152 research outputs found

    Chemical tracers of high-metallicity environments

    Full text link
    We present for the first time a detailed study of the properties of molecular gas in metal-rich environments such as early-type galaxies (ETGs). We have explored Photon-Dominated Region (PDR) chemistry for a wide range of physical conditions likely to be appropriate for these sources. We derive fractional abundances of the 20 most chemically reactive species as a function of the metallicity, as a function of the optical depth and for various volume number gas densities, Far-Ultra Violet (FUV) radiation fields and cosmic ray ionisation rates. We also investigate the response of the chemistry to the changes in α\alpha-element enhancement as seen in ETGs. We find that the fractional abundances of CS, H2_{2}S, H2_{2}CS, H2_{2}O, H3_{3}O+^{+}, HCO+^{+} and H2_{2}CN seem invariant to an increase of metallicity whereas C+^{+}, CO, C2_{2}H, CN, HCN, HNC and OCS appear to be the species most sensitive to this change. The most sensitive species to the change in the fractional abundance of α\alpha-elements are C+^{+}, C, CN, HCN, HNC, SO, SO2_{2}, H2_{2}O and CS. Finally, we provide line brightness ratios for the most abundant species, especially in the range observable with ALMA. Discussion of favorable line ratios to use for the estimation of super-solar metallicities and α\alpha-elements are also provided.Comment: 15 pages, 6 figures, 4 tables, Accepted for publication into MNRA

    K2 Discovers a Busy Bee: An Unusual Transiting Neptune Found in the Beehive Cluster

    Full text link
    Open clusters have been the focus of several exoplanet surveys but only a few planets have so far been discovered. The \emph{Kepler} spacecraft revealed an abundance of small planets around small, cool stars, therefore, such cluster members are prime targets for exoplanet transit searches. Kepler's new mission, K2, is targeting several open clusters and star-forming regions around the ecliptic to search for transiting planets around their low-mass constituents. Here, we report the discovery of the first transiting planet in the intermediate-age (800 Myr) Beehive cluster (Praesepe). K2-95 is a faint (Kp=15.5mag\mathrm{Kp = 15.5\,mag}) M3.0±0.5\mathrm{M3.0\pm0.5} dwarf from K2's Campaign 5 with an effective temperature of 3471±124K\mathrm{3471 \pm 124\,K}, approximately solar metallicity and a radius of 0.402±0.050R\mathrm{0.402 \pm 0.050 \,R_\odot}. We detected a transiting planet with a radius of 3.470.53+0.78R\mathrm{3.47^{+0.78}_{-0.53} \, R_\oplus} and an orbital period of 10.134 days. We combined photometry, medium/high-resolution spectroscopy, adaptive optics/speckle imaging and archival survey images to rule out any false positive detection scenarios, validate the planet, and further characterize the system. The planet's radius is very unusual as M-dwarf field stars rarely have Neptune-sized transiting planets. The comparatively large radius of K2-95b is consistent with the other recently discovered cluster planets K2-25b (Hyades) and K2-33b (Upper Scorpius), indicating systematic differences in their evolutionary states or formation. These discoveries from K2 provide a snapshot of planet formation and evolution in cluster environments and thus make excellent laboratories to test differences between field-star and cluster planet populations.Comment: 14 pages, 8 figues. Accepted for publication in A

    Disk-Jet Connection in the Radio Galaxy 3C 120

    Get PDF
    We present the results of extensive multi-frequency monitoring of the radio galaxy 3C 120 between 2002 and 2007 at X-ray, optical, and radio wave bands, as well as imaging with the Very Long Baseline Array (VLBA). Over the 5 yr of observation, significant dips in the X-ray light curve are followed by ejections of bright superluminal knots in the VLBA images. Consistent with this, the X-ray flux and 37 GHz flux are anti-correlated with X-ray leading the radio variations. This implies that, in this radio galaxy, the radiative state of accretion disk plus corona system, where the X-rays are produced, has a direct effect on the events in the jet, where the radio emission originates. The X-ray power spectral density of 3C 120 shows a break, with steeper slope at shorter timescale and the break timescale is commensurate with the mass of the central black hole based on observations of Seyfert galaxies and black hole X-ray binaries. These findings provide support for the paradigm that black hole X-ray binaries and active galactic nuclei are fundamentally similar systems, with characteristic time and size scales linearly proportional to the mass of the central black hole. The X-ray and optical variations are strongly correlated in 3C 120, which implies that the optical emission in this object arises from the same general region as the X-rays, i.e., in the accretion disk-corona system. We numerically model multi-wavelength light curves of 3C 120 from such a system with the optical-UV emission produced in the disk and the X-rays generated by scattering of thermal photons by hot electrons in the corona. From the comparison of the temporal properties of the model light curves to that of the observed variability, we constrain the physical size of the corona and the distances of the emitting regions from the central BH.Comment: Accepted for publication in the Astrophysical Journal. 28 pages, 21 figures, 2 table

    Modelling element abundances in semi-analytic models of galaxy formation

    Get PDF
    We update the treatment of chemical evolution in the Munich semi-analytic model, L-GALAXIES. Our new implementation includes delayed enrichment from stellar winds, supernovae type II (SNe-II) and supernovae type Ia (SNe-Ia), as well as metallicity-dependent yields and a reformulation of the associated supernova feedback. Two different sets of SN-II yields and three different SN-Ia delay-time distributions (DTDs) are considered, and eleven heavy elements (including O, Mg and Fe) are self-consistently tracked. We compare the results of this new implementation with data on a) local, star-forming galaxies, b) Milky Way disc G dwarfs, and c) local, elliptical galaxies. We find that the z=0 gas-phase mass-metallicity relation is very well reproduced for all forms of DTD considered, as is the [Fe/H] distribution in the Milky Way disc. The [O/Fe] distribution in the Milky Way disc is best reproduced when using a DTD with less than or equal to 50 per cent of SNe-Ia exploding within ~400 Myrs. Positive slopes in the mass-[alpha/Fe] relations of local ellipticals are also obtained when using a DTD with such a minor `prompt' component. Alternatively, metal-rich winds that drive light alpha elements directly out into the circumgalactic medium also produce positive slopes for all forms of DTD and SN-II yields considered. Overall, we find that the best model for matching the wide range of observational data considered here should include a power-law SN-Ia DTD, SN-II yields that take account of prior mass loss through stellar winds, and some direct ejection of light alpha elements out of galaxies

    IMI – Clinical Management Guidelines Report

    Get PDF
    Best practice clinical guidelines for myopia control involve an understanding of the epidemiology of myopia, risk factors, visual environment interventions, and optical and pharmacologic treatments, as well as skills to translate the risks and benefits of a given myopia control treatment into lay language for both the patient and their parent or caregiver. This report details evidence-based best practice management of the pre-, stable, and the progressing myope, including risk factor identification, examination, selection of treatment strategies, and guidelines for ongoing management. Practitioner considerations such as informed consent, prescribing off-label treatment, and guides for patient and parent communication are detailed. The future research directions of myopia interventions and treatments are discussed, along with the provision of clinical references, resources, and recommendations for continuing professional education in this growing area of clinical practice

    Sequential Star Formation in RCW 34: A Spectroscopic Census of the Stellar Content of High-mass Star-forming Regions

    Full text link
    We present VLT/SINFONI integral field spectroscopy of RCW 34 along with Spitzer/IRAC photometry of the surroundings. RCW 34 consists of three different regions. A large bubble has been detected on the IRAC images in which a cluster of intermediate- and low-mass class II objects is found. At the northern edge of this bubble, an HII region is located, ionized by 3 OB stars. Intermediate mass stars (2 - 3 Msun) are detected of G- and K- spectral type. These stars are still in the pre-main sequence (PMS) phase. North of the HII region, a photon-dominated region is present, marking the edge of a dense molecular cloud traced by H2 emission. Several class 0/I objects are associated with this cloud, indicating that star formation is still taking place. The distance to RCW 34 is revised to 2.5 +- 0.2 kpc and an age estimate of 2 - 1 Myrs is derived from the properties of the PMS stars inside the HII region. The most likely scenario for the formation of the three regions is that star formation propagates from South to North. First the bubble is formed, produced by intermediate- and low-mass stars only, after that, the HII region is formed from a dense core at the edge of the molecular cloud, resulting in the expansion as a champagne flow. More recently, star formation occurred in the rest of the molecular cloud. Two different formation scenarios are possible: (a) The bubble with the cluster of low- and intermediate mass stars triggered the formation of the O star at the edge of the molecular cloud which in turn induces the current star-formation in the molecular cloud. (b) An external triggering is responsible for the star-formation propagating from South to North. [abridged]Comment: 19 pages, 11 figures, accepted by Ap

    Radio source calibration for the VSA and other CMB instruments at around 30 GHz

    Get PDF
    Accurate calibration of data is essential for the current generation of CMB experiments. Using data from the Very Small Array (VSA), we describe procedures which will lead to an accuracy of 1 percent or better for experiments such as the VSA and CBI. Particular attention is paid to the stability of the receiver systems, the quality of the site and frequent observations of reference sources. At 30 GHz the careful correction for atmospheric emission and absorption is shown to be essential for achieving 1 percent precision. The sources for which a 1 percent relative flux density calibration was achieved included Cas A, Cyg A, Tau A and NGC7027 and the planets Venus, Jupiter and Saturn. A flux density, or brightness temperature in the case of the planets, was derived at 33 GHz relative to Jupiter which was adopted as the fundamental calibrator. A spectral index at ~30 GHz is given for each. Cas A,Tau A, NGC7027 and Venus were examined for variability. Cas A was found to be decreasing at 0.394±0.0190.394 \pm 0.019 percent per year over the period March 2001 to August 2004. In the same period Tau A was decreasing at 0.22±0.070.22\pm 0.07 percent per year. A survey of the published data showed that the planetary nebula NGC7027 decreased at 0.16±0.040.16\pm 0.04 percent per year over the period 1967 to 2003. Venus showed an insignificant (1.5±1.31.5 \pm 1.3 percent) variation with Venusian illumination. The integrated polarization of Tau A at 33 GHz was found to be 7.8±0.67.8\pm 0.6 percent at pa =148±3 = 148^\circ \pm 3^\circ.}Comment: 13 pages, 15 figures, submitted to MNRA

    Optical Spectra of SNR Candidates in NGC 300

    Full text link
    We present moderate-resolution (<5A) long-slit optical spectra of 51 nebular objects in the nearby Sculptor Group galaxy NGC 300 obtained with the 2.3 meter Advanced Technology Telescope at Siding Spring Observatory, Australia. Adopting the criterion of [SII]/Ha>=0.4 to confirm supernova remnants (SNRs) from optical spectra, we find that of 28 objects previously proposed as SNRs from optical observations, 22 meet this criterion with six showing [SII]/Ha of less than 0.4. Of 27 objects suggested as SNRs from radio data, four are associated with the 28 previously proposed SNRs. Of these four, three (included in the 22 above) meet the criterion. In all, 22 of the 51 nebular objects meet the [SII]/Ha criterion as SNRs while the nature of the remaining 29 objects remains undetermined by these observations.Comment: Accepted for publication in Astrophysics & Space Scienc

    K2 discovers a busy bee: an unusual transiting Neptune found in the beehive cluster

    Get PDF
    Open clusters have been the focus of several exoplanet surveys, but only a few planets have so far been discovered. The Kepler spacecraft revealed an abundance of small planets around small cool stars, therefore, such cluster members are prime targets for exoplanet transit searches. Kepler's new mission, K2, is targeting several open clusters and star-forming regions around the ecliptic to search for transiting planets around their low-mass constituents. Here, we report the discovery of the first transiting planet in the intermediate-age (800 Myr) Beehive cluster (Praesepe). K2-95 is a faint (Kp = 15.5 mag) dwarf from K2's Campaign 5 with an effective temperature of 3471 ±124 K, approximately solar metallicity and a radius of 0.402± 0.050.R⊕ We detected a transiting planet with a radius of3.47+0.78 -0.53R⊕ and an orbital period of 10.134 days. We combined photometry, medium/high-resolution spectroscopy, adaptive optics/speckle imaging, and archival survey images to rule out any false-positive detection scenarios, validate the planet, and further characterize the system. The planet's radius is very unusual as M-dwarf field stars rarely have Neptune-sized transiting planets. The comparatively large radius of K2-95b is consistent with the other recently discovered cluster planets K2-25b (Hyades) and K2-33b (Upper Scorpius), indicating systematic differences in their evolutionary states or formation. These discoveries from K2 provide a snapshot of planet formation and evolution in cluster environments and thus make excellent laboratories to test differences between field-star and cluster planet populations
    corecore