16,750 research outputs found
Search for eccentric binary black hole mergers with Advanced LIGO and Advanced Virgo during their first and second observing runs
When formed through dynamical interactions, stellar-mass binary black holes (BBHs) may retain eccentric orbits (e > 0.1 at 10 Hz) detectable by ground-based gravitational-wave detectors. Eccentricity can therefore be used to differentiate dynamically formed binaries from isolated BBH mergers. Current template-based gravitational-wave searches do not use waveform models associated with eccentric orbits, rendering the search less efficient for eccentric binary systems. Here we present the results of a search for BBH mergers that inspiral in eccentric orbits using data from the first and second observing runs (O1 and O2) of Advanced LIGO and Advanced Virgo. We carried out the search with the coherent WaveBurst algorithm, which uses minimal assumptions on the signal morphology and does not rely on binary waveform templates. We show that it is sensitive to binary mergers with a detection range that is weakly dependent on eccentricity for all bound systems. Our search did not identify any new binary merger candidates. We interpret these results in light of eccentric binary formation models. We rule out formation channels with rates greater than about 100 Gpc−3 yr−1 for e > 0.1, assuming a black hole mass spectrum with a power-law index less than about 2
Properties of the Binary Neutron Star Merger GW170817
On August 17, 2017, the Advanced LIGO and Advanced Virgo gravitational-wave detectors observed a low-mass compact binary inspiral. The initial sky localization of the source of the gravitational-wave signal, GW170817, allowed electromagnetic observatories to identify NGC 4993 as the host galaxy. In this work, we improve initial estimates of the binary's properties, including component masses, spins, and tidal parameters, using the known source location, improved modeling, and recalibrated Virgo data. We extend the range of gravitational-wave frequencies considered down to 23 Hz, compared to 30 Hz in the initial analysis. We also compare results inferred using several signal models, which are more accurate and incorporate additional physical effects as compared to the initial analysis. We improve the localization of the gravitational-wave source to a 90% credible region of 16 deg2. We find tighter constraints on the masses, spins, and tidal parameters, and continue to find no evidence for nonzero component spins. The component masses are inferred to lie between 1.00 and 1.89 M⊙ when allowing for large component spins, and to lie between 1.16 and 1.60 M⊙ (with a total mass 2.73−0.01+0.04 M⊙) when the spins are restricted to be within the range observed in Galactic binary neutron stars. Using a precessing model and allowing for large component spins, we constrain the dimensionless spins of the components to be less than 0.50 for the primary and 0.61 for the secondary. Under minimal assumptions about the nature of the compact objects, our constraints for the tidal deformability parameter Λ are (0,630) when we allow for large component spins, and 300−230+420 (using a 90% highest posterior density interval) when restricting the magnitude of the component spins, ruling out several equation-of-state models at the 90% credible level. Finally, with LIGO and GEO600 data, we use a Bayesian analysis to place upper limits on the amplitude and spectral energy density of a possible postmerger signal
Vetoes for Inspiral Triggers in LIGO Data
Presented is a summary of studies by the LIGO Scientific Collaboration's
Inspiral Analysis Group on the development of possible vetoes to be used in
evaluation of data from the first two LIGO science data runs. Numerous
environmental monitor signals and interferometer control channels have been
analyzed in order to characterize the interferometers' performance. The results
of studies on selected data segments are provided in this paper. The vetoes
used in the compact binary inspiral analyses of LIGO's S1 and S2 science data
runs are presented and discussed.Comment: Submitted to Classical and Quantum Gravity for the GWDAW-8
proceeding
Upper Limits from Counting Experiments with Multiple Pipelines
In counting experiments, one can set an upper limit on the rate of a Poisson
process based on a count of the number of events observed due to the process.
In some experiments, one makes several counts of the number of events, using
different instruments, different event detection algorithms, or observations
over multiple time intervals. We demonstrate how to generalize the classical
frequentist upper limit calculation to the case where multiple counts of events
are made over one or more time intervals using several (not necessarily
independent) procedures. We show how different choices of the rank ordering of
possible outcomes in the space of counts correspond to applying different
levels of significance to the various measurements. We propose an ordering that
is matched to the sensitivity of the different measurement procedures and show
that in typical cases it gives stronger upper limits than other choices. As an
example, we show how this method can be applied to searches for
gravitational-wave bursts, where multiple burst-detection algorithms analyse
the same data set, and demonstrate how a single combined upper limit can be set
on the gravitational-wave burst rate.Comment: 26 pages (CQG style), 8 figures. Added study of robustness of limits
Search for anisotropic gravitational-wave backgrounds using data from Advanced LIGO and Advanced Virgo's first three observing runs
We report results from searches for anisotropic stochastic gravitational-wave
backgrounds using data from the first three observing runs of the Advanced LIGO
and Advanced Virgo detectors. For the first time, we include Virgo data in our
analysis and run our search with a new efficient pipeline called {\tt PyStoch}
on data folded over one sidereal day. We use gravitational-wave radiometry
(broadband and narrow band) to produce sky maps of stochastic
gravitational-wave backgrounds and to search for gravitational waves from point
sources. A spherical harmonic decomposition method is employed to look for
gravitational-wave emission from spatially-extended sources. Neither technique
found evidence of gravitational-wave signals. Hence we derive 95\%
confidence-level upper limit sky maps on the gravitational-wave energy flux
from broadband point sources, ranging from and on the
(normalized) gravitational-wave energy density spectrum from extended sources,
ranging from , depending on direction () and spectral index
(). These limits improve upon previous limits by factors of . We also set 95\% confidence level upper limits on the frequency-dependent
strain amplitudes of quasimonochromatic gravitational waves coming from three
interesting targets, Scorpius X-1, SN 1987A and the Galactic Center, with best
upper limits range from a factor of
improvement compared to previous stochastic radiometer searches.Comment: 23 Pages, 9 Figure
Status of the joint LIGO--TAMA300 inspiral analysis
We present the status of the joint search for gravitational waves from
inspiraling neutron star binaries in the LIGO Science Run 2 and TAMA300 Data
Taking Run 8 data, which was taken from February 14 to April 14, 2003, by the
LIGO and TAMA collaborations. In this paper we discuss what has been learned
from an analysis of a subset of the data sample reserved as a ``playground''.
We determine the coincidence conditions for parameters such as the coalescence
time and chirp mass by injecting simulated Galactic binary neutron star signals
into the data stream. We select coincidence conditions so as to maximize our
efficiency of detecting simulated signals. We obtain an efficiency for our
coincident search of 78 %, and show that we are missing primarily very distant
signals for TAMA300. We perform a time slide analysis to estimate the
background due to accidental coincidence of noise triggers. We find that the
background triggers have a very different character from the triggers of
simulated signals.Comment: 10 page, 8 figures, accepted for publication in Classical and Quantum
Gravity for the special issue of the GWDAW9 Proceedings ; Corrected typos,
minor change
The path to the enhanced and advanced LIGO gravitational-wave detectors
We report on the status of the Laser Interferometric Gravitational-Wave
Observatory (LIGO) and the plans and progress towards Enhanced and Advanced
LIGO. The initial LIGO detectors have finished a two year long data run during
which a full year of triple-coincidence data was collected at design
sensitivity. Much of this run was also coincident with the data runs of
interferometers in Europe, GEO600 and Virgo. The joint analysis of data from
this international network of detectors is ongoing. No gravitational wave
signals have been detected in analyses completed to date. Currently two of the
LIGO detectors are being upgraded to increase their sensitivity in a program
called Enhanced LIGO. The Enhanced LIGO detectors will start another roughly
one year long data run with increased sensitivity in 2009. In parallel,
construction of Advanced LIGO, a major upgrade to LIGO, has begun. Installation
and commissioning of Advanced LIGO hardware at the LIGO sites will commence at
the end of the Enhanced LIGO data run in 2011. When fully commissioned, the
Advanced LIGO detectors will be ten times as sensitive as the initial LIGO
detectors. Advanced LIGO is expected to make several gravitational wave
detections per year.Comment: 11 pages, 5 figure
Recent results on the search for continuous sources with LIGO and GEO600
An overview of the searches for continuous gravitational wave signals in LIGO
and GEO 600 performed on different recent science runs and results are
presented. This includes both searching for gravitational waves from known
pulsars as well as blind searches over a wide parameter space.Comment: TAUP2005 Proceedings to be published in Journal of Physics:
Conference Serie
All-sky search for long-duration gravitational-wave bursts in the third Advanced LIGO and Advanced Virgo run
After the detection of gravitational waves from compact binary coalescences, the search for transient gravitational-wave signals with less well-defined waveforms for which matched filtering is not well suited is one of the frontiers for gravitational-wave astronomy. Broadly classified into “short” ≲1 s and “long” ≳1 s duration signals, these signals are expected from a variety of astrophysical processes, including non-axisymmetric deformations in magnetars or eccentric binary black hole coalescences. In this work, we present a search for long-duration gravitational-wave transients from Advanced LIGO and Advanced Virgo’s third observing run from April 2019 to March 2020. For this search, we use minimal assumptions for the sky location, event time, waveform morphology, and duration of the source. The search covers the range of 2–500 s in duration and a frequency band of 24–2048 Hz. We find no significant triggers within this parameter space; we report sensitivity limits on the signal strength of gravitational waves characterized by the root-sum-square amplitude hrss as a function of waveform morphology. These hrss limits improve upon the results from the second observing run by an average factor of 1.8
- …