64 research outputs found

    The cerebellum, internal models and prediction in 'non-motor' aspects of language: A critical review

    Get PDF
    The emergence of studies on cerebellar contributions in ‘non-motor’ aspects of predictive language processing has long been awaited by researchers investigating the neural foundations of language and cognition. Despite (i) progress in research implicating the cerebellum in language processing, (ii) the widely-accepted nature of the uniform, multi-modal computation that the cerebellum implements in the form of internal models, as well as (iii) the long tradition of psycholinguistic studies addressing prediction mechanisms, research directly addressing cerebellar contributions to ‘non-motor’ predictive language processing has only surfaced in the last five years. This paper provides the first review of this novel field, along with a critical assessment of the studies conducted so far. While encouraging, the evidence for cerebellar involvement in ‘non-motor’ aspects of predictive language processing remains inconclusive under further scrutiny. Future directions are finally discussed with respect to outstanding questions in this novel field of research

    Editorial: The cerebellar role in psychiatric disorders: Emerging evidence and future perspectives

    Get PDF
    First paragraph: Over the past decades, clinical, neuroimaging, anatomical, and physiological studies have established the presence of a “cognitive” and a “limbic” cerebellum—the former being represented primarily in posterolateral regions and the dentate nuclei, and the latter in the vermis and the fastigial nuclei (Schmahmann et al., 2007). The “dysmetria of thought,” following damage to the cognitive cerebellum (Schmahmann, 1998) and the neuropsychiatric impairments, following damage to the limbic cerebellum (Schmahmann et al., 2007) comprise the so called “cerebellar cognitive affective syndrome” (Schmahmann and Sherman, 1998). These findings have recently renewed interest in a cerebellar pathophysiology of a broad range of neurodevelopmental and psychiatric disorders (e.g. Hoppenbrouwers et al., 2008; Lupo et al., 2019; Van Overwalle et al., 2020)

    The neostriatum and response selection in overt sentence production: An fMRI study

    Get PDF
    A number of premotor and prefrontal brain areas have been recently shown to play a significant role in response selection in overt sentence production. These areas are anatomically connected to the basal ganglia, a set of subcortical structures that has been traditionally involved in response selection across behavioral domains. The putamen and the caudate, the two major inputs to the basal ganglia, have been shown to undertake motor— as well as non-motor-related selection operations in language processing. Here we investigate the role of these basal ganglia structures in sentence repetition and generation in healthy adults. Although sentence generation is known to activate prefrontal and premotor cortical areas that reciprocally connect with these two neostriatal structures, their specific contributions are not known. We present evidence suggesting that that the putamen undertakes articulation-related aspects across tasks, while the caudate selectively supports selection processes in sentence generation

    Network-wide abnormalities explain memory variability in hippocampal amnesia

    Get PDF
    Patients with hippocampal amnesia play a central role in memory neuroscience but the neural underpinnings of amnesia are hotly debated. We hypothesized that focal hippocampal damage is associated with changes across the extended hippocampal system and that these, rather than hippocampal atrophy per se, would explain variability in memory between patients. We assessed this hypothesis in a uniquely large cohort of patients (n = 38) after autoimmune limbic encephalitis, a syndrome associated with focal structural hippocampal pathology. These patients showed impaired recall, recognition and maintenance of new information, and remote autobiographical amnesia. Besides hippocampal atrophy, we observed correlatively reduced thalamic and entorhinal cortical volume, resting-state inter-hippocampal connectivity and activity in posteromedial cortex. Associations of hippocampal volume with recall, recognition, and remote memory were fully mediated by wider network abnormalities, and were only direct in forgetting. Network abnormalities may explain the variability across studies of amnesia and speak to debates in memory neuroscience

    Pathologic tearfulness after limbic encephalitis: A novel disorder and its neural basis

    Get PDF
    Objective We investigated the nature and neural foundations of pathologic tearfulness in a uniquely large cohort of patients who had presented with autoimmune limbic encephalitis (aLE). Methods We recruited 38 patients (26 men, 12 women; median age 63.06 years; interquartile range [IQR] 16.06 years) in the postacute phase of aLE who completed questionnaires probing emotion regulation. All patients underwent structural/functional MRI postacutely, along with 67 age- and sex-matched healthy controls (40 men, 27 women; median age 64.70 years; IQR 19.87 years). We investigated correlations of questionnaire scores with demographic, clinical, neuropsychological, and brain imaging data across patients. We also compared patients diagnosed with pathologic tearfulness and those without, along with healthy controls, on gray matter volume, resting-state functional connectivity, and activity. Results Pathologic tearfulness was reported by 50% of the patients, while no patient reported pathologic laughing. It was not associated with depression, impulsiveness, memory impairment, executive dysfunction in the postacute phase, or amygdalar abnormalities in the acute phase. It correlated with changes in specific emotional brain networks: volume reduction in the right anterior hippocampus, left fusiform gyrus, and cerebellum, abnormal hippocampal resting-state functional connectivity with the posteromedial cortex and right middle frontal gyrus, and abnormal hemodynamic activity in the left fusiform gyrus, right inferior parietal lobule, and ventral pons. Conclusions Pathologic tearfulness is common following aLE, is not a manifestation of other neuropsychiatric features, and reflects abnormalities in networks of emotion regulation beyond the acute hippocampal focus. The condition, which may also be present in other neurologic disorders, provides novel insights into the neural basis of affective control and its dysfunction in disease

    Hippocampal network abnormalities explain amnesia after VGKCC-Ab related autoimmune limbic encephalitis

    Get PDF
    Objective Limbic encephalitis associated with antibodies to components of the voltage-gated potassium channel complex (VGKCC-Ab-LE) often leads to hippocampal atrophy and persistent memory impairment. Its long-term impact on regions beyond the hippocampus, and the relationship between brain damage and cognitive outcome, are poorly understood. We investigated the nature of structural and functional brain abnormalities following VGKCC-Ab-LE and its role in residual memory impairment. Method A cross-sectional group study was conducted. Twenty-four VGKCC-Ab-LE patients (20 male, 4 female; mean (SD) age 63.86 (11.31) years) were recruited post-acutely along with age- and sex-matched healthy controls for neuropsychological assessment, structural MRI and resting-state functional MRI (rs-fMRI). Structural abnormalities were determined using volumetry and voxel-based morphometry; rs-fMRI data were analysed to investigate hippocampal functional connectivity (FC). Associations of memory performance with neuroimaging measures were examined. Results Patients showed selective memory impairment. Structural analyses revealed focal hippocampal atrophy within the medial temporal lobes, correlative atrophy in the mediodorsal thalamus, and additional volume reduction in the posteromedial cortex. There was no association between regional volumes and memory performance. Instead, patients demonstrated reduced posteromedial cortico-hippocampal and inter-hippocampal FC, which correlated with memory scores (r = 0.553; r = 0.582, respectively). The latter declined as a function of time since the acute illness (r = -0.531). Conclusion VGKCC-Ab-LE results in persistent isolated memory impairment. Patients have hippocampal atrophy with further reduced mediodorsal thalamic and posteromedial cortical volumes. Crucially, reduced FC of remaining hippocampal tissue correlates more closely with memory function than does regional atrophy

    Volume reduction of caudate nucleus is associated with movement coordination deficits in patients with hippocampal atrophy due to perinatal hypoxia-ischaemia

    Get PDF
    Acute sentinel hypoxia-ischaemia in neonates can target the hippocampus, mammillary bodies, thalamus, and the basal ganglia. Our previous work with paediatric patients with a history of hypoxia-ischaemia has revealed hippocampal and diencephalic damage that impacts cognitive memory. However, the structural and functional status of other brain regions vulnerable to hypoxia-ischaemia, such as the basal ganglia, has not been investigated in these patients. Furthermore, it is not known whether there are any behavioural sequelae of such damage, especially in patients with no diagnosis of neurological disorder. Based on the established role of the basal ganglia and the thalamus in movement coordination, we studied manual motor function in 20 participants exposed to neonatal hypoxia-ischaemia, and a group of 17 healthy controls of comparable age. The patients’ handwriting speed and accuracy was within the normal range (Detailed Assessment of Speed of Handwriting), and their movement adaptation learning (Rotary Pursuit task) was comparable to the control group’s performance. However, as a group, patients showed an impairment in the Grooved Pegboard task and a trend for impairment in speed of movement while performing the Rotary Pursuit task, suggesting that some patients have subtle deficits in fine, complex hand movements. Voxel-based morphometry and volumetry showed bilateral reduction in grey matter volume of the thalamus and caudate nucleus. Reduced volumes in the caudate nucleus correlated across patients with performance on the Grooved Pegboard task. In summary, the fine movement coordination deficit affecting the hand and the wrist in patients exposed to early hypoxic-ischaemic brain injury may be related to reduced volumes of the caudate nucleus, and consistent with anecdotal parental reports of clumsiness and coordination difficulties in this cohort

    Beam Longitudinal Dynamics Simulation Suite BLonD

    Get PDF
    The beam longitudinal dynamics code BLonD has been developed at CERN since 2014 and has become a central tool for longitudinal beam dynamics simulations. In this paper, we present this modular simulation suite and the various physics models that can be included and combined by the user. We detail the reference frame, the equations of motion, the BLonD-specific options for radio-frequency parameters such as phase noise, fixed-field acceleration, and feedback models for the CERN accelerators, as well as the modeling of collective effects and synchrotron radiation. We also present various methods of generating multi-bunch distributions matched to a given impedance model. BLonD is furthermore a well-tested and optimized simulation suite, which is demonstrated through examples, too
    corecore