171 research outputs found

    Photoassociation and coherent transient dynamics in the interaction of ultracold rubidium atoms with shaped femtosecond pulses - I. Experiment

    Full text link
    We experimentally investigate various processes present in the photoassociative interaction of an ultracold atomic sample with shaped femtosecond laser pulses. We demonstrate the photoassociation of pairs of rubidium atoms into electronically excited, bound molecular states using spectrally cut femtosecond laser pulses tuned below the rubidium D1 or D2 asymptote. Time-resolved pump-probe spectra reveal coherent oscillations of the molecular formation rate, which are due to coherent transient dynamics in the electronic excitation. The oscillation frequency corresponds to the detun-ing of the spectral cut position to the asymptotic transition frequency of the rubidium D1 or D2 lines, respectively. Measurements of the molecular photoassociation signal as a function of the pulse energy reveal a non-linear dependence and indicate a non-perturbative excitation process. Chirping the association laser pulse allowed us to change the phase of the coherent transients. Furthermore, a signature for molecules in the electronic ground state is found, which is attributed to molecule formation by femtosecond photoassociation followed by spontaneous decay. In a subsequent article [A. Merli et al., submitted] quantum mechanical calculations are presented, which compare well with the experimental data and reveal further details about the observed coherent transient dynamics

    Steps Toward Determination of the Size and Structure of the Broad-Line Region in Active Galactic Nuclei. XII. Ground-Based Monitoring of 3C 390.3

    Get PDF
    Results of a ground-based optical monitoring campaign on 3C 390.3 in 1994-1995 are presented. The broadband fluxes (B, V, R, and I), the spectrophotometric optical continuum flux and the Fλ(5177 Å),integrated emission-line fluxes of Hᵪ Hβ, Hᵧ, He I λ5876 and He II λ4686 all show a nearly monotonic increase with episodes of milder short-term variations superposed. The amplitude of the continuum variations increases with decreasing wavelength (4400-9000 Å). The optical continuum variations follow the variations in the ultraviolet and X-ray with time delays, measured from the centroids of the cross-correlation functions, typically around 5 days, but with uncertainties also typically around 5 days; zero time delay between the high-energy and low-energy continuum variations cannot be ruled out. The strong optical emission lines Hᵪ Hβ, Hᵧ, He I λ5876 respond to the high-energy continuum variations with time delays typically about 20 days, with uncertainties of about 8 days. There is some evidence that He II λ4686 responds somewhat more rapidly, with a time delay of around 10 days, but again, the uncertainties are quite large (~8 days). The mean and rms spectra of the Hᵪ and Hβ line profiles provide indications for the existence of at least three distinct components located at ±4000 and 0 km s-1 relative to the line peak. The emission-line profle variations are largest near line center

    TRPP2 and TRPV4 form a polymodal sensory channel complex

    Get PDF
    The primary cilium has evolved as a multifunctional cellular compartment that decorates most vertebrate cells. Cilia sense mechanical stimuli in various organs, but the molecular mechanisms that convert the deflection of cilia into intracellular calcium transients have remained elusive. Polycystin-2 (TRPP2), an ion channel mutated in polycystic kidney disease, is required for cilia-mediated calcium transients but lacks mechanosensitive properties. We find here that TRPP2 utilizes TRPV4 to form a mechano- and thermosensitive molecular sensor in the cilium. Depletion of TRPV4 in renal epithelial cells abolishes flow-induced calcium transients, demonstrating that TRPV4, like TRPP2, is an essential component of the ciliary mechanosensor. Because TRPV4-deficient zebrafish and mice lack renal cysts, our findings challenge the concept that defective ciliary flow sensing constitutes the fundamental mechanism of cystogenesis

    A protocol for a systematic review of knowledge translation strategies in the allied health professions

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Knowledge translation (KT) aims to close the gap between knowledge and practice in order to realize the benefits of research through (a) improved health outcomes, (b) more effective health services and products, and (c) strengthened healthcare systems. While there is some understanding of strategies to put research findings into practice within nursing and medicine, we have limited knowledge of KT strategies in allied health professions. Given the interprofessional nature of healthcare, a lack of guidance for supporting KT strategies in the allied health professions is concerning. Our objective in this study is to systematically review published research on KT strategies in five allied health disciplines.</p> <p>Methods</p> <p>A medical research librarian will develop and implement search strategies designed to identify evidence that is relevant to each question of the review. Two reviewers will perform study selection and quality assessment using standard forms. For study selection, data will be extracted by two reviewers. For quality assessment, data will be extracted by one reviewer and verified by a second. Disagreements will be resolved through discussion or third party adjudication. Within each profession, data will be grouped and analyzed by research design and KT strategies using the Effective Practice and Organisation of Care Review Group classification scheme. An overall synthesis across professions will be conducted.</p> <p>Significance</p> <p>A uniprofessional approach to KT does not represent the interprofessional context it targets. Our findings will provide the first systematic overview of KT strategies used in allied health professionals' clinical practice, as well as a foundation to inform future KT interventions in allied healthcare settings.</p

    A Molecular Epidemiological Study of var Gene Diversity to Characterize the Reservoir of Plasmodium falciparum in Humans in Africa

    Get PDF
    BACKGROUND: The reservoir of Plasmodium infection in humans has traditionally been defined by blood slide positivity. This study was designed to characterize the local reservoir of infection in relation to the diverse var genes that encode the major surface antigen of Plasmodium falciparum blood stages and underlie the parasite's ability to establish chronic infection and transmit from human to mosquito. METHODOLOGY/PRINCIPAL FINDINGS: We investigated the molecular epidemiology of the var multigene family at local sites in Gabon, Senegal and Kenya which differ in parasite prevalence and transmission intensity. 1839 distinct var gene types were defined by sequencing DBLα domains in the three sites. Only 76 (4.1%) var types were found in more than one population indicating spatial heterogeneity in var types across the African continent. The majority of var types appeared only once in the population sample. Non-parametric statistical estimators predict in each population at minimum five to seven thousand distinct var types. Similar diversity of var types was seen in sites with different parasite prevalences. CONCLUSIONS/SIGNIFICANCE: Var population genomics provides new insights into the epidemiology of P. falciparum in Africa where malaria has never been conquered. In particular, we have described the extensive reservoir of infection in local African sites and discovered a unique var population structure that can facilitate superinfection through minimal overlap in var repertoires among parasite genomes. Our findings show that var typing as a molecular surveillance system defines the extent of genetic complexity in the reservoir of infection to complement measures of malaria prevalence. The observed small scale spatial diversity of var genes suggests that var genetics could greatly inform current malaria mapping approaches and predict complex malaria population dynamics due to the import of var types to areas where no widespread pre-existing immunity in the population exists

    High aboveground carbon stock of African tropical montane forests

    Get PDF
    Tropical forests store 40-50 per cent of terrestrial vegetation carbon(1). However, spatial variations in aboveground live tree biomass carbon (AGC) stocks remain poorly understood, in particular in tropical montane forests(2). Owing to climatic and soil changes with increasing elevation(3), AGC stocks are lower in tropical montane forests compared with lowland forests(2). Here we assemble and analyse a dataset of structurally intact old-growth forests (AfriMont) spanning 44 montane sites in 12 African countries. We find that montane sites in the AfriMont plot network have a mean AGC stock of 149.4 megagrams of carbon per hectare (95% confidence interval 137.1-164.2), which is comparable to lowland forests in the African Tropical Rainforest Observation Network(4) and about 70 per cent and 32 per cent higher than averages from plot networks in montane(2,5,6) and lowland(7) forests in the Neotropics, respectively. Notably, our results are two-thirds higher than the Intergovernmental Panel on Climate Change default values for these forests in Africa(8). We find that the low stem density and high abundance of large trees of African lowland forests(4) is mirrored in the montane forests sampled. This carbon store is endangered: we estimate that 0.8 million hectares of old-growth African montane forest have been lost since 2000. We provide country-specific montane forest AGC stock estimates modelled from our plot network to help to guide forest conservation and reforestation interventions. Our findings highlight the need for conserving these biodiverse(9,10) and carbon-rich ecosystems. The aboveground carbon stock of a montane African forest network is comparable to that of a lowland African forest network and two-thirds higher than default values for these montane forests.Peer reviewe

    Telomerecat: A ploidy-agnostic method for estimating telomere length from whole genome sequencing data.

    Get PDF
    Telomere length is a risk factor in disease and the dynamics of telomere length are crucial to our understanding of cell replication and vitality. The proliferation of whole genome sequencing represents an unprecedented opportunity to glean new insights into telomere biology on a previously unimaginable scale. To this end, a number of approaches for estimating telomere length from whole-genome sequencing data have been proposed. Here we present Telomerecat, a novel approach to the estimation of telomere length. Previous methods have been dependent on the number of telomeres present in a cell being known, which may be problematic when analysing aneuploid cancer data and non-human samples. Telomerecat is designed to be agnostic to the number of telomeres present, making it suited for the purpose of estimating telomere length in cancer studies. Telomerecat also accounts for interstitial telomeric reads and presents a novel approach to dealing with sequencing errors. We show that Telomerecat performs well at telomere length estimation when compared to leading experimental and computational methods. Furthermore, we show that it detects expected patterns in longitudinal data, repeated measurements, and cross-species comparisons. We also apply the method to a cancer cell data, uncovering an interesting relationship with the underlying telomerase genotype

    The genetic architecture of the human cerebral cortex

    Get PDF
    The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson's disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder

    Research and Science Today No. 2(4)/2012

    Full text link
    corecore