10 research outputs found

    Enumeration of islets by nuclei counting and light microscopic analysis

    Get PDF
    Author Manuscript 2011 May 1.Islet enumeration in impure preparations by conventional dithizone staining and visual counting is inaccurate and operator dependent. We examined nuclei counting for measuring the total number of cells in islet preparations, and we combined it with morphological analysis by light microscopy (LM) for estimating the volume fraction of islets in impure preparations. Cells and islets were disrupted with lysis solution and shear, and accuracy of counting successively diluted nuclei suspensions was verified with (1) visual counting in a hemocytometer after staining with crystal violet, and automatic counting by (2) aperture electrical resistance measurement and (3) flow cytometer measurement after staining with 7-aminoactinomycin-D. DNA content averaged 6.5 and 6.9 pg of DNA per cell for rat and human islets, respectively, in agreement with literature estimates. With pure rat islet preparations, precision improved with increasing counts, and samples with about greater than or equal to 160 islets provided a coefficient of variation of about 6%. Aliquots of human islet preparations were processed for LM analysis by stereological point counting. Total nuclei counts and islet volume fraction from LM analysis were combined to obtain the number of islet equivalents (IEs). Total number of IE by the standard method of dithizone staining/manual counting was overestimated by about 90% compared with LM/nuclei counting for 12 freshly isolated human islet research preparations. Nuclei counting combined with islet volume fraction measurements from LM is a novel method for achieving accurate islet enumeration.National Institutes of Health (U.S.) (Grant NCRR ICR U4Z 16606)National Institutes of Health (U.S.) (Grant R01-DK063108-01A1)National Institutes of Health (U.S.) (Grant NCRR ICR U42 RR0023244-01)Joslin Diabetes and Endocrinology Research Center (Grant DK36836)Diabetes Research & Wellness FoundationJuvenile Diabetes Research Foundation International (Islet Transplantation, Harvard Medical School

    Transcriptional regulator PRDM12 is essential for human pain perception.

    No full text
    Pain perception has evolved as a warning mechanism to alert organisms to tissue damage and dangerous environments. In humans, however, undesirable, excessive or chronic pain is a common and major societal burden for which available medical treatments are currently suboptimal. New therapeutic options have recently been derived from studies of individuals with congenital insensitivity to pain (CIP). Here we identified 10 different homozygous mutations in PRDM12 (encoding PRDI-BF1 and RIZ homology domain-containing protein 12) in subjects with CIP from 11 families. Prdm proteins are a family of epigenetic regulators that control neural specification and neurogenesis. We determined that Prdm12 is expressed in nociceptors and their progenitors and participates in the development of sensory neurons in Xenopus embryos. Moreover, CIP-associated mutants abrogate the histone-modifying potential associated with wild-type Prdm12. Prdm12 emerges as a key factor in the orchestration of sensory neurogenesis and may hold promise as a target for new pain therapeutics

    Transcriptional regulator PRDM12 is essential for human pain perception

    No full text
    Pain perception has evolved as a warning mechanism to alert organisms to tissue damage and dangerous environments. In humans, however, undesirable, excessive or chronic pain is a common and major societal burden for which available medical treatments are currently suboptimal. New therapeutic options have recently been derived from studies of individuals with congenital insensitivity to pain (CIP). Here we identified 10 different homozygous mutations in PRDM12 (encoding PRDI-BF1 and RIZ homology domain-containing protein 12) in subjects with CIP from 11 families. Prdm proteins are a family of epigenetic regulators that control neural specification and neurogenesis. We determined that Prdm12 is expressed in nociceptors and their progenitors and participates in the development of sensory neurons in Xenopus embryos. Moreover, CIP-associated mutants abrogate the histone-modifying potential associated with wild-type Prdm12. Prdm12 emerges as a key factor in the orchestration of sensory neurogenesis and may hold promise as a target for new pain therapeutics. © 2015 Nature America, Inc. All rights reserved

    Transcriptional regulator PRDM12 is essential for human pain perception

    No full text
    Pain perception has evolved as a warning mechanism to alert organisms to tissue damage and dangerous environments. In humans, however, undesirable, excessive or chronic pain is a common and major societal burden for which available medical treatments are currently suboptimal. New therapeutic options have recently been derived from studies of individuals with congenital insensitivity to pain (CIP). Here we identified 10 different homozygous mutations in PRDM12 (encoding PRDI-BF1 and RIZ homology domain-containing protein 12) in subjects with CIP from 11 families. Prdm proteins are a family of epigenetic regulators that control neural specification and neurogenesis. We determined that Prdm12 is expressed in nociceptors and their progenitors and participates in the development of sensory neurons in Xenopus embryos. Moreover, CIP-associated mutants abrogate the histone-modifying potential associated with wild-type Prdm12. Prdm12 emerges as a key factor in the orchestration of sensory neurogenesis and may hold promise as a target for new pain therapeutics

    Neurodegeneration from Drugs and Aging-Derived Free Radicals

    No full text

    The sad plight of multiple sclerosis research (low on fact, high on fiction): critical data to support it being a neurocristopathy

    No full text
    corecore