49 research outputs found

    New genetic loci link adipose and insulin biology to body fat distribution.

    Get PDF
    Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms

    In vivo movement of the type V myosin Myo52 requires dimerisation but is independent of the neck domain

    Get PDF
    Intracellular movement is a fundamental property of all cell types. Many organelles and molecules are actively transported throughout the cytoplasm by molecular motors, such as the dimeric type V myosins. These possess a long neck, which contains an IQ motif, that allow it to make 36-nm steps along the actin polymer. Live cell imaging of the fission yeast type V myosin Myo52 reveals that the protein moves rapidly throughout the cytoplasm. Here, we describe analysis of this movement and have established that Myo52 moves long distances on actin filaments in an ATP-dependent manner at approximately 0.5 mum/second. Myo51 and the microtubule cytoskeleton have no discernable role in modulating Myo52 movements, whereas rigour mutations in Myo52 abrogated its movement. We go on to show that, although dimerisation is required for Myo52 movement, deleting its neck has no discernable affect on Myo52 function or velocity in vivo

    Small-scale immunoprecipitation from fission yeast cell extracts

    No full text
    We describe procedures for the immunoprecipitation (IP) of a molecule of interest from cell extracts under native or denaturing conditions. The methods are equally effective with antibodies that directly recognize the molecule of interest and those that recognize a generic peptide “epitope tag” that has been fused to sequences encoding the gene of interest. The diverse chemistry of intermolecular interactions and enzymatic activities means that a range of different buffer conditions must be assessed empirically to identify optimal conditions for the study of a specific target/complex in a particular assay. We describe three buffers that can serve as starting points for this empirical testing and discuss modifications that are commonly used in the optimization of assays based on immunoprecipitation.</jats:p

    Large-scale immunoprecipitation from fission yeast cell extracts

    No full text
    We outline immunoprecipitation (IP) procedures to isolate the large quantities of a molecule of interest that are required to identify posttranslational modifications (PTMs) in subsequent targeted mass spectrometry analysis. In situ denaturation by trichloroacetic acid precipitation inhibits the activities of modifying enzymes that could alter the PTM profile to preserve the PTMs on a target of interest throughout the precipitation step. In contrast, isolation of the same molecule with the nondenaturing variation on this IP procedure can maintain associations with partner molecules whose PTMs can also be mapped, albeit with the caveat that modifications could have occurred during the extended IP period.</jats:p

    Preparation of protein extracts from schizosaccharomyces pombe using trichloroacetic acid precipitation

    No full text
    Schizosaccharomyces pombe is an attractive model organism with which to study core principles of conserved molecular cell biology processes. The ability to monitor protein behavior following separation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) underpins much of this activity. Here we describe a robust protocol for the preparation of protein samples for analysis by SDS-PAGE.</jats:p

    Cell Cycle Synchronization of Schizosaccharomyces pombe by Lactose Gradient Centrifugation to Isolate Small Cells

    No full text
    Size selection of small cells from an asynchronous Schizosaccharomyces pombe culture offers a simple way to generate cultures in which progression through the mitotic cell division cycle is synchronized throughout the population. Here, we describe how density centrifugation of cells from asynchronous cultures through lactose gradients selects small G2 cells to generate synchronized cultures as large as 500 mL. The ease and simplicity of this approach makes it an accessible and attractive method for generating synchronous cultures.</jats:p

    Cell Cycle Synchronization of Schizosaccharomyces pombe by Centrifugal Elutriation of Small Cells

    No full text
    Division of Schizosaccharomyces pombe by medial fission produces identically sized daughter cells that grow by tip extension until their own division is prompted by reaching the same critical size for division as the parental cell. The fidelity of this size control in the absence of perturbation means that cells of the same size are at the same point in the cell cycle. Size selection of small cells from an asynchronous culture by centrifugal elutriation permits generation of synchronous cultures large enough for biochemical analysis. The changes observed in the synchronized cell cycle progression of such cultures are representative of those that accompany cell cycle progression of individual cells. Here, we describe how size selection with the Beckman Coulter JE-5.0 rotor can be used to generate synchronized cultures. Because of the continuous passage of medium through the rotor throughout the procedure, elutriation is considered to have less impact on the integrity of the cell cycle than other approaches. Two protocols are presented here: The first generates a 2-L culture ideal for detailed biochemical analysis, whereas the second allows rapid generation and simultaneous analysis of three smaller (200-mL) cultures.</jats:p

    Synchronizing Progression of Schizosaccharomyces pombe Cells from Prophase through Mitosis and into S Phase with nda3-KM311 Arrest Release

    No full text
    Here, we describe how the rapid reversibility of the nda3-KM311 cold-sensitive β-tubulin mutation was optimized by Mitsuhiro Yanagida’s laboratory to synchronize mitotic progression in an entire cell population. The inability to form microtubules following the loss of β-tubulin function at 20°C triggers the spindle assembly checkpoint, which arrests mitotic progression. Restoration of β-tubulin function by rewarming to 30°C (or higher) releases the arrest, generating a highly synchronous progression through mitosis. The viability of nda3-KM311 strains at 30°C makes it feasible to generate double mutants between nda3-KM311 and any temperature-sensitive mutant that can also grow at 30°C. These double mutants can be used in reciprocal shift analyses, in which cold-induced early mitotic arrest is relieved by a shift to 36°C, which then inactivates the product of the second mutant gene. The addition of microtubule depolymerizing drugs before the return to 36°C will maintain checkpoint signaling at 36°C transiently, permitting analysis of the impact of temperature-sensitive mutations on checkpoint function. Silencing the checkpoint of nda3-KM311-arrested cells at 20°C through chemical inhibition of aurora kinase is a powerful way to study checkpoint recovery pathways and mitotic exit without anaphase.</jats:p

    Kent Academic Repository Full text document (pdf) Versions of research Citation for published version Link to record in KAR Document Version

    No full text
    In vivo movement of the type V myosin Myo52 requires dimerisation but is independent of the neck domain
    corecore