110 research outputs found

    On the mechanisms governing gas penetration into a tokamak plasma during a massive gas injection

    Get PDF
    A new 1D radial fluid code, IMAGINE, is used to simulate the penetration of gas into a tokamak plasma during a massive gas injection (MGI). The main result is that the gas is in general strongly braked as it reaches the plasma, due to mechanisms related to charge exchange and (to a smaller extent) recombination. As a result, only a fraction of the gas penetrates into the plasma. Also, a shock wave is created in the gas which propagates away from the plasma, braking and compressing the incoming gas. Simulation results are quantitatively consistent, at least in terms of orders of magnitude, with experimental data for a D 2 MGI into a JET Ohmic plasma. Simulations of MGI into the background plasma surrounding a runaway electron beam show that if the background electron density is too high, the gas may not penetrate, suggesting a possible explanation for the recent results of Reux et al in JET (2015 Nucl. Fusion 55 093013)

    Novel Loci for Adiponectin Levels and Their Influence on Type 2 Diabetes and Metabolic Traits : A Multi-Ethnic Meta-Analysis of 45,891 Individuals

    Get PDF
    J. Kaprio, S. Ripatti ja M.-L. Lokki työryhmien jäseniä.Peer reviewe

    THE RATE OF BINARY BLACK HOLE MERGERS INFERRED FROM ADVANCED LIGO OBSERVATIONS SURROUNDING GW150914

    Get PDF
    A transient gravitational-wave signal, GW150914, was identi fi ed in the twin Advanced LIGO detectors on 2015 September 2015 at 09:50:45 UTC. To asse ss the implications of this discovery, the detectors remained in operation with unchanged con fi gurations over a period of 39 days around the time of t he signal. At the detection statistic threshold corresponding to that observed for GW150914, our search of the 16 days of simultaneous two-detector observational data is estimated to have a false-alarm rate ( FAR ) of < ́ -- 4.9 10 yr 61 , yielding a p -value for GW150914 of < ́ - 210 7 . Parameter estimation follo w-up on this trigger identi fi es its source as a binary black hole ( BBH ) merger with component masses ( )( ) = - + - + mm M ,36,29 12 4 5 4 4 at redshift = - + z 0.09 0.04 0.03 ( median and 90% credible range ) . Here, we report on the constraints these observations place on the rate of BBH coalescences. Considering only GW150914, assuming that all BBHs in the universe have the same masses and spins as this event, imposing a search FAR threshold of 1 per 100 years, and assuming that the BBH merger rate is constant in the comoving frame, we infer a 90% credible range of merger rates between – -- 2 53 Gpc yr 31 ( comoving frame ) . Incorporating all search triggers that pass a much lower threshold while accounting for the uncerta inty in the astrophysical origin of each trigger, we estimate a higher rate, ranging from – -- 13 600 Gpc yr 31 depending on assumptions about the BBH mass distribution. All together, our various rate estimat es fall in the conservative range – -- 2 600 Gpc yr 31

    Overview of the JET results in support to ITER

    Get PDF

    Motion after-effects in cat striate cortex elicited by moving gratings

    No full text

    Tagging Hansenula polymorpha genes by random integration of linear DNA fragments (RALF)

    Get PDF
    We have investigated the feasibility of using gene tagging by restriction enzyme-mediated integration (REMI) to isolate mutants in Hansenula polymorpha. A plasmid that cannot replicate in H. polymorpha and contains a dominant zeocin resistance cassette pREMI-Z was used as the integrative/mutagenic plasmid. We observed that high transformation efficiency was primarily dependent on the use of linearised pREMI-Z, and that the addition of restriction endonuclease to linearised pREMI-Z prior to transformation increased the transformation frequency only slightly. Integration of linearised pREMI-Z occurred at random in the H. polymorpha genome. Therefore, we termed this method Random integration of Linear DNA Fragments (RALF). To explore the potential of RALF in H. polymorpha, we screened a collection of pREMI-Z transformants for mutants affected in peroxisome biogenesis (pex) or selective peroxisome degradation (pdd). Many previously described PEX genes were obtained from the mutant collection, as well as a number of new genes, including H. polymorpha PEX12 and genes whose function in peroxisome biogenesis is still unclear. These results demonstrate that RALF is a powerful tool for tagging genes in H. polymorpha that should make it possible to carry out genome-wide mutagenesis screens.

    A new democratic phase coherent data-scatter technique for calibration, measurement, fingerprinting and rapid archival identification of ultraviolet-visible multi-component food spectra

    No full text
    The new theory of democratic phase coherent data-scatter (DPCD-S) is introduced. Basics of UV-visible spectrometry theory and error propagation have been presented. The qualitative spectral analysis provided is point-by-point over the complete data set and not just limited to Lambda-maxima. Equal weightings of the ‘voting’ data scattering algorithm are employed in the analysis of both the calibration and food colour data and this is consequently the democratic algorithm. The paper shows how the technique can be used with UV-visible standards to analyse the wavelength and photometric calibration of a spectrophotometer. The main results relate to the analysis of a series of spectra taken on complex mixtures of three important food dyes and their quantitative analysis using the phase coherent data-scatter technique. This method is shown to offer new possibilities for identifying and archiving UV-visible spectra from a single point in a transform space. Complex spectra can therefore be represented by a single point in this transform space, which is weighted by the ‘votes’ of all the data points in the complex data set. The software allows the user to interrogate the scatter results and locate the scatter point to the specific spectral positions. A new mathematical operator has been introduced to resolve any possible coincidence of two spectral projection points. Analysis of two close spectra from very-different admixtures of food colours shows powerfully the utility of this operator. Error propagation severely limits the accuracy of the usual UV-method of simultaneous equation secondary mixtures analysis
    corecore