88 research outputs found

    Autophagy and unfolded protein response (UPR) regulate mammary gland involution by restraining apoptosis-driven irreversible changes

    Get PDF
    The postnatal mammary gland undergoes repeated cycles of proliferation and cell death, most notably when the fully differentiated (lactating) gland dedifferentiates to a prelactation state. Accumulation of milk proteins in the secretory epithelium creates the stress signal that triggers this process (involution). How this stress is perceived, and the cellular processes that are subsequently activated, remain unclear. We now report that Unfolded Protein Response (UPR), autophagy, and apoptosis related genes cluster separately during lactation and involution in the mouse mammary gland. Time-course experiments in rodents show that autophagy and UPR signaling are tightly co-regulated at the transition from reversible to irreversible involution. Inhibition of autophagy by chloroquine or genetic deletion of one ATG7 allele enhanced progression of mammary involution into the irreversible phase, as characterized by an early/precocious induction of apoptosis. These are the first preclinical in vivo data in support of a clinical trial testing an autophagy inhibitor for prevention of intraductal breast malignancy progression to invasive breast cancer. In marked contrast, stimulation of autophagy by low dose tunicamycin treatment reduced apoptosis and extended the reversible phase of involution by sustaining the secretory epithelium. Autophagy stimulators could be used short-term to promote lactation in women experiencing difficulties or irregularities in nursing. Taken together, these data indicate that UPR and autophagy play a key role in regulating the balance between cell survival and apoptosis during normal mammary gland regression.</p

    Degrading lists

    Get PDF
    Post-print (lokagerð höfundar)We discuss the relationship between monads and their known generalisation, graded monads, which are especially useful for modelling computational effects equipped with a form of sequential composition. Specifically, we ask if a graded monad can be extended to a monad, and when such a degrading is in some sense canonical. Our particular examples are the graded monads of lists and non-empty lists indexed by their lengths, which gives us a pretext to study the space of all (non-graded) monad structures on the list and non-empty list endofunctors. We show that, in both cases, there exist infinitely many monad structures. However, while there are at least two ways to complete the graded monad structure on length-indexed lists to a monad structure on the list endofunctor, such a completion for non-empty lists is unique.This research was supported by the Icelandic Research Fund project grant no. 196323-052. T.U. was also supported by the Estonian Ministry of Education and Research institutional research grant no. IUT33-13.Peer reviewed (ritrýnd grein

    Observing the Evolution of the Universe

    Full text link
    How did the universe evolve? The fine angular scale (l>1000) temperature and polarization anisotropies in the CMB are a Rosetta stone for understanding the evolution of the universe. Through detailed measurements one may address everything from the physics of the birth of the universe to the history of star formation and the process by which galaxies formed. One may in addition track the evolution of the dark energy and discover the net neutrino mass. We are at the dawn of a new era in which hundreds of square degrees of sky can be mapped with arcminute resolution and sensitivities measured in microKelvin. Acquiring these data requires the use of special purpose telescopes such as the Atacama Cosmology Telescope (ACT), located in Chile, and the South Pole Telescope (SPT). These new telescopes are outfitted with a new generation of custom mm-wave kilo-pixel arrays. Additional instruments are in the planning stages.Comment: Science White Paper submitted to the US Astro2010 Decadal Survey. Full list of 177 author available at http://cmbpol.uchicago.ed

    Catching Element Formation In The Act

    Full text link
    Gamma-ray astronomy explores the most energetic photons in nature to address some of the most pressing puzzles in contemporary astrophysics. It encompasses a wide range of objects and phenomena: stars, supernovae, novae, neutron stars, stellar-mass black holes, nucleosynthesis, the interstellar medium, cosmic rays and relativistic-particle acceleration, and the evolution of galaxies. MeV gamma-rays provide a unique probe of nuclear processes in astronomy, directly measuring radioactive decay, nuclear de-excitation, and positron annihilation. The substantial information carried by gamma-ray photons allows us to see deeper into these objects, the bulk of the power is often emitted at gamma-ray energies, and radioactivity provides a natural physical clock that adds unique information. New science will be driven by time-domain population studies at gamma-ray energies. This science is enabled by next-generation gamma-ray instruments with one to two orders of magnitude better sensitivity, larger sky coverage, and faster cadence than all previous gamma-ray instruments. This transformative capability permits: (a) the accurate identification of the gamma-ray emitting objects and correlations with observations taken at other wavelengths and with other messengers; (b) construction of new gamma-ray maps of the Milky Way and other nearby galaxies where extended regions are distinguished from point sources; and (c) considerable serendipitous science of scarce events -- nearby neutron star mergers, for example. Advances in technology push the performance of new gamma-ray instruments to address a wide set of astrophysical questions.Comment: 14 pages including 3 figure

    A chemical survey of exoplanets with ARIEL

    Get PDF
    Thousands of exoplanets have now been discovered with a huge range of masses, sizes and orbits: from rocky Earth-like planets to large gas giants grazing the surface of their host star. However, the essential nature of these exoplanets remains largely mysterious: there is no known, discernible pattern linking the presence, size, or orbital parameters of a planet to the nature of its parent star. We have little idea whether the chemistry of a planet is linked to its formation environment, or whether the type of host star drives the physics and chemistry of the planet’s birth, and evolution. ARIEL was conceived to observe a large number (~1000) of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25–7.8 μm spectral range and multiple narrow-band photometry in the optical. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres which should show minimal condensation and sequestration of high-Z materials compared to their colder Solar System siblings. Said warm and hot atmospheres are expected to be more representative of the planetary bulk composition. Observations of these warm/hot exoplanets, and in particular of their elemental composition (especially C, O, N, S, Si), will allow the understanding of the early stages of planetary and atmospheric formation during the nebular phase and the following few million years. ARIEL will thus provide a representative picture of the chemical nature of the exoplanets and relate this directly to the type and chemical environment of the host star. ARIEL is designed as a dedicated survey mission for combined-light spectroscopy, capable of observing a large and well-defined planet sample within its 4-year mission lifetime. Transit, eclipse and phase-curve spectroscopy methods, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allow us to measure atmospheric signals from the planet at levels of 10–100 part per million (ppm) relative to the star and, given the bright nature of targets, also allows more sophisticated techniques, such as eclipse mapping, to give a deeper insight into the nature of the atmosphere. These types of observations require a stable payload and satellite platform with broad, instantaneous wavelength coverage to detect many molecular species, probe the thermal structure, identify clouds and monitor the stellar activity. The wavelength range proposed covers all the expected major atmospheric gases from e.g. H2O, CO2, CH4 NH3, HCN, H2S through to the more exotic metallic compounds, such as TiO, VO, and condensed species. Simulations of ARIEL performance in conducting exoplanet surveys have been performed – using conservative estimates of mission performance and a full model of all significant noise sources in the measurement – using a list of potential ARIEL targets that incorporates the latest available exoplanet statistics. The conclusion at the end of the Phase A study, is that ARIEL – in line with the stated mission objectives – will be able to observe about 1000 exoplanets depending on the details of the adopted survey strategy, thus confirming the feasibility of the main science objectives.Peer reviewedFinal Published versio

    Intensity Modulated Radiation Therapy With Stereotactic Body Radiation Therapy Boost for Unfavorable Prostate Cancer: Five-Year Outcomes

    Get PDF
    PURPOSE: Intensity-modulated radiation therapy (IMRT) with brachytherapy boost for unfavorable prostate cancer has been shown to improve biochemical relapse-free survival compared to IMRT alone. Stereotactic body radiation therapy (SBRT) is a less-invasive alternative to brachytherapy. Early outcomes utilizing SBRT boost suggest low rates of high-grade toxicity with a maintained patient-reported quality of life. Here, we report the 5-year progression-free survival (PFS) and prostate cancer-specific survival (PCSS) of patients treated with IMRT plus SBRT boost. MATERIALS AND METHODS: Between 2008 and 2020, 255 patients with unfavorable prostate cancer were treated with robotic SBRT (19.5 Gy in three fractions) followed by fiducial-guided IMRT (45-50.4 Gy) according to an institutional protocol. For the first year, the patient\u27s PSA level was monitored every 3 months, biannually for 2 years, and annually thereafter. Failure was defined as nadir + 2 ng/mL or a rising PSA with imaging suggestive of recurrence. Detection of recurrence also included digital rectal examination and imaging studies, such as MRI, CT, PET/CT, and/or bone scans. PFS and PCSS were calculated using the Kaplan-Meier method. RESULTS: The median follow-up period was 71 months. According to the NCCN risk classification, 5% (13/255) of the patients had favorable intermediate-risk disease, 23% (57/255) had unfavorable intermediate-risk disease, 40% (102/255) had high-risk disease, and 32% (83/255) had very high-risk disease. Androgen deprivation therapy was administered to 80% (204/255) of the patients. Elective pelvic lymph node IMRT was performed in 28 (10%) patients. The PFS for all patients at 5 years was 81% (favorable intermediate risk, 91%; unfavorable intermediate risk, 89%; high-risk, 78%; and very-high risk, 72%). The PCSS for all patients at 5 years was 97% (favorable intermediate risk, 100%; unfavorable intermediate risk, 100%; high risk, 100%; and very high risk, 89%). CONCLUSION: The incidence of failure following IMRT plus SBRT for unfavorable prostate cancer remains low at 5 years

    Intensity modulated radiation therapy with stereotactic body radiation therapy boost for unfavorable prostate cancer: five-year outcomes

    Get PDF
    PurposeIntensity-modulated radiation therapy (IMRT) with brachytherapy boost for unfavorable prostate cancer has been shown to improve biochemical relapse-free survival compared to IMRT alone. Stereotactic body radiation therapy (SBRT) is a less-invasive alternative to brachytherapy. Early outcomes utilizing SBRT boost suggest low rates of high-grade toxicity with a maintained patient-reported quality of life. Here, we report the 5-year progression-free survival (PFS) and prostate cancer-specific survival (PCSS) of patients treated with IMRT plus SBRT boost.Materials and methodsBetween 2008 and 2020, 255 patients with unfavorable prostate cancer were treated with robotic SBRT (19.5 Gy in three fractions) followed by fiducial-guided IMRT (45–50.4 Gy) according to an institutional protocol. For the first year, the patient’s PSA level was monitored every 3 months, biannually for 2 years, and annually thereafter. Failure was defined as nadir + 2 ng/mL or a rising PSA with imaging suggestive of recurrence. Detection of recurrence also included digital rectal examination and imaging studies, such as MRI, CT, PET/CT, and/or bone scans. PFS and PCSS were calculated using the Kaplan–Meier method.ResultsThe median follow-up period was 71 months. According to the NCCN risk classification, 5% (13/255) of the patients had favorable intermediate-risk disease, 23% (57/255) had unfavorable intermediate-risk disease, 40% (102/255) had high-risk disease, and 32% (83/255) had very high-risk disease. Androgen deprivation therapy was administered to 80% (204/255) of the patients. Elective pelvic lymph node IMRT was performed in 28 (10%) patients. The PFS for all patients at 5 years was 81% (favorable intermediate risk, 91%; unfavorable intermediate risk, 89%; high-risk, 78%; and very-high risk, 72%). The PCSS for all patients at 5 years was 97% (favorable intermediate risk, 100%; unfavorable intermediate risk, 100%; high risk, 100%; and very high risk, 89%).ConclusionThe incidence of failure following IMRT plus SBRT for unfavorable prostate cancer remains low at 5 years

    Co-Inhibition of BCL-W and BCL2 Restores Antiestrogen Sensitivity through BECN1 and Promotes an Autophagy-Associated Necrosis

    Get PDF
    BCL2 family members affect cell fate decisions in breast cancer but the role of BCL-W (BCL2L2) is unknown. We now show the integrated roles of the antiapoptotic BCL-W and BCL2 in affecting responsiveness to the antiestrogen ICI 182,780 (ICI; Fulvestrant Faslodex), using both molecular (siRNA; shRNA) and pharmacologic (YC137) approaches in three breast cancer variants; MCF-7/LCC1 (ICI sensitive), MCF-7/LCC9 (ICI resistant), and LY2 (ICI resistant). YC137 inhibits BCL-W and BCL2 and restores ICI sensitivity in resistant cells. Co-inhibition of BCL-W and BCL2 is both necessary and sufficient to restore sensitivity to ICI, and explains mechanistically the action of YC137. These data implicate functional cooperation and/or redundancy in signaling between BCL-W and BCL2, and suggest that broad BCL2 family member inhibitors will have greater therapeutic value than targeting only individual proteins. Whereas ICI sensitive MCF-7/LCC1 cells undergo increased apoptosis in response to ICI following BCL-W±BCL2 co-inhibition, the consequent resensitization of resistant MCF-7/LCC9 and LY2 cells reflects increases in autophagy (LC3 cleavage; p62/SQSTM1 expression) and necrosis but not apoptosis or cell cycle arrest. Thus, de novo sensitive cells and resensitized resistant cells die through different mechanisms. Following BCL-W+BCL2 co-inhibition, suppression of functional autophagy by 3-methyladenine or BECN1 shRNA reduces ICI-induced necrosis but restores the ability of resistant cells to die through apoptosis. These data demonstrate the plasticity of cell fate mechanisms in breast cancer cells in the context of antiestrogen responsiveness. Restoration of ICI sensitivity in resistant cells appears to occur through an increase in autophagy-associated necrosis. BCL-W, BCL2, and BECN1 integrate important functions in determining antiestrogen responsiveness, and the presence of functional autophagy may influence the balance between apoptosis and necrosis

    Genetic Sharing with Cardiovascular Disease Risk Factors and Diabetes Reveals Novel Bone Mineral Density Loci.

    Get PDF
    Bone Mineral Density (BMD) is a highly heritable trait, but genome-wide association studies have identified few genetic risk factors. Epidemiological studies suggest associations between BMD and several traits and diseases, but the nature of the suggestive comorbidity is still unknown. We used a novel genetic pleiotropy-informed conditional False Discovery Rate (FDR) method to identify single nucleotide polymorphisms (SNPs) associated with BMD by leveraging cardiovascular disease (CVD) associated disorders and metabolic traits. By conditioning on SNPs associated with the CVD-related phenotypes, type 1 diabetes, type 2 diabetes, systolic blood pressure, diastolic blood pressure, high density lipoprotein, low density lipoprotein, triglycerides and waist hip ratio, we identified 65 novel independent BMD loci (26 with femoral neck BMD and 47 with lumbar spine BMD) at conditional FDR < 0.01. Many of the loci were confirmed in genetic expression studies. Genes validated at the mRNA levels were characteristic for the osteoblast/osteocyte lineage, Wnt signaling pathway and bone metabolism. The results provide new insight into genetic mechanisms of variability in BMD, and a better understanding of the genetic underpinnings of clinical comorbidity

    Age at first birth in women is genetically associated with increased risk of schizophrenia

    Get PDF
    Prof. Paunio on PGC:n jäsenPrevious studies have shown an increased risk for mental health problems in children born to both younger and older parents compared to children of average-aged parents. We previously used a novel design to reveal a latent mechanism of genetic association between schizophrenia and age at first birth in women (AFB). Here, we use independent data from the UK Biobank (N = 38,892) to replicate the finding of an association between predicted genetic risk of schizophrenia and AFB in women, and to estimate the genetic correlation between schizophrenia and AFB in women stratified into younger and older groups. We find evidence for an association between predicted genetic risk of schizophrenia and AFB in women (P-value = 1.12E-05), and we show genetic heterogeneity between younger and older AFB groups (P-value = 3.45E-03). The genetic correlation between schizophrenia and AFB in the younger AFB group is -0.16 (SE = 0.04) while that between schizophrenia and AFB in the older AFB group is 0.14 (SE = 0.08). Our results suggest that early, and perhaps also late, age at first birth in women is associated with increased genetic risk for schizophrenia in the UK Biobank sample. These findings contribute new insights into factors contributing to the complex bio-social risk architecture underpinning the association between parental age and offspring mental health.Peer reviewe
    corecore