1,320 research outputs found
The efficiency of fan-pad cooling system in greenhouse and building up of internal greenhouse temperature map
During summer periods, high temperature values that are being formed in greenhouses can greatly influence the efficiency of production workers and also decrease the productivity of plants grown there. A greenhouse production without the cooling systems can be sustained at the desirable level by imposing summer restrictions in the areas with warm climate, and by starting cooling in the areas with cold climate. A statement can be made regarding both utility and efficiency of fan-pad cooling systems that they tend to go up in the areas with low relative air humidity. The present study has been carried out in order to either prove or disprove this statement. We have attempted to create a map of internal greenhouse temperature distribution via determining the system’s efficiency. As a result of this study, it was determined that since air temperature and relative humidity in the air tend to decrease during summer months by using fan-pad cooling system, temperatures in the greenhouse can be consequently lowered down to 10-12°C. Statistical analysis revealed remarkable differences (
Qualitative characterization of healthcare wastes
The biological hazard inherent in the clinical wastes should be considered during the management and treatment process as well as the disposal into the environment. In this chapter, the risks associated with the clinical wastes as well as the management of these wastes are discussed. The chapter focused on reviewing the types of healthcare wastes generated from hospitals and clinics as well as the regulations and management practices used for these wastes. Moreover, the health risk associated with the infectious agents which have the potential to be transmitted into the environment. It has appeared that the clinical wastes represent real hazards for the human health and the environment if they were not managed properly
Gamma Ray Bursts: Observations and Theoretical Conjectures
Gamma Ray Bursts (GRBs) are short bursts of very high energy photons which were discovered in the late 1960s. Ever since their discovery, scientists have wondered about their origin. Nowadays it is known that they originate outside the Milky Way because of their high red shift rst measured in the afterglows thanks to the Beppo-SAX satellite and ground-based observations. However, theoreticians still do not agree about the mechanism that generates the bursts, and different competing models are animatedly debated. Current GRB experiments include the Swift satellite and the Pierre Auger Observatory that could detect GRBs with an increase of the background. A forthcoming dedicated experiment is GLAST, a satellite observatory for detecting gamma rays with energies up to 300 GeV, whose launch is scheduled for early 2008
Testbeam and Laboratory Characterization of CMS 3D Pixel Sensors
The pixel detector is the innermost tracking device in CMS, reconstructing
interaction vertices and charged particle trajectories. The sensors located in
the innermost layers of the pixel detector must be upgraded for the ten-fold
increase in luminosity expected with the High- Luminosity LHC (HL-LHC) phase.
As a possible replacement for planar sensors, 3D silicon technology is under
consideration due to its good performance after high radiation fluence. In this
paper, we report on pre- and post- irradiation measurements for CMS 3D pixel
sensors with different electrode configurations. The effects of irradiation on
electrical properties, charge collection efficiency, and position resolution of
3D sensors are discussed. Measurements of various test structures for
monitoring the fabrication process and studying the bulk and surface
properties, such as MOS capacitors, planar and gate-controlled diodes are also
presented.Comment: 14 page
Light-limited photosynthesis under energy-saving film decreases eggplant yield
Glasshouse films with adjustable light transmittance and energy-efficient designs have the potential to reduce (up to 80%) the high energy cost for greenhouse horticulture operations. Whether these films compromise the quantity and quality of light transmission for photosynthesis and crop yield remains unclear. A “Smart Glass” film ULR-80 (SG) was applied to a high-tech greenhouse horticulture facility, and two experimental trials were conducted by growing eggplant (Solanum melongena) using commercial vertical cultivation and management practices. SG blocked 85% of ultraviolet (UV), 58% of far-red, and 26% of red light, leading to an overall reduction of 19% in photosynthetically active radiation (PAR, 380–699 nm) and a 25% reduction in total season fruit yield. There was a 53% (season mean) reduction in net short-wave radiation (radiometer range, 385–2,105 nm upward; 295–2,685 nm downward) that generated a net reduction of 8% in heat load and reduced water and nutrient consumption by 18%, leading to improved energy and resource use efficiency. Eggplant adjusted to the altered SG light environment via decreased maximum light-saturated photosynthetic rates (Amax) and lower xanthophyll de-epoxidation state. The shift in light characteristics under SG led to reduced photosynthesis, which may have reduced source (leaf) to sink (fruit) carbon distribution, increased fruit abortion and decreased fruit yield, but did not affect nutritional quality. We conclude that SG increases energy and resource use efficiency, without affecting fruit quality, but the reduction in photosynthesis and eggplant yield is high. The solution is to re-engineer the SG to increase penetration of UV and PAR, while maintaining blockage of glasshouse heat gain
Deficiency in origin licensing proteins impairs cilia formation: implications for the aetiology of meier-gorlin syndrome
Mutations in ORC1, ORC4, ORC6, CDT1, and CDC6, which encode proteins required for DNA replication origin licensing, cause Meier-Gorlin syndrome (MGS), a disorder conferring microcephaly, primordial dwarfism, underdeveloped ears, and skeletal abnormalities. Mutations in ATR, which also functions during replication, can cause Seckel syndrome, a clinically related disorder. These findings suggest that impaired DNA replication could underlie the developmental defects characteristic of these disorders. Here, we show that although origin licensing capacity is impaired in all patient cells with mutations in origin licensing component proteins, this does not correlate with the rate of progression through S phase. Thus, the replicative capacity in MGS patient cells does not correlate with clinical manifestation. However, ORC1-deficient cells from MGS patients and siRNA-mediated depletion of origin licensing proteins also have impaired centrosome and centriole copy number. As a novel and unexpected finding, we show that they also display a striking defect in the rate of formation of primary cilia. We demonstrate that this impacts sonic hedgehog signalling in ORC1-deficient primary fibroblasts. Additionally, reduced growth factor-dependent signaling via primary cilia affects the kinetics of cell cycle progression following cell cycle exit and re-entry, highlighting an unexpected mechanism whereby origin licensing components can influence cell cycle progression. Finally, using a cell-based model, we show that defects in cilia function impair chondroinduction. Our findings raise the possibility that a reduced efficiency in forming cilia could contribute to the clinical features of MGS, particularly the bone development abnormalities, and could provide a new dimension for considering developmental impacts of licensing deficiency
Recommended from our members
A Search for Dark Higgs Bosons
Recent astrophysical and terrestrial experiments have motivated the proposal
of a dark sector with GeV-scale gauge boson force carriers and new Higgs
bosons. We present a search for a dark Higgs boson using 516 fb-1 of data
collected with the BABAR detector. We do not observe a significant signal and
we set 90% confidence level upper limits on the product of the Standard
Model-dark sector mixing angle and the dark sector coupling constant.Comment: 7 pages, 5 postscript figures, published version with improved plots
for b/w printin
Search for anomalous t t-bar production in the highly-boosted all-hadronic final state
A search is presented for a massive particle, generically referred to as a
Z', decaying into a t t-bar pair. The search focuses on Z' resonances that are
sufficiently massive to produce highly Lorentz-boosted top quarks, which yield
collimated decay products that are partially or fully merged into single jets.
The analysis uses new methods to analyze jet substructure, providing
suppression of the non-top multijet backgrounds. The analysis is based on a
data sample of proton-proton collisions at a center-of-mass energy of 7 TeV,
corresponding to an integrated luminosity of 5 inverse femtobarns. Upper limits
in the range of 1 pb are set on the product of the production cross section and
branching fraction for a topcolor Z' modeled for several widths, as well as for
a Randall--Sundrum Kaluza--Klein gluon. In addition, the results constrain any
enhancement in t t-bar production beyond expectations of the standard model for
t t-bar invariant masses larger than 1 TeV.Comment: Submitted to the Journal of High Energy Physics; this version
includes a minor typo correction that will be submitted as an erratu
- …