9 research outputs found

    Integrating Wheat Canopy Temperatures in Crop System Models

    No full text
    Crop system models are generally parametrized with daily air temperatures recorded at 1.5 or 2 m height. These data are not able to represent temperatures at the canopy level, which control crop growth, and the impact of heat stress on crop yield, which are modified by canopy characteristics and plant physiological processes Since such data are often not available and current simulation approaches are complex and/or based on unrealistic assumptions, new methods for integrating canopy temperatures in the framework of crop system models are needed. Based on a forward stepwise-based model selection procedure and quantile regression analyses, we developed empirical regression models to predict winter wheat canopy temperatures obtained from thermal infrared observations performed during four growing seasons for three irrigation levels. We used daily meteorological variables and the daily output data of a crop system model as covariates. The standard cross validation revealed a root mean square error (RMSE) of ~0.8 °C, 1.5–2 °C and 0.8–1.2 °C for estimating mean, maximum and minimum canopy temperature, respectively. Canopy temperature of both water-deficit and fully irrigated wheat plots significantly differed from air temperature. We suggest using locally calibrated empirical regression models of canopy temperature as a simple approach for including potentially amplifying or mitigating microclimatic effects on plant response to temperature stress in crop system models

    Physical robustness of canopy temperature models for crop heat stress simulation across environments and production conditions

    No full text
    Despite widespread application in studying climate change impacts, most crop models ignore complex interactions among air temperature, crop and soil water status, CO concentration and atmospheric conditions that influence crop canopy temperature. The current study extended previous studies by evaluating T simulations from nine crop models at six locations across environmental and production conditions. Each crop model implemented one of an empirical (EMP), an energy balance assuming neutral stability (EBN) or an energy balance correcting for atmospheric stability conditions (EBSC) approach to simulate T. Model performance in predicting T was evaluated for two experiments in continental North America with various water, nitrogen and CO2 treatments. An empirical model fit to one dataset had the best performance, followed by the EBSC models. Stability conditions explained much of the differences between modeling approaches. More accurate simulation of heat stress will likely require use of energy balance approaches that consider atmospheric stability conditions

    Precision Electroweak Measurements on the Z resonance.

    Get PDF
    We report on the final electroweak measurements performed with data taken at the Z resonance by the experiments operating at the electron–positron colliders SLC and LEP. The data consist of 17 million Z decays accumulated by the ALEPH, DELPHI, L3 and OPAL experiments at LEP, and 600 thousand Z decays by the SLD experiment using a polarised beam at SLC. The measurements include cross-sections, forward–backward asymmetries and polarised asymmetries. The mass and width of the Z boson, mZ and ΓZ, and its couplings to fermions, for example the ρ parameter and the effective electroweak mixing angle for leptons, are precisely measured: The number of light neutrino species is determined to be 2.9840±0.0082, in agreement with the three observed generations of fundamental fermions. The results are compared to the predictions of the Standard Model (SM). At the Z-pole, electroweak radiative corrections beyond the running of the QED and QCD coupling constants are observed with a significance of five standard deviations, and in agreement with the Standard Model. Of the many Z-pole measurements, the forward–backward asymmetry in b-quark production shows the largest difference with respect to its SM expectation, at the level of 2.8 standard deviations. Through radiative corrections evaluated in the framework of the Standard Model, the Z-pole data are also used to predict the mass of the top quark, , and the mass of the W boson, . These indirect constraints are compared to the direct measurements, providing a stringent test of the SM. Using in addition the direct measurements of mt and mW, the mass of the as yet unobserved SM Higgs boson is predicted with a relative uncertainty of about 50% and found to be less than at 95% confidence level

    Combining heavy flavour electroweak measurements at LEP

    No full text

    Precision electroweak measurements on the Z resonance

    No full text
    corecore