki, 2007;

Johnson & Redish, 2007; Pezzulo, Rigoli, & Chersi, 2013; Pezzulo,

van der Meer, Lansink, & Pennartz, 2014; Pfeiffer & Foster, 2013;

Wikenheiser & Redish, 2015), (ii) more broadly, the medio-

temporal lobe, a region involved in episodic memory and in repre-

senting abstract categories (Hassabis & Maguire, 2007; Squire,

Stark, & Clark, 2004). Based on evidence highlighting a role for

OFC in representing specifically outcome (but not action) value,

one possibility is that this region processes GDV, corresponding

to the value of future states (Schoenbaum, Takahashi, Liu, &

McDannald, 2011). Substantial evidence has indicated a central

role of DLPFC in executive functions, and specifically in working

memory, corresponding to WM in our model, and choice process,

corresponding to GDP (Gold & Shadlen, 2007; Koechlin &

Summerfield, 2007; Miller & Cohen, 2001; Stoianov, Genovesio, &

Pezzulo, 2015).

In relation with Pavlovian mechanisms, unconditioned fight/

flight reactions and non-opioid analgesia are regulated by lateral

PAG (lPAG) and hypothalamus (Keay & Bandler, 2001, 2002), and

conditioned freezing responses and opioid analgesia by ventro-

lateral PAG (vlPAG; Fanselow, 1994; Keay & Bandler, 2001, 2002).

In addition, amygdala plays a central role in storing Pavlovian rep-

resentations (Cardinal, Parkinson, Hall, & Everitt, 2002; Davis,

1992), with basolateral nuclei encoding conditioned-

unconditioned stimulus associations (Amorapanth, LeDoux, &

Nader, 2000; Choi, Cain, & LeDoux, 2010; Lázaro-Muñoz, LeDoux,

& Cain, 2010) and central extended nuclei controlling different

aspects of conditioned responses such as motor reactions, opioid-

mediated analgesia (through connections with vlPAG), hormonal

and autonomic reactions (through hypothalamic connections),

and vigilance associations (Amorapanth et al., 2000; Choi et al.,

2010; Lázaro-Muñoz et al., 2010). Another important role is played

by the ventral striatum of the basal ganglia, which processes Pavlo-

vian values associated with conditioned stimuli (Cardinal et al.,

2002; Yin et al., 2008).

Evidence indicates that an increased response in the dorsal

raphé nuclei (DRN) elicits learned helplessness behaviour, while

activation in vmPFC inhibits such behaviour (Amat et al., 2005;

Maier & Watkins, 2005). A possibility is that GC, representing a

generalised belief about controllability, is reflected in the firing

rate of DRN neurons, while SC, indicating a controllability belief

related to the current context, might instead be processed in

vmPFC. This is consistent with the finding that vmPFC activity dur-

ing decision-making correlates with the value difference across

options (Boorman, Behrens, Woolrich, & Rushworth, 2009; Hunt

et al., 2012; Strait, Blanchard, & Hayden, 2014), a signal similar

to SC.

It has been reported that processing of emotional, compared to

neutral, stimuli recruits amygdala directly via thalamo, bypassing

the cortex (Vuilleumier & Driver, 2007). It is possible that such

neural pathway is modulated by the temporal and spatial threat

distance in such a way that it is preferentially recruited during per-

ception of proximal dangers. Another aspect relevant to threat dis-

tance is that physical contact with danger directly stimulates the

nociceptive, tactile and proprioceptive receptors of PAG (Keay &

Bandler, 2001, 2002).

Learning corresponds to changing synaptic strength. A Hebbian

form of learning characterises acquisition of state-action-outcome

contingencies and is linked to glutammatergic and gabaergic neu-

ral mechanisms (Izquierdo & McGaugh, 2000). A central role in

value learning is attributed to dopamine based on evidence that

response of this neurotransmitter reflects a reinforcer prediction

error signal, both in instrumental (Berridge, 2007; Hollerman &

Schultz, 1998) and Pavlovian contexts (Schultz, Dayan, &

Montague, 1997; Wenzel, Rauscher, Cheer, & Oleson, 2014). A

key role has been proposed also for serotonin whose function

would be opponent to dopamine, though evidence is mixed

(Boureau & Dayan, 2011). Serotonin has also been linked to con-

trollability and specifically to activity in DRN, a major serotoniner-

gic hub in the brain (Maier & Watkins, 2005). A possibility is that

this neurotransmitter is involved in learning a general form of con-

trollability, which is independent of the current context. This

might suggest that the opponency between dopamine and sero-

tonin might be only partial, being the former linked with learning

values attached to specific contexts and the latter linked with

learning a controllability belief independent of contexts. This

hypothesis remains to be tested in future research.

5. Discussion

We propose a computational model of aversion based on a goal-

directed/Pavlovian interaction wherein controllability and threat

distance occupy an important modulatory role by influencing the

relative strength of the two controllers. The integration of multi-

faceted motivational mechanisms is an important aspect of this

proposal given that most previous theories have considered only

partial components of aversion. Indeed, associative-learning mod-

els have largely focused on reactive Pavlovian behaviour

(Blanchard & Blanchard, 1989; Deakin & Graeff, 1991; Dinsmoor,

2001; Fanselow, 1994; Fanselow & Lester, 1988; Graeff, 2004;

McNaughton & Corr, 2004), whereas most normative decision-

making theories implicitly assume goal-directed control alone

(Glimcher, 2004; Kahneman & Tversky, 1979).

Our model is inspired by recent proposals that view behaviour

as guided by a multicontroller system that integrates instrumental

and Pavlovian components (Dayan et al., 2006; Guitart-Masip et al.,

2014; Moutoussis et al., 2008; Rigoli et al., 2012). We also stress

the link with a set of neural network models that combine rein-

forcement learning principles within a biologically plausible

implementation. This permits us to connect model architectures
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and computations to neural structures and functions, respectively

(Frank, Seeberger, & O’Reilly, 2004; Miller & Cohen, 2001;

Reynolds & O’Reilly, 2009).

Though debate remains regarding the precise mechanisms

underlying the Pavlovian/goal-directed interactions, we assume

these systems work in parallel as each performs its specific compu-

tations at the same time as the other. An alternative possibility is

that a meta-decision process allocates resources to one or the other

controller before they perform their specific computations. Future

research is needed to elucidate this point.

There is strong evidence that the two systems interact at differ-

ent levels. Here we focus on competition at the motor level based

on evidence that (i) Pavlovian stimuli can inhibit a general motor

reactivity (Gray, 1987; Gray & McNaughton, 2000), (ii) non-

specific Pavlovian responses such as trembling can impair the pre-

cision of motor commands (Rigoli et al., 2012) (iii) specific Pavlo-

vian motor actions can influence the execution of incompatible

instrumental behaviour (Morse, Mead, & Kelleher, 1967). Other

levels are involved in the goal-directed/Pavlovian interaction as

fearful stimuli can exert a Pavlovian influence on executive func-

tions usually associated with goal-directed control, for instance

by speeding and biasing attentional processes (Eysenck,

Derakshan, Santos, & Calvo, 2007). Another set of interaction

effects occurs at the level of value computation, as in Pavlovian–in-

strumental transfer (PIT) and conditioned suppression where a

Pavlovian stimulus increases (or decreases) the motivation to

approach (or avoid) other appetitive (or aversive) outcomes espe-

cially those also predicted by the same Pavlovian stimulus as in

specific PIT (Bray, Rangel, Shimojo, Balleine, & O’Doherty, 2008;

Campese, McCue, Lázaro-Muñoz, LeDoux, & Cain, 2013; Campese

et al., 2014; Dickinson & Pearce, 1977; Holland, 2004; Overmier,

Bull, et al., 1971; Rescorla & Solomon, 1967).

Here we focus on goal-directed–Pavlovian interactions, though

models of instrumental control include also the so-called habitual

system, which is based on stimulus–response associations learned

through the history of reinforcement (Adams, 1982; Colwill &

Rescorla, 1988; Daw, Niv, & Dayan, 2005) and is thought to over-

whelm goal-directed control in simple environments and after

extensive training (Dolan & Dayan, 2013). It is important to stress

that, despite some notable exceptions (e.g., Holland, 2004; Rigoli

et al., 2012), most of the data available on aversion do not distin-

guish between goal-directed and habitual control. Future research

is needed to clarify whether the influence of the Pavlovian system

changes with goal-directed compared to habitual control, though

we note that some empirical evidence suggests Pavlovian effects

might even be enhanced in the latter case (Holland, 2004; Rigoli

et al., 2012).

In keeping with a large body of empirical evidence, in our model

a key role is attributed to threat distance and controllability. The

importance of threat distance has been stressed in previous mod-

els, but here we extend this idea by arguing this variable not only

influences which defensive reaction is exhibited but also which

form of control, Pavlovian or goal-directed, is activated. Specifi-

cally, our model proposes that the Pavlovian strength is boosted

as threat distance decreases. A similar point is proposed with

respect to controllability together with the distinction of different

hierarchical levels that represent this variable, including

contextual-dependent and contextual-independent components.

The inclusion of two components that are organised hierarchically

can account for different empirical phenomena, reconciling com-

peting theories on the role controllability (Maier & Seligman,

1976; Mineka et al., 1984; Seligman &Maier, 1967). Indeed a speci-

fic controllability factor can account for a finding that fear

responses increase with uncontrollable, compared to controllable,

punishments (Desiderato & Newman, 1971; Mineka et al., 1984).

A general controllability factor accounts for evidence that uncon-

trollability effects are generalised to new contexts by impairing

instrumental learning (Maier & Seligman, 1976; Seligman &

Maier, 1967).

Fear and anxiety are emotional responses favoured by evolution

for their efficacy in dealing with danger. An influential perspective

suggests that these are two separate emotions as controlled by

specific psychological and neural systems and triggered by specific

aversive conditions, with threat distance determining which of the

two is activated (Blanchard & Blanchard, 1989; Davis, Walker,

Miles, & Grillon, 2009; Deakin & Graeff, 1991; Fanselow, 1994;

Fanselow & Lester, 1988; Graeff, 2004; LeDoux & Gorman, 2014;

McNaughton & Corr, 2004). Specifically, fear would correspond to

a set of fight/flight reactions elicited by proximal and certain

threats, whereas anxiety would be characterised by more complex

processes such as worrying tendencies elicited by distal and uncer-

tain threats. In our scheme, fear and anxiety are viewed as parts of

a continuum which describes the goal-directed/Pavlovian relative

weight, with controllability and threat distance determining the

current position within the continuum. One extreme of the contin-

uum corresponds to a state of mild anxiety, characterised by the

belief that the threat is still far and controllable. Here, goal-

directed planning prevails and the influence of Pavlovian beha-

viour is negligible. As one moves towards the other extreme, the

perception of threat distance and controllability decreases, anxiety

enhances, and the Pavlovian influence emerges. In this condition of

increased anxiety, goal-directed planning is still important but

Pavlovian reactions, such as an automatic attention towards threat

and an increased physiological response (Eysenck et al., 2007), are

also manifested. Note that such state of elevated anxiety is charac-

terised by an intermediate level of controllability and threat dis-

tance. As we approach the other extreme of the continuum,

controllability and threat distance diminish, goal-directed control

is disrupted and fight/flight/freezing Pavlovian reactions dominate,

a condition associated to fear. Note that, in this view, fear and anx-

iety are not qualitatively different emotions like in some other the-

ories (Davis et al., 2009; Deakin & Graeff, 1991; Fanselow, 1994;

Fanselow & Lester, 1988; McNaughton & Corr, 2004), but share

common Pavlovian processes (though there might be aspects of

the Pavlovian response which might be activated only during fear

and not anxiety and vice versa). In addition, the transition from

anxiety to fear is graded. This perspective suggests that one of

the key factors of pathological anxiety might be a bias towards per-

ceiving decreased threat distance and controllability. This would

lead to an exaggerated anxiety response despite the true levels of

controllability and threat distance are high, and to a fear response

in conditions where an anxious response would be appropriate.

Our view can be conceived as a formalisation and extension of a

previous influential theory which proposes that the key dysfunc-

tion in exaggerated anxiety is an increased anxiety response with

distal threats but not proximal threats (Mathews & Mackintosh,

1998).

Our model is based on some arbitrary assumptions and simpli-

fications. One of these is that goal-directed planning follows a

serial process by which different actions are simulated sequen-

tially. This might be too simplistic, though the idea that executive

functions require serial computations is supported by some data

(Miller & Cohen, 2001). Other assumptions are about the choice

process, as we assume that even after extensive training an agent

exhibits randomness in choice due to a softmax decision rule, again

based on empirical support (Daw, O’Doherty, Dayan, Seymour, &

Dolan, 2006). A further simplification is in the use of a fixed learn-

ing rate, at variance with evidence that this parameter depends on

uncertainty or environmental volatility (Behrens, Woolrich,

Walton, & Rushworth, 2007; Pezzulo et al., 2013). One possibility

is that uncertainty about the values encoded by the goal-directed

and Pavlovian control might also modulate the relative strength
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of each controller (Daw et al., 2005; Pezzulo, Rigoli, & Friston,

2015; Pezzulo et al., 2013). The Pavlovian subsystem is imple-

mented as a set of stimulus–response associations learned through

punishment experience, though this is likely to be an oversimplifi-

cation given evidence that Pavlovian responses are also elicited by

stimulus-outcome associations (Dickinson & Balleine, 2002). How-

ever, it is unclear in which circumstances Pavlovian mechanisms

are under the control of stimulus–response and stimulus-

outcome associations and how these different representations

interact.

Our model can deal with problems having multi-steps temporal

horizons, though these scenarios are not considered in our simula-

tions. A limit of the model is that it works with simple problems

with a small state space and with relatively short temporal hori-

zons. A fundamental issue arising from problems with large state

space is that computing the optimal policy becomes computation-

ally expensive or intractable, and, to account for this, approxima-

tions such as sampling methods are often adopted (Pezzulo et al.,

2013). A way to implement these approximations in our model

could be to set an order for policy/action simulation during goal-

directed planning, implemented through the pattern of inhibitory

connections among policy/action nodes.

6. Conclusions

We propose a computational model of aversion that takes into

account different kinds of computations and their complex interac-

tion and integrate them in a broad and unifying picture. We believe

this might provide a useful reference for empirical research as can

help generate new hypotheses and guide the setting of priorities

on research questions. Moreover, given the ubiquity and relevance

of aversive conditions in everyday contexts, the model can help a

better understanding of important aspects in clinical and interven-

tion settings, and here we provide an example in relation with neg-

ative emotions.

Acknowledgements

This work was supported by the Wellcome Trust (Ray Dolan

Senior Investigator Award 098362/Z/12/Z). The Wellcome Trust

Centre for Neuroimaging is supported by core funding from the

Wellcome Trust 091593/Z/10/Z. G.P. is funded by the European

Community’s Seventh Framework Programme (FP7/2007–2013)

project Goal Leaders (Grant No: FP7-ICT-270108) and the HFSP

(Grant No: RGY0088/2014). We are grateful for the advice on an

earlier version of this paper from Giles Story, Michael Moutoussis

and Cristina Martinelli.

Appendix A

In this section, the algorithm implemented by the model is

described in detail. The model is composed of layers grouped in

different subsystems. The first subsystem is the goal-directed con-

troller, composed by ACT, OUT, GDV, WM, and GDP. For implemen-

tations involving multi-step horizons, ACT, OUT and GDV are

replicated for each time step and POL and GDV-SUM are included.

Each ACT (step function) neuron corresponds to a simulated

action; Each OUT (linear function) neuron corresponds to an

expected outcome; GDV has only a (linear function) neuron, which

corresponds to the value of the currently simulated action; WM

encodes the memorised action values, and has the same number

of neurons as ACT (although, in this case, they are linear function

neurons); GDP encodes the selected action, having the same num-

ber of (linear function) neurons as WM. In multi-steps horizon

problems, POL contains as many (step function) nodes as the num-

ber of combinations of node activations within the different ACTs

along time and GDV-SUM includes a (linear function) neuron.

For one-step temporal horizon implementations, the dynamic

of the goal-directed subsystem is as follows. At the beginning of

each trial, all neurons have a null activation. A stimulus i is

detected in the environment activating the corresponding PERC(i)

neuron which sends an output signal equal to one to all ACT nodes.

ACT nodes are step function neurons whose activity is equal to zero

if the corresponding input is equal or smaller than zero, and equal

to one if the corresponding input is larger than zero. Each ACT neu-

ron sends an inhibitory output equal to minus one to all other neu-

rons in ACT with a larger index. For this reason, although PERC(i)

excites all ACT neurons, only the first one is activated, while all

other neurons are inhibited by the first one. PERC–ACT–OUT con-

nections are represented by a weight matrix M(I, J,Z), where I, J

and Z are the number of nodes in PERC, ACT and OUT, respectively.

When the first ACT neuron is activated, an ACT–PERC combination

(i,1) activates the vector OUT(:) = M(i,1, :)/sum(M(i,1, :)). The OUT

vector is multiplied by the OUT–GDV connection vector, and the

result is the scalar activation of the GDV neuron. The GDV value

is then multiplied by the ACT vector, and the resulting vector sums

up to the initial WM zero vector. After this process, the first neuron

of WM has an activation which is equal to the GDV value, while all

other neurons continue to have a null activation. At this point, the

goal-directed process continues in a recursive way. Indeed, WM

has an inhibitory connection with ACT. In particular, the xth WM

neuron sends an output to the xth ACT neuron, so as, if WM(x)

> 0, then ACT(x) = 0. Since after the first cycle WM(1) > 0, then

ACT(1) neuron is inhibited by WM(1). For this reason, now the sec-

ond neuron in ACT is no more inhibited by the first one (which is

now inhibited by WM). At the same time, all other neurons are

inhibited by the second ACT neuron. At this point, the computa-

tions are repeated as described before, until all ACT neurons have

been activated. At the beginning of every cycle, all neural activa-

tions decay, except those related to PERC and WM. In relation to

the latter layer, every time the resulting vector of the multiplica-

tion between GDV and ACT is computed, it sums up to theWM vec-

tor of the previous cycle, and the resulting vector is the new WM

vector. Once all WM neurons, which represent the action values,

have been computed, one of the GDP neurons is activated. The

index of this neuron is extracted from a distribution whose ele-

ments have a probability equal to the corresponding normalised

action values. The activation level of the GDP neuron corresponds

to the activation of the highest activation neuron in WM, even

when the latter neuron and the activated GDP neuron have a differ-

ent index.

For multi-steps horizon implementations, the i input recruits

the PERC(i) neuron which sends an output signal equal to one to

all POL nodes which are step function neurons whose activity is

equal to zero if the corresponding input is equal or smaller than

zero, and equal to one if the corresponding input is larger than

zero. Each POL neuron sends an inhibitory output equal to minus

one to all other neurons in POL with a larger index. For this reason,

although PERC(i) excites all POL neurons, only the first one is acti-

vated, while all other neurons are inhibited by the first one. An

activation of the first POL node induces activity in a certain combi-

nation of nodes within the different ACT layers along time. The

active node j1 of the first (in temporal order) ACT and of the active

node i of PERC activate the node vector of the first OUT(:) = M(i,

j1, :)/sum(M(i, j1, :)). The first OUT vector is multiplied by the

OUT–GDV connection vector, and the result is the scalar activation

of the first GDV. Next, the active node j2 of the second ACT and the

vector of the first OUT activate the vector of the second OUT in

which activity of each node corresponds to OUT(z2) = sum(M(:, j2,

z2)/sum(M(:, j1, :)). The vector of the second OUT is multiplied by

the OUT–GDV connection vector, and the result is the scalar
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activation of the second GDV. This process is repeated along time

until the last GDV is computed and all GDVs are summed up in

GDV-SUM (at this stage it is possible to implement temporal dis-

counting by multiplying each GDV by a corresponding discounting

factor), which is next recorded in WM. After the first POL node is

evaluated, planning follows the same dynamic as that described

above for the one-step horizon implementation involving WM

and ACT, except that now POL plays the role of ACT. Similarly, each

time a new POL node is activated, the policy evaluation process fol-

lows the process described above for the one-step horizon

implementation.

The second subsystem is the Pavlovian controller, whose layers

are PV and PR. The former is composed of a (linear function) neu-

ron, whose activity depends on PERC vector multiplied by the

PERC–PV connection vector. PR is composed of the same number

of neurons as ACT, but in this case neurons are linear function ones.

Their activation corresponds to the product of PV and the PV–PR

connection vector. All PV–PR vector neurons have value equal to

zero except the one corresponding to the innate reaction with a

value of one. The third subsystem is related to modulator variables

including SC, GC and TSTD each represented by a linear function

neuron.

Once GDP, PR, SC, GC and TSTD have been computed, the IA

neuron activation is calculated. IA neuron is a sigmoid function

neuron whose value is computed as follows:

IA¼
1

1þexpð�0:1ðb0þbGDPGDPðsÞþbPRPRþbSCSCþbGCGCþbTSDTSTD

where GDP(s) corresponds to the active GDP neuron, PR corre-

sponds to the PR neuron associated with the Pavlovian innate reac-

tion, and b parameters represent weights. Finally, BEHAVIOUR

depends on which number is extracted from a binomial distribution

whose parameter is IA. If the extracted number is 1, then BEHA-

VIOUR = GDP(s). If the extracted number is zero, BEHAVIOUR

depends on PR(s). When PR(s) < 0, then BEHAVIOUR = PR(s); when

PR(s) = 0, then BEHAVIOUR corresponds to a random action.

Once an outcome (OUTCOME) associated with a scalar hedonic

value V 6 0 is collected, M (i.e., the PERC–ACT–OUT connection

matrix), is updated by a learning rate (aM1) added to the weight

M(STIMULUS,OUTCOME,BEHAVIOUR). The OUT–GDV(OUTCOME)

and PERC–PV(STIMULUS) connection weights and the GC value

are updated according to a delta rule by summing a prediction

error multiplied by a learning rate (respectively aGDV, aPV and

aGC) to the previous value. The prediction error depends on V both

for the OUT–GDV(OUTCOME) weight and the PERC–PV(STIMULUS)

weight, and on SC for GC.

For the simulations, initial weights of the M matrix are set to

one and other weights to zero. Initial GC value is set to one and

the temperature parameter of the softmax function used to choose

the action in GDP is assigned a value of one. Parameter values used

in the simulations are reported in Table 1.
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