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Lyudmyla Kedenko52, Kati Kristiansson53, Marja-Liisa Nuotio53, Britt-Marie Loo54, Tamara Harris55,

Melissa Garcia55, Alka Kanaya56, Margot Haun20, Norman Klopp57, H.-Erich Wichmann57,58,59,

Panos Deloukas16, Efi Katsareli60, David J. Couper61, Bruce B. Duncan62,63, Margreet Kloppenburg64,

Linda S. Adair65, Judith B. Borja66, DIAGRAM+ Consortium{, MAGIC Consortium{, GLGC

Investigators{, MuTHER Consortium, James G. Wilson67, Solomon Musani68, Xiuqing Guo69,

Toby Johnson34,70,71, Robert Semple72, Tanya M. Teslovich13, Matthew A. Allison73, Susan Redline74,

Sarah G. Buxbaum75, Karen L. Mohlke25, Ingrid Meulenbelt19, Christie M. Ballantyne76,

George V. Dedoussis60, Frank B. Hu22, Yongmei Liu21, Bernhard Paulweber52, Timothy D. Spector15,

P. Eline Slagboom77, Luigi Ferrucci14, Antti Jula54, Markus Perola53, Olli Raitakari78,

Jose C. Florez30,79,80,81, Veikko Salomaa82", Johan G. Eriksson83,84,85,86,87", Timothy M. Frayling6",
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Abstract

Circulating levels of adiponectin, a hormone produced predominantly by adipocytes, are highly heritable and are inversely
associated with type 2 diabetes mellitus (T2D) and other metabolic traits. We conducted a meta-analysis of genome-wide
association studies in 39,883 individuals of European ancestry to identify genes associated with metabolic disease. We
identified 8 novel loci associated with adiponectin levels and confirmed 2 previously reported loci (P = 4.561028–
1.2610243). Using a novel method to combine data across ethnicities (N = 4,232 African Americans, N = 1,776 Asians, and
N = 29,347 Europeans), we identified two additional novel loci. Expression analyses of 436 human adipocyte samples
revealed that mRNA levels of 18 genes at candidate regions were associated with adiponectin concentrations after
accounting for multiple testing (p,361024). We next developed a multi-SNP genotypic risk score to test the association
of adiponectin decreasing risk alleles on metabolic traits and diseases using consortia-level meta-analytic data. This risk
score was associated with increased risk of T2D (p = 4.361023, n = 22,044), increased triglycerides (p = 2.6610214,
n = 93,440), increased waist-to-hip ratio (p = 1.861025, n = 77,167), increased glucose two hours post oral glucose
tolerance testing (p = 4.461023, n = 15,234), increased fasting insulin (p = 0.015, n = 48,238), but with lower in HDL-
cholesterol concentrations (p = 4.5610213, n = 96,748) and decreased BMI (p = 1.461024, n = 121,335). These findings
identify novel genetic determinants of adiponectin levels, which, taken together, influence risk of T2D and markers of
insulin resistance.
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Hospital. JB Richards and Z Dastani are supported by the CIHR. The funders had no role in study design, data collection and analysis, decision to publish, or
preparation of the manuscript.

Competing Interests: DM Waterworth, X Yuan, and VE Mooser are full-time employees of GlaxoSmithKline. P Vollenweider received grant money from
GlaxoSmithKline to fund the CoLaus study. The other authors declare no competing financial interests.

* E-mail: brent.richards@mcgill.ca

. These authors contributed equally to this work.

" These authors also contributed equally to this work.

{ Memberships of these consortia are provided in the Acknowledgments.

Introduction

Adiponectin is a highly abundant adipocyte-derived plasma

protein whose levels correlate inversely with a range of important

clinical parameters including blood glucose, indices of insulin

resistance, proatherogenic dyslipidemia, and risk of type 2 diabetes

(T2D), stroke and coronary artery disease [1,2,3,4]. Collectively

these conditions account for most of the burgeoning pandemic of
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obesity-related morbidity and mortality that poses a severe and

global healthcare challenge [5]. Murine studies suggest that

adiponectin plays a mediating role in at least some of these obesity-

related complications, and although less clearly established in

humans, this suggests that understanding the pathophysiology of

adiponectin may uncover novel therapeutic targets in major,

highly prevalent human disease.[6,7].

Twins and family studies have revealed moderate to high

estimates of heritability (30–70%) for plasma adiponectin levels

[8,9,10,11]. However, until recently, few genes associated with

adiponectin levels have been identified. Candidate and genome-

wide association studies (GWAS) have shown pronounced

associations between common polymorphisms in the adiponectin

gene (ADIPOQ) and adiponectin levels [12,13,14,15]. A recent

meta-analysis of three GWAS for adiponectin levels identified

variants in a novel candidate gene, ARL15, that were associated

with adiponectin levels, coronary heart disease (CHD), T2D and

other metabolic traits [16]. Furthermore, CDH13 and KNG1 genes

were found to be associated with adiponectin levels in two studies

involving East Asian populations [17,18]. Although part of the

variance explained by the ADIPOQ locus, most of the heritability of

adiponectin levels remains unaccounted for. Therefore, we sought

to identify novel common variants influencing adiponectin levels

and test their association with risk of T2D and related metabolic

traits within the framework of a large multi-ethnic consortium of

GWAS.

We combined genome-wide association results of 35,355

individuals from three different ethnicities (white Europeans

(n = 29,347), African American s(n = 4,232) and East Asians

(n = 1,776)), applying a novel meta-analytic method to allow for

heterogeneity in allelic effects between populations of different

ethnic backgrounds. We next examined whether identified

genome-wide significant single nucleotide polymorphisms (SNPs)

also associated with expression of their nearest gene in human

adipocytes, the main source of adiponectin. Since adiponectin has

been associated with T2D, insulin resistance and metabolic traits

we next investigated whether a multi-SNP genotypic risk,

comprising genome-wide significant SNPs for adiponectin levels,

also influenced risk of T2D and related traits measured in the

DIAbetes Genetics Replication and Meta-analysis (DIAGRAM+)

[19], Meta-Analysis of Glucose and Insulin Related Traits

Consortium (MAGIC) [20], Genetic Investigation of ANthropo-

metric measures Traits (GIANT) [21] , Global Lipids Genetic

Consortium (GLGC) [22], and Body Fat GWAS consortia [23].

Results

Results of Meta-Analysis of GWAS
The meta-analysis was divided into four phases 1) Discovery

phase, which involved cohorts providing GWAS results, 2) In-

silico replication phase which included additional GWAS cohorts

joining our meta-analysis after the completion of the discovery

phase, 3) De-novo genotyping in cohorts without GWAS

genotyping and 4) Multi-Ethnic meta-analysis applying a novel

method for complex trait mapping using different ethnicities.

Discovery phase in individuals of white European

origin. The meta-analysis of sex-combined data from 16

GWAS (n = 29,347) of individuals of white European descent

identified ten loci associated with adiponectin levels at p#5.061028

(Table 1 and Figure 1A and Figure S1, Table S2). These results

include the previously described associations with adiponectin at

ADIPOQ (rs6810075[T]; ß = 0.06, p-value = 3.60610241), KNG1

(rs2062632[T]; ß = 0.05, p-value = 2.52610219) on 3q27.3, and

CDH13 (rs12922394[T; ß = 20.1, p = 3.16610218) on 16q23.3

(Table 1). Furthermore, we identified variants that showed genome-

wide significant association in eight novel independent loci

including rs9853056 (within the STAB1 gene, rs4282054 (within

the NT5DC2 gene), rs13083798 (within the PBRM1 gene), rs1108842

(within the GNL3 gene), rs11235 (within the NEK4 gene), rs2710323

(within the ITIH1 gene), rs3617 (within the ITIH3 gene), and

rs2535627 (within 200 Kb of ITIH4 gene) at 3p21.1; rs1597466

(within 1 Mb of TSC22D2 gene) at 3q25.1; rs2980879 (within 1 Mb

of TRIB1 gene) at 8q24.13; rs7955516 (within 1.3 Mb PDE3A gene)

at 12p12.2; rs601339 (within the GPR109A gene) at 12q24.31;

rs6488898 (within the ATP6V0A2 gene), rs7133378 (within the

DNAH10 gene), rs7305864 (within the CCDC92 gene), and

rs7978610 (within the ZNF664 gene at 12q24.31, which is 1.3 Mb

away from GPR109A); rs2925979 (within the CMIP at 16q23.2

gene); and rs731839 (within the PEPD gene) at 19q13.11. (Figure 2A–

2E, Table 1).

In our analysis a common variant (rs601339, MAF = 0.18, allele

G) downstream of the GPR109A gene (the putative niacin receptor)

was associated with adiponectin (ß = 0.04, p = 7.94610210) and

HDL-C (ß = 0.03, p = 5.5961027) in the global lipid analysis. In a

coincident candidate gene analysis 11 SNPs were typed in

GPR109A/B in CoLaus and LOLIPOP cohorts, containing

individuals of European descent. A single nominally significant

coding SNP R311C (rs7314976, MAF = 0.14) within the GPR109A

gene was taken forward for replication and found to be consistently

associated with adiponectin in the three cohorts (CoLaus, Fenland

and MRC Ely study, n = 8285, p = 4.661028) and HDL-cholesterol

(HDL-C) in four cohorts (CoLaus, Fenland, Ely study and Lolipop,

n = 18425, p = 2.961028) (Figure S2A, S2B). However R311C and

rs601339 were not in linkage disequilibirium with each other

(r2 = 0.04). Therefore the two variants represent two independent

signals from the same locus but with similar effects on HDL-

cholesterol and adiponectin.

In silico follow-up phase. In the in-silico follow-up phase

468 SNPs demonstrating genome-wide significant (p,561028 ) or

suggestive (p,561026) association with adiponectin in the

discovery phase were tested for association in additional

European cohorts. (Table S3). These SNPs were tested in seven

additional GWAS datasets (n = 6,623 from NHS, HPFS, HABC,

ERF2, LLS, GARP and ARIC studies) and the combined meta-

Author Summary

Serum adiponectin levels are highly heritable and are
inversely correlated with the risk of type 2 diabetes (T2D),
coronary artery disease, stroke, and several metabolic
traits. To identify common genetic variants associated with
adiponectin levels and risk of T2D and metabolic traits, we
conducted a meta-analysis of genome-wide association
studies of 45,891 multi-ethnic individuals. In addition to
confirming that variants at the ADIPOQ and CDH13 loci
influence adiponectin levels, our analyses revealed that 10
new loci also affecting circulating adiponectin levels. We
demonstrated that expression levels of several genes in
these candidate regions are associated with serum
adiponectin levels. Using a powerful novel method to
assess the contribution of the identified variants with other
traits using summary-level results from large-scale GWAS
consortia, we provide evidence that the risk alleles for
adiponectin are associated with deleterious changes in
T2D risk and metabolic syndrome traits (triglycerides, HDL,
post-prandial glucose, insulin, and waist-to-hip ratio),
demonstrating that the identified loci, taken together,
impact upon metabolic disease.
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analysis of the discovery and follow-up in-silico GWAS datasets

detected additional loci on chromosomes 1q41 near the LYPLAL1

gene (rs3001032, p = 3.661028) and chromosome 6p21.1 near the

VEGFA gene (rs998584, p = 5.8610212) that reached genome-wide

significance. While we confirmed seven loci that had reached

genome-wide significance at the discovery stage (Table 1, Figure 2F

and 2G, Table S2), two identified loci (3q25.1 and 12q24.31) did

not remain genome-wide significant in the joint analysis of

discovery and follow-up results.

De novo follow-up phase. Next, in the de-novo genotyping

follow-up phase, we genotyped 10 SNPs with suggestive evidence

of association (561028,p,561026) from the meta-analysis of the

discovery and in-silico follow-up phases in an additional 3,913

individuals. Meta-analyzing the discovery and 2 follow-up stages

identified a SNP in ARL15 (rs6450176 [G]; ß = 0.026,

p = 5.861028), which was initially described in a previous

GWAS for adiponectin levels (Table S3) [16].

Multi-ethnic meta-analysis. To identify loci influencing

adiponectin levels in non-European individuals we performed an

additional analysis in 4,232 individuals from an African American

population and 1,776 individuals from an East Asian population.

In the African American populations, only associations at the

ADIPOQ locus reached genome-wide significance, while in the

East Asian population there was evidence of association at the

ADIPOQ and CDH13 loci (Table S4). Subsequently, we performed

a meta-analysis that combined all available GWAS including those

of white European origin, African American and East Asian

ancestry using novel method MANTRA [24]. This analysis

identified two additional loci in or near IRS1 gene on 2q36.3 and

at 6q24.1 within a gene desert. (Table 2, Figure 1B).

Secondary GWAS analyses. We next performed meta-

analysis of the GWAS data in women (n = 16,685) and men

(n = 12,662) separately (Figure S2A, S2B, Tables S5 and S6).

Although no novel loci reached genome-wide significance in

women or men separately, three loci (chromosome 3p, 8 and 12)

associated with adiponectin levels in the sex-combined analysis

showed evidence of association (p value,561028) in women

(Figure S3). Since different assays were used to measure

adiponectin levels, we next tested whether stratification by assay

rendered similar results and found the results were highly

concordant with the combined analysis. GWAS for high

molecular weight adiponectin in the CHS study (n = 2,718)

identified 2 SNPs in ADIPOQ (rs17300539, p = 3.0610216) and

CMIP (rs2927307, p = 2.761028). These two genes are located

within the loci identified in our discovery meta-analysis of

adiponectin levels.

Gene Expression Studies
Through gene expression studies we sought to address two

questions: First, are any of the SNPs that were genome-wide

significant for adiponectin levels associated with expression of their

nearest transcripts (cis-eQTLs) and second, whether mRNA levels

of loci identified through the GWAS for adiponectin levels are

associated with circulating adiponectin levels. To address the first

question, we examined whether SNPs within 1 Mb of the SNPs

achieving genome-wide significance in the discovery stage were

associated with the expression levels of nearby genes in human

adipocytes from 776 participants of the MuTHER Consortium

[25]. We identified 74 SNPs in three eQTLs to be associated with

the expression of five genes in adipocytes, using an array-wide level

of statistical significance for eQTLs (P,5.161025. See Materials

and Methods for details). These genes included: NT5DC2 on

chromosome 3; CCDC92, GPR109A, and ZNF664 on chromo-

some12; and PEPD on chromosome 19 (Table 3). The cis-eQTL

Table 1. Lead SNP per Locus for Genome-Wide Significant SNPs Arising from the Sex-Combined Meta-Analysis in European
Populations.

Nearest**
Gene Lead SNP{ Region Chr/position{ EA/NEA" EAF"" Beta1 SE P I2 n Beta1 SE P I2 n

Discovery Phase Results Joint Analysis Phase*

LYPLAL1 rs3001032 1q41 1/217794402 T/C 0.7 20.02 0.005 1.98E-06 0 29,321 20.02 0.004 3.60E-08 0 35,930

GNL3 rs1108842 3p21.1 3/52695120 C/A 0.50 0.03 0.004 3.66E-11 0.33 29,338 0.03 0.004 1.39E-13 0.2 35,962

TSC22D2 rs1597466 3q25.1 3/151538251 T/G 0.1 20.04 0.008 1.88E-08 0 29,319 20.03 0.007 1.62E-06 0.1 35,794

ADIPOQ rs6810075 3q27.3 3/188031259 T/C 0.6 0.06 0.005 3.60E-41 0 29,140 0.06 0.004 1.19E-43 0 35,749

VEGFA rs998584 6q21.1 6/43865874 C/A 0.5 0.03 0.005 5.84E-08 0.3 28,167 0.03 0.005 3.25E-08 0.2 34,108

TRIB1 rs2980879 8q24.13 8/126550657 T/A 0.7 0.03 0.005 1.08E-08 0 24,084 0.03 0.005 7.13E-09 0 30,708

PDE3A rs7955516 12q12.2 12/20389303 C/A 0.4 0.03 0.005 2.43E-08 0.1 29,178 0.02 0.004 4.45E-08 0 38,276

GPR109A rs601339 12q24.31 12/121740696 G/A 0.2 0.04 0.006 3.87E-11 0 29,325 0.03 0.005 7.81E-10 0.3 35,947

DNAH10 rs7133378 12q24.31 12/122975455 G/A 0.7 20.03 0.005 1.29E-09 0 29,223 20.02 0.004 6.21E-07 0.5 35,697

CMIP rs2925979 16q23.2 16/80092291 T/C 0.3 20.04 0.005 1.87E-18 0 29,347 20.04 0.005 1.21E-20 0 35,970

CDH13 rs12922394 16q23.3 16/81229828 T/C 0.1 20.10 0.011 3.16E-18 0.3 24,466 20.08 0.010 1.99E-15 0.4 31,089

PEPD rs731839 19q13.11 19/38590905 G/A 0.35 20.04 0.005 2.20E-13 0.03 29,166 20.03 0.004 7.97E-12 0.4 35,771

All SNPs achieving genome-wide significance in the joint analysis phase are marked in italics.
*Joint analysis indicates results from the meta-analysis of discovery and follow-up in-silico and de-novo phases.
**When possible, plausible biological candidate genes have been listed; otherwise, the closest gene is designated.
{Lead SNP is the SNP with the lowest p-value for each locus.
1Betas are estimated from models using the natural log transformed adiponectin.
"EA: Effect allele, NEA: Non-effect allele.
""EAF: Effect allele frequency.
doi:10.1371/journal.pgen.1002607.t001
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SNPs often are proxies for the lead SNPs from the GWAS,

however, this relationship may also be influenced through

mechanisms that are independent from gene expression, such as

gene function.

We next identified that mRNA levels of 18 genes arising from

six candidate loci were correlated with circulating adiponectin

levels (Table 4). Since circulating adiponectin levels may be

associated with a surplus of adipocyte transcripts we next tested

for enrichment of signal from the candidate loci. There were 133

transcripts in the identified candidate regions, of which 8.2% (11/

133) were associated with adiponectin levels at an array-wide

level of significance (p,261026), while 7.5% of the 24k probes

on the entire array exceeded the same p-value threshold,

indicating there was therefore no additional enrichment of signal

at these candidate loci.

T2D and Metabolic Traits
Using data from several large-scale GWAS consortia, some of the

significantly associated variants identified here demonstrated

associations with T2D and its related traits (Table S7A, S7B, S7C,

and S7D). Several individual SNPs showed evidence for association

with T2D and various metabolic traits after accounting for the

number of statistically independent SNPs (p-value threshold of

561024) among the SNPs that were genome-wide significant for

adiponectin. These include associations with HDL-C (n = 104

SNPs), triglycerides (TG) (n = 65 SNPs), total cholesterol (TC,

n = 12 SNPs), LDL-cholesterol (LDL–C, n = 11 SNPs), and waist-

hip ratio (WHR) (n = 65 SNPs) [26]. (However, we note that since

sample sizes are different across different consortia power to identify

associations is not consistent.) Among these, coding and intronic

variants in STAB1 and NT5DC2 genes were associated with WHR

and HDL-C, while the variants 1 Mb near TRIB1 were associated

with all lipid traits. The coding and intronic variants ariants in the

locus on chromosome 12 harboring ZNF664, CCDC92, and

DNAH10 showed evidence of association with WHR, HDL-C, and

TG. Finally, variants in the PEPD gene were associated with TG.

We next calculated a multi-SNP genotypic risk score based

genome-wide significant SNPs from the discovery phase. This

multi-SNP genotypic risk score explained 5% of the variance of

natural log-transformed adiponectin levels. We then tested the

association of this risk score with risk of T2D and metabolic related

traits. The multi-SNP genotypic risk score was associated with

increased risk for T2D (ß = 0.3, p = 4.361023), where ß is the

average additive effect of adiponectin-decreasing risk alleles on the

Figure 1. Manhattan plots for meta-analyses in the discovery phase. A) Combined sex analysis in European populations, B) Meta-Analysis of
Multiple Ethnicities. The Manhattan plots show 2Log10 (p-value) measures for association between single nucleotide polymorphisms (SNPs) and
chromosomal position. The SNPs that achieved genome-wide significance are highlighted in green.
doi:10.1371/journal.pgen.1002607.g001
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Figure 2. Regional plots of eight newly discovered genome-wide significant chromosomal regions associated with adiponectin
concentrations in European populations. A) chromosome 16q23.2, B) chromosome 19 q13.11 C) Chromosome 3p21.1, D) two loci on
chromosome 12q24.31, E) chromosome 8q24.13, F) chromosome 6p21.1, and G) chromosome 1q41. In each panel, purple diamonds indicate the top
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log odds ratio of T2D), increased TG (ß = 0.25, p = 2.6610214),

increased WHR adjusted for BMI (ß = 0.18, p = 1.861025),

increased post-prandial glucose (ß = 0.25, p = 0.01), increased

fasting insulin (ß = 0.05, p = 0.01), homeostatic model assessment-

insulin resistance (HOMA-IR) (ß = 0.04, p = 0.047), and with

lower HDL-C concentrations (ß = 20.24, p = 4.5610213) and

decreased BMI (ß = 20.16, p = 1.461024). (Table 5).

Discussion

In this comprehensive multi-ethnic analysis of the genetic

influences on adiponectin levels and their impact on metabolic

traits and T2D, we have identified 10 novel loci and confirmed the

associations of variants in the ADIPOQ and CDH13 loci with

adiponectin levels. The adiponectin risk alleles were associated

with T2D and related metabolic traits such as BMI, WHR, TG,

HDL-C, 2-hour glucose, HOMA-IR and fasting insulin. These

findings demonstrate that adiponectin, T2D and metabolic

syndrome have a shared allelic architecture.

Biological Relevance of the GWAS Loci
In the first step toward understanding the biological relevance of

the identified regions, we examined the genes harbored by the

associated loci using human disease and animal databases.

Although some of the genes in these loci do not have a known

function, several signify diverse biological functions.

On chromosome 1, the lead SNP was located 300 kb from the

LYPLAL1, a protein that regulates phospholipids on cellular

membranes. Independent efforts have also identified this locus in

other metabolic/obesity related traits GWAS: first with WHR

(rs2605100; r2 = 0.49 [21] and rs4846567; r2 = 0.55 [27] respectively

with the lead adiponectin SNP, rs3001032), and more recently with

fasting insulin by a joint meta-analysis including the interaction

between SNP and BMI (MF Hivert for the MAGIC investigators,

personal communication). In the same report by MAGIC, variants

near IRS1 (insulin receptor substrate 1) and PEPD (a protein that

hydrolyzes dipeptides and tripeptides) have also been associated

with fasting insulin at genome wide significant levels, demonstrating

a close link between adiponectin regulation and insulin resistance

pathways. Moreover, both IRS1 and PEPD have been associated

with T2D (IRS1 in DIAGRAM [28] and PEPD in a Japanese

population [29]; p = 9.3610212 and p = 1.461025, respectively).

The lead SNP at 3p21.1 falls within GNL3 that is located in a

genomic region containing many genes which could have potential

functions in metabolism. Our data provide evidence that

adiponectin levels were correlated with human adipocyte mRNA

levels of many genes in this region (GLYCTK, SEMA3G, STAB1,

PBRM1, SFMBT1; see Table 4). However, this association does

not imply a direct influence of these genes on adiponectin level.

Among those genes, STAB1 encodes for stabilin 1, described as an

endocytic receptor for advanced glycation end products and may

have a function in angiogenesis, lymphocyte homing, cell

adhesion, or receptor scavenging for acetylated low-density

lipoprotein [30].

Interestingly, several of the genes near lead genome-wide

significant SNPs have been implicated in angiogenesis, which

might be important for adipose tissue expansion, highlighting the

recurring theme of ‘‘adipose tissue expandability’’ in the genetic

origins of obesity-related complications [31]. For example, VEGFA

is the vascular endothelial growth factor A gene, a known gene in a

variety of vascular endothelial cell functions, such as angiogenesis

and maintenance of the glomerular endothelium in nephrons [32].

Variants in this gene are also associated with diabetic retinopathy

and WHR [27,33]. Moreover, the product of VEGFA interacts

with resveratrol, which has been shown to have a beneficial

influence in some metabolic traits, including diabetes [34]. Rodent

studies show that resveratrol decreases blood glucose, blood

insulin, and glycated hemoglobin, as well as increases insulin

sensitivity in animals with hyperglycemia (reviewed in [35]).

Resveratrol also inhibits TNF-a-induced reductions in adiponectin

levels in 3T3-L1 adipocytes [36]. Furthermore, it has been shown

that resveratrol modulates adiponectin expression and improves

insulin sensitivity, likely through the inhibition of inflammatory-

like response in adipocytes [37]. At this locus, VEGFA mRNA

levels in adipocytes were the strongest association with adiponectin

levels (Table 4). Also likely involved in vascular biology, TRIB1

encodes a G protein-coupled receptor-induced protein interacting

with MAP kinases that regulates proliferation and chemotaxis of

vascular smooth muscle cells [38]. TRIB1 expression was shown to

be elevated in human atherosclerotic arteries [39]. Several variants

(rs2954029, rs2954021, rs17321515; all in moderate LD with our

lead SNP) in the TRIB1 gene have been associated with HDL-C,

LDL-C and CHD risk in European and Asian populations

[22,40,41,42,43]. These two loci (TRIB1 and VEGFA) argue for

the importance of vascular biology in adiponectin regulation as

underlined previously by findings of adiponectin levels associated

with variants near CDH13 (a receptor for adiponectin expressed by

endothelial smooth muscle) [44].

All three homologous genes GPR109A/B/81 located on

chromosome 12 are predominantly expressed in adipocytes and

mediate antilipolytic effects [45]. Our eQTL results (Table 3) and

the correlation between mRNA and adiponectin levels (Table 4)

argue strongly for a role of GPR109A at this locus. GPR109A (also

known as NIACR1) is a receptor with a high-affinity, concentra-

tion-dependent response to nicotinic acid (niacin) [45]. Treatment

by niacin increases serum adiponectin levels by up to 94% in obese

men with metabolic syndrome in a time- and dose-dependent

manner [46]. Functional studies in GPR109A receptor knockout

mice demonstrate that niacin increases serum total and HMW

adiponectin concentrations and decreases lipolysis following

GPR109A receptor activation [47]. Moreover, a recent meta-

analysis on cohorts containing extremes of HDL-C provided

evidence suggestive of association in GPR109A/B/81 [48].

Finally, variants in ZNF664 have been associated with CHD,

HDL-C and TG levels in a large meta-analysis of over 100,000

individuals of European ancestry [22]. The sex heterogeneity

observed in this study is comparable to our finding that the more

loci associated with adiponectin at genome wide significance level

have been shown in female stratified analysis.

Taken together, the loci identified in this large-scale GWAS for

adiponectin levels highlight many genes with demonstrated

relationships with metabolic disease.

Shared Allelic Architecture of Adiponectin Levels and
Metabolic Traits

Using a multi-SNP genotypic risk score we attempted to

understand if the allelic architecture of adiponectin levels was

shared with T2D and metabolic traits. This risk score was

SNPs, which have the strongest evidence of association. Each circle shows a SNP with a color scale relating the r2 value for that SNP and the top SNP
from HapMap CEU. Blue lines indicate estimated recombination rates from HapMap. The bottom panels illustrate the relative position of genes near
each locus. Candidate genes are indicated by red ovals.
doi:10.1371/journal.pgen.1002607.g002
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associated with increased risk of T2D and traits associated with

insulin resistance and the metabolic syndrome. However,

unexpectedly, adiponectin decreasing alleles were associated with

a decrease in BMI. In our adiponectin GWAS, BMI was included

as a covariate in order to avoid direct identification of obesity

SNPs since BMI is strongly related to adiponectin levels [49,50].

Furthermore, this unexpected direction of effect was entirely

explained by SNPs at the ZNF664 and PEPD loci; when these loci

were removed from the analysis, the association of the genotypic

risk score with BMI disappeared (results not shown). Therefore,

adiponectin risk alleles at ZNF664 and PEPD are of considerable

interest since they impart deleterious changes on aspects of the

metabolic syndrome (increased TC, TG, LDL-C and WHR and

decreased HDL-C), but also act to decrease BMI and percent fat.

Our data do not provide direct evidence as to whether the

genetic determinants of adiponectin levels influence these traits

through adiponectin itself, or through pleiotropic pathways and

therefore do not constitute a Mendelian randomization study.

These findings provide a note of caution for Mendelian

randomization studies, which may be prone to erroneous

conclusions if pleiotropic effects of tested variants are not

considered. Nonetheless, in aggregate, these results provide strong

evidence that the genetic determinants of adiponectin levels are

shared with metabolic disease, and in particular, traits related to

insulin resistance.

We note that there are several strengths and limitations of this

study. Our main findings, identifying genetic determinants of

adiponectin levels, are based on the largest meta-analysis to date

and include results from three ethnicities. The availability of

expression data from human adipose tissue permitted the

association of identified SNPs with mRNA levels at candidate

genes and, in turn, correlation of these mRNA levels with

circulating adiponectin itself. While access to the data from large

consortia permitted assessment of the relevance of the identified

SNPs to T2D and components of the metabolic syndrome, we

note that a subset of the cohorts included in our GWAS were also

included in these external consortia. However, we note that even if

we assume that all ADIPOGen study participants were included in

the external consortia, for cohorts participating in both studies,

that the majority of data in these external consortia still arises from

study participants not present in ADIPOGen (minimum percent of

non-overlapping subects: 86.8%, 85.5%, 86.4% and 82.5% for

MAGIC, GLGC, GIANT, and DIAGRAM+ consortia, respec-

tively). Therefore, since a substantial majority of participants are

independent between ADIPOGen and these consortia, it is

unlikely that our findings demonstrating a shared allelic architec-

ture between adiponectin levels and these traits are spurious.

Further, we suggest that locus, 6q24.1, identified only through

multi-ethnic meta-analysis using MANTRA and not confirmed

through fixed and random effects meta-analysis, be replicated for

confirmation of this finding.

In conclusion, the data presented in this study provide strong

evidence of association for 10 novel loci for adiponectin levels.

Table 3. The Association of Lead Genome-Wide Significant SNPs for Adiponectin with mRNA Levels of Their Nearest Gene.

Gene
Lead SNP-
Cis-eQTL{ Chr

Transcript
Start Site

Transcript
End Site EA" EAF"" Beta (SE)1 P-Exp* P-GWAS**

lead SNP-
GWAS{{ r2$

NT5DC2 rs13081028 3 52533424 52544133 G 0.444 0.14(0.02) 1.32E-19 1.05E-09 rs1108842 0.84

GPR109A rs2454722* 12 121778105 121781082 G 0.166 20.15(0.03) 1.71E-09 3.87E-11 rs601339 1

CCDC92 rs10773049 12 122986907 123023116 T 0.611 0.15(0.02) 8.09E-22 2.67E-08 rs7133378 0.02

ZNF664 rs825453 12 123074711 123065922 T 0.615 20.04(0.01) 4.51E-05 4.03E-08 rs7978610 0.03

PEPD rs8182584 19 38569694 38704639 T 0.364 20.13(0.02) 9.96E-10 6.64E-11 rs731839 1

{Lead SNP is the SNP with the lowest p-value for each gene in gene expression data.
{{Lead SNP is the SNP with the lowest p-value for each locus in meta-analysis from discovery phase.
"EA: Effect allele.
""EAF: Frequency of effect allele.
1Betas are estimated expression levels of the genes.
*P value for lead SNP is the SNP in gene expression data.
**P value for lead SNP in meta-analysis from discovery phase.
$r2 LD between lead SNP from expression and lead SNP from meta-analysis.
doi:10.1371/journal.pgen.1002607.t003

Table 4. The Association of mRNA Levels from Genes in
Candidate Loci in Human Adipocytes with Circulating
Adiponectin Levels.

Gene Gene region GeneStart GeneEnd Beta1 Pvalue

GLYCTK 3p21.1 52296875 52304311 0.060 1.77E-20

SEMA3G 3p21.1 52442307 52454083 20.018 9.28E-06

STAB1 3p21.1 52504395 52533551 20.039 2.26E-14

PBRM1 3p21.1 52554407 52688779 0.007 2.49E-04

SFMBT1 3p21.1 52913666 53055110 0.010 2.53E-08

DNAJB11 3q27.3 187771160 187786283 20.014 3.31E-07

EIF4A2 3q27.3 187984054 187990379 0.021 1.53E-08

ADIPOQ 3q27.3 188043156 188058944 0.054 1.03E-13

MAD2L1BP 6q21.1 43711554 43716666 0.009 4.09E-04

VEGFA 6q21.1 43845923 43862199 0.012 2.15E-09

ZCCHC8 12q24.31* 121523387 121551471 0.011 2.60E-04

GPR109B 12q24.31 121765255 121767392 0.010 3.74E-06

GPR109A 12q24.31 121778105 121781082 0.026 1.80E-11

PITPNM2 12q24.31* 122033979 122160928 20.010 5.09E-06

U1SNRNPBP 12q24.31 122508604 122516894 0.011 1.72E-04

ATP6V0A2 12q24.31 122762817 122812252 20.008 2.86E-04

ZNF664 12q24.31 123023622 123065922 0.010 8.28E-06

SLC7A10 19q13.11 38391409 38408596 0.072 1.66E-14

1Betas are estimated from log transformed and quantile-quantile normalized
values.
*These two loci are independent loci.
doi:10.1371/journal.pgen.1002607.t004
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Further analyses confirmed that the level of expression of some of

these candidate genes in human adipocytes correlated directly with

adiponectin levels. A multi-SNP genotypic risk score, and several

of the identified variants, directly influence parameters of the

metabolic syndrome and, in particular, markers of insulin

resistance. These findings identify novel genetic determinants of

adiponectin levels, which, taken together, influence risk of T2D

and markers of insulin resistance.

Materials and Methods

Ethical Consideration
All participants provided informed written consent. The

research protocol of all studies were reviewed and approved by

institutional ethics review committees at the involved institutions.

Study Design
Our study consisted of three stages. First, in the discovery stage

we performed a meta-analysis of the GWAS summary statistics of

16 studies involving 29,347 participants of white European origin

to detect SNPs that are associated with adiponectin levels. All

signals with p,561026 were followed up in seven additional

cohorts (n = 6,623) with GWAS data (in-silico phase) that later

joined the consortium and then a subset of SNPs (n = 10) by de-novo

genotyping in 3,913 additional participants from three cohorts

(n = 39,883 for the combined analysis in Europeans). We also

performed a multi-ethnic meta-analysis by combining summary

statistics from the 16 studies of individuals of white European

discovery cohorts (n = 29,347) with those of five cohort studies that

included African Americans subjects (n = 4,232) and one East

Asian cohort (n = 1,776) to obtain a total 35,355 individuals for the

GWAS meta-analysis involving different ethnicities. After identi-

fying variation near two genes of pharmaceutical importance

(GPR109A and GPR109B), which encode the putative niacin

receptors, we typed additional rare coding and tagging variants in

a subset of cohorts. Second, we examined whether the identified

SNPs of the first stage also associate with mRNA levels of nearest

gene(s) expressed using adipose tissue of 776 European women.

We also tested for association between adiponectin levels and

mRNA levels of the genes in our candidate loci in adipose tissue of

a subgroup of 436 individuals [25]. Third, we calculated a multi-

SNP genotypic risk score using genome-wide significant adipo-

nectin-lowering alleles and tested the association of this risk score

with T2D and related metabolic traits. Figure 3 shows a flow chart

detailing the study design.

Study Populations
In total, 45,891 individuals from 26 European and 7 non-

European cohorts participated in the different phases of this meta-

analysis. Participating cohorts were either population-based

(n = 23), family-based (n = 4), or case-control (n = 4) studies. The

age of participants ranged from 10 to 95 years. Adiponectin levels

were measured using ELISA or RIA methods. More details on the

study cohorts and adiponectin measurement are presented in the

Text S1 and Table S1. In addition, genotyping of four coding and

tagging SNPs in the candidate genes, GRP109A and GPR109B,

was undertaken in samples from the Lausanne, Lolipop, MRC

Ely, and Fenland cohorts.

Genotyping and Imputation
All cohorts were genotyped using commercially available

Affymetrix or Illumina genome-wide genotyping arrays. Quality

control was performed for each study independently and genotype

imputation was carried out using IMPUTE, MACH, BimBam or

Beagle with reference to either the Phase II CEU, CEU+YRI, or

CHB+JPT+CEU HapMap according to the origin of population.

Imputation of East Asian genotypes was undertaken by first

masking genotypes of 200 SNPs and then imputing them based on

the CEU+CHB+JPT panel from HapMap. This resulted in an

allelic concordance rate of ,96.7%. For the African Americans, a

combined CEU+YRI reference panel was created. This panel

included SNPs segregating in both CEU and YRI, as well as SNPs

Table 5. Results of Association of Multi-SNP Genotypic Risk Score with Diabetes and Related Traits.

Trait N Effect1 (95% CI) P Consortium

T2D** 22,044 0.301 (0.09, 0.51) 4.3E-03 DIAGRAM+

BMI (SD units) 121,335 20.162 (20.25, 20.08) 1.4E-04 GIANT

WHR* 77,167 0.177 (0.1, 0.26) 1.8E-05 GIANT

Percent Fat 34,853 20.052 (20.15, 0.05) 0.31 Body Fat Percent

Fasting Glucose (mmol/L) 46,186 0.011 (20.03, 0.05) 0.58 MAGIC

Fasting Insulin**(pmol/L) 38,238 0.05 (0.01, 0.09) 1.5E-02 MAGIC

HomaB 36,466 0.033 (0, 0.07) 5.1E-02 MAGIC

Homa IR 37,037 0.042 (0, 0.08) 4.7E-02 MAGIC

2hr Glucose**(mmol/L) 15,234 0.245 (0.06, 0.44) 1.1E-02 MAGIC

HbA1C (%) 35,908 20.002 (20.04, 0.03) 0.91 MAGIC

TG**(SD units) 93,440 0.248 (0.18, 0.31) 2.6E-14 GLGC

HDL-C** (SD units) 96,748 20.243 (20.31, 20.18) 4.5E-13 GLGC

LDL-C (SD units) 92,348 0.023 (20.05, 0.09) 0.52 GLGC

TC (SD units) 97,021 0.0003 (20.07, 0.07) 0.99 GLGC

T2D: Type 2 diabetes, BMI: Body mass Index, WHR: Waist to hip ratio, HbA1C: hemoglobin A1C, TG: Triglyceride, HDL-C: High Density Lipoprotein Cholesterol, LDL-C:
Low Density Lipoprotein Cholesterol, TC: Total Cholesterol.
1Effect is mean change in trait or disease per adiponectin-decreasing allele.
*Waist to hip ratio adjusted for BMI.
**Significantly associated trait is coded in bold.
doi:10.1371/journal.pgen.1002607.t005
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segregating in one panel and monomorphic and non-missing in

the other (2.74 million SNPs). Due to the overlap of African

American individuals on the Affymetrix 6.0 and IBC arrays [51], it

was possible to analyze imputation performance at SNPs not

genotyped on Affymetrix 6.0. For imputation based on Affymetrix

data, the use of the CEU+YRI panel resulted in an allelic

concordance rate of ,95.6% (calculated as 120.5 * [imputed_

dosage– chip_dosage]). This rate is comparable to rates calculated

for individuals of African descent imputed with the HapMap 2

YRI individuals. Table S1 summarizes the genotyping methods

used for each cohort, genotype-calling algorithms, imputation

algorithms and exclusion thresholds. SNP-level quality control

metrics were applied prior to meta-analysis for each cohort. These

were: call rate $95%, minor allele frequency (MAF)$1%, Hardy-

Weinberg equilibrium (HWE) p.1026, and quality measures for

imputed SNPs (r2$0.3, or proper info $0.4, for cohorts imputing

their data with MACH and IMPUTE, respectively).

Eleven coding and tagging variants in two candidate genes of

pharmaceutical importance (GPR109A encoding the niacin

receptor and GPR109B) were genotyped in a parallel study in

Lausanne, Lolipop, MRC Ely, and Fenland white subjects.

Genotyping was performed using a KASPar-On-Demand SNP

Genotyping Assay (KBioscience Ltd., Hoddesdon, UK). In

Lausanne and Lolipop samples the genotyping assay was carried

out on 3.75 ng of genomic DNA in 1 ml 1536-well plate reactions,

dispensed with a Meridian, microfluidic dispenser (KBioscience

Ltd., Hoddesdon, UK), thermocycled using a Hydrocycler

(KBioscience Ltd., Hoddesdon, UK). A Pherastar (BMG GmbH,

Germany) was used for end-point detection and Kraken-LIMS

(KBioscience Ltd., Hoddesdon, UK) was used for automated allele

calling. In MRC Ely and Fenland samples, the genotyping assay

was carried out on 10 ng of genomic DNA in 5 ml 384-well plate

reactions using a G-Storm GS4 Thermal Cycler (GRI, Rayne,

UK). The ABI PRISM 7900HT Sequence Detection System

(Applied Biosystems, Warrington, UK) was used for end-point

detection and allele calling.

Statistical Analysis
Genome-wide association studies. All cohorts indepen-

dently tested for the additive genetic association of common

(MAF.1%) genotyped and imputed SNPs with natural log

transformed adiponectin levels, while adjusting for age, sex,

body mass index (BMI), principal components of population

stratification and study site (where appropriate), and for family

structure in cohorts with family members [49,50,52]. The analyses

were performed for men and women combined, as well as for men

and women separately. The Cardiovascular Health Study cohort

(CHS) also provided GWA results for high molecular weight

(HMW) adiponectin using the same methods as described above.

Meta-analysis of GWAS. The meta-analysis was performed

by two analysts independently each using different methods;

inverse variance-weighted methods using both fixed and random

effect models available through either the METAL (http://www.

sph.umich.edu/csg/abecasis/metal/) or GWAMA version 2.0.5

(http://www.well.ox.ac.uk/gwama/) software packages [53].

Summary statistics were crosschecked to ensure consistency of

results. Prior to the meta-analysis, study-specific summary statistics

were corrected using genomic control (lambda range = 0.99–1.25)

and the overall meta-analytic results were additionally corrected

for genomic control (lambda = 1.06). To examine whether

associations with adiponectin were sex-specific, we performed

meta-analyses for men and women separately. A p-value threshold

of 561028 was considered to be genome-wide significant.

Ethnicity-specific meta-analyses were performed for white Euro-

pean and non-European populations separately, using the same

methods as described above.

Presence of heterogeneity in the meta-analysis was assessed by

the I2 statistic and Q-test [54]. Since cohorts measured

adiponectin concentrations using either RIA or ELISA methods,

we also performed a GWA meta-analysis stratified by the method

of measurement to test whether this contributed to heterogeneity.

Follow-up phase. The follow-up phase comprised two stages;

in-silico follow-up and de-novo follow-up.

—In silico follow-up: 468 SNPs with p,561026 from the

discovery phase (which includes both genome-wide significant

[n = 196, p,561028] and ‘‘suggestive’’ [n = 272, 561028,p,

561026] SNPs Table S3) were tested for their association in 6,623

individuals from seven additional cohorts with GWAS data that

joined the consortium after the discovery stage had been finalized.

—De novo follow-up: We next selected the lead SNP arising

from selected loci from the joint analysis of the discovery and in-

silico follow-up phase with p-values greater than 561028 but less

than 561026 and genotyped 10 SNPs in 3,164 samples from the

SAPHIR cohort and an additional subgroup of the KORA cohort.

Finally, these same SNPs, or their proxy SNPs (n = 2), were tested

for association in the THISEAS cohort (n = 738), which had been

genotyped using the Metabochip [55]. Study-level summary

statistics from the follow-up phases were meta-analyzed with the

data from the discovery phase.

Multi-ethnic meta-analysis. In order to perform a meta-

analysis of GWAS data from cohorts of different ethnic

backgrounds, we utilized the novel MANTRA (Meta-ANalysis of

Trans-ethnic Association studies) software [24]. This method

combines GWAS from different ethnic groups by taking

advantage of the expected similarity in allelic effects between the

most closely related populations. Fixed-effects meta-analysis

assumes the allelic effect to be the same in all populations, and

cannot account for heterogeneity between ethnic groups.

Conversely, random effects meta-analysis assumes that each

population has a different underlying allelic effect, however,

populations from the same ethnic group would be more

homogeneous than those that are more distantly related. To

address this challenge we accounted for the expected similarity in

allelic effects between the most closely related populations by means

of a Bayesian partition model. For each variant, allelic effects and

corresponding standard errors are estimated within each population

under the assumption of an additive model. Populations are then

clustered according to their similarity in terms of relatedness as

measured by the mean allele frequency difference at 10,000

independent SNPs, and to their allelic effects at the variant. If all

populations are assigned to the same cluster, this is equivalent to a

fixed allelic effect across all populations (i.e. no trans-ethnic

heterogeneity). The posterior distribution of the allelic effect in

each population under the Bayesian partition model is

approximated by means of a Monte-Carlo Markov chain

algorithm. Evidence in favor of association of the trait with the

variant was assessed by means of a Bayes’ factor (BF). A log10 BF of

6 or higher is considered a relatively conservative threshold for

genome-wide significance. We also performed meta-analysis by

using both random and fixed effects models including all ethnicities.

Those loci that achieved both a BF.6 in MANTRA and a P-value

less than 561027 in multiethnic analysis are presented in Table 2.

Association of Genome-Wide Significant SNPs with Gene
Expression (Stage 2)

In order to identify cis-expression quantitative trait loci (cis-

eQTLs) and test whether mRNA levels of candidate genes arising

from our GWAS were associated with adiponectin levels, we used

Adiponectin: Multiethnic Genome-Wide Meta-Analysis
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expression profiles in human adipocytes from the Multiple Tissue

Human Expression Resource (MuTHER) Consortium, (856

female twins from the UK) [25]. mRNA expression profiles from

subcutaneous fat and genome-wide genotypes were available for

776 individuals and circulating adiponectin levels for 436 of these

women. We note that while adiponectin levels were measured at

an earlier time point than the fat biopsies, the BMI at time of

adipose expression measurement and time of adiponectin

measurement was highly correlated (r2 = 0.9).

cis-eQTLs were defined as associations between SNPs and a

transcript within 1 Mb of the identified SNP. To correct for

multiple testing, we used QVALUE software [56], and estimated

that a genome-wide false discovery rate of 1% corresponds to a p-

value threshold of 5.0661025 (this conservative threshold accounts

for all multiple arising from the use of the array, rather than multiple

testing arising from assessing only transcripts in the genome-wide

significant regions). To test whether mRNA levels of candidate

genes identified in the GWAS meta-analysis are associated with

circulating adiponectin levels, we applied a Bonferoni corrected

threshold of p,361024 (where 361024 = 0.05/133 and 133 was

the number of transcripts tested at the candidate loci).

Association of Genome-Wide Significant SNPs with T2D
and Metabolic Traits (Stage 3)

The DIAGRAM+ (effective n = 22,044) [19], MAGIC (n = up

to 46,186) [20], GLGC (n = up to 97,021) [22], GIANT (n = up to

121,335) [21], and Body Fat GWAS (n = up to 36,625) consortia

provided summary statistics for the association of each SNP that

was genome-wide significant in the discovery phase. Since 196

SNPs (which were estimated to be equivalent to 96 independent

statistical tests due to linkage disequilibrium [LD]) [26] were tested

for their association, we employed a Bonferroni-corrected

threshold of a= 0.0005 (where 0.0005 = 0.05/96) to define the

threshold of association for any individual SNP association with

T2D and related traits.

While any individual SNP may demonstrate a relationship with

T2D or related traits, it can be more informative to test whether a

multi-SNP genotypic risk score is associated with the outcome of

interest. In the absence of pleiotropic effects arising from loci other

than ADIPOQ, such a multi-SNP genotypic risk score would enable

testing of whether adiponectin levels are causally related to risk of

T2D or metabolic traits through a Mendelian randomization

framework. Since most of the SNPs that we identified to be

genome-wide significant for adiponectin levels were not in the

ADIPOQ locus, the presence of such pleiotropy precluded a formal

Mendelian randomization study. To create a multi-SNP genotypic

risk score we implemented a novel method that approximates the

average effect of adiponectin decreasing alleles on T2D or related

traits. Further, this method allows the use of consortium-level

meta-analytic results for a set of SNPs, rather than requiring the

re-analysis of individual-level data in each cohort, thereby

providing more accurate effects of each allele (due to the larger

sample size in the consortium-level meta-analysis). The weighted

sum of the individual SNP coefficients leads not only to an

estimate of the average combined allelic effect, but also to an

approximate estimate of the explained variance (when scaled by

the inverse of the total meta-analysis sample size) from a

multivariate regression model containing these SNPs.

Figure 3. Flow chart of study design.
doi:10.1371/journal.pgen.1002607.g003
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Specifically, suppose m SNPs have shown association in the

discovery phase, and effects are denoted wi. However, suppose that

the goal of interest is to estimate the joint effect of these SNPs on

an outcome of interest, y. Let j index the individuals in the

outcome of interest dataset and let

sj~
Xm

i~1
wixij

be a risk score based on the discovery data SNPs, and their

associated parameter estimates wi. Therefore, the desired goal is

to estimate the parameter in the following equation:

yj~y0zasjzej in the outcome of interest dataset. The

proportion of variance in y explained by the previous equation,

(i.e. the R2) attributable to the risk score can be estimated.

Standard linear model theory shows that the change in log

likelihood is proportional to the R2,

2½ln L(M1){ ln L(M0)�%nR2

If the SNPs are uncorrelated, and if the total percentage of

variance explained is small, then the change in log likelihood can

be approximated by

C{
Xm

i~1

bi{b̂bi

� �2

2s2
i

where bi now refers to the effect of SNP i in the outcome data, b̂bi

is the outcome data estimate, and si is the associated standard

error estimate. Assuming that this log likelihood difference

approximation is maximized with an appropriate value of C,

then it can be shown that a can be estimated by:

âa%

Pm
i~1 wib̂bisi

{2Pm
i~1 w2

i s{2
i

with a standard error estimate of

se(âa)%

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1Pm

i~1 w2
i s{2

i

s

Therefore, under the assumption of uncorrelated SNPs, their

joint effect can be estimated in external data by a weighted mean

of the individual SNP effects, weighted by the estimates from the

discovery data. All these quantities can be obtained from meta-

analysis or summary data, so that individual-level data are not

required to obtain these results.

To implement this method, we first selected LD-independent

adiponectin associated alleles by LD pruning the set of genome-

wide significant adiponectin SNPs from the discovery phase with

an LD threshold of r2#0.05 in the HapMap CEU population,

yielding 20 independent LD blocks from the 196 SNPs in Table

S2. (We also applied the method using an LD threshold of

r2#0.01 and found no relevant change in results). Since many

SNPs from the same independent blocks were associated with

adiponectin, we selected the SNP from the LD block that

explained the most variance in adiponectin levels. Next, we

approximated the effect of the multi-SNP genetic risk score using

b and its standard error as derived from the consortium-level

meta-analysis in DIAGRAM+, MAGIC, GLGC, GIANT and

Body Fat GWAS consortium.

Supporting Information

Figure S1 The comparison between two independent meta-

analyses performed in different centers for quality control

purposes. The 2log10 p-value of all SNPS with MAF$0.01 in

the first analysis are plotted against the 2log10 p-value from the

second analysis.

(TIF)

Figure S2 The Manhattan plots of sex-stratified meta-analyses

in the discovery phase in the European population. The meta-

analysis shown in panel a) is stratified for women and that in panel

b) is stratified for men. Manhattan plots demonstrate 2Log 10(p-

value) measures for association between single nucleotide poly-

morphisms (SNPs) and chromosomal position. The SNPs that

achieved genome-wide significance are highlighted in green in the

plots. The red ovals identify loci found only in women.

(TIF)

Figure S3 Association Results Near Peaks for Sex-specific

Analysis of Adiponectin. SNPs in regions near peak associations

are shown for a) chromosome 8 female, b) chromosome 8 males, c)

chromosome 12 females and d) chromosome 12 males. Purple

diamonds indicate the top SNPs, which have the strongest

evidence of association in women. Each circle shows a SNP with

a color scale proportional to the r2 value for that SNP and the top

SNP from HapMap CEU. Blue lines show the estimated

recombination rates from HapMap. The bottom panels illustrate

the relative position of each gene in the locus.

(TIF)

Table S1 Cohort characteristics.

(XLSX)

Table S2 Comparing the Genome-Wide Significant SNPS from

fixed effect model with random effect model. *SNP with I2 less

than 0.5 are listed in bold, EA: Effect Allele, NEA: Non-Effect

Allele.

(PDF)

Table S3 Association Results of SNPs achieving p#561026 in

the Discovery phase in European Populations (Sex-Combined

Analysis). *Denotes SNPs typed in the de-novo follow-up phase.

(PDF)

Table S4 Genome-Wide Significant SNPs (p,561028) Associ-

ated with Adiponectin Levels in Non-Europeans Populations. EA:

Effect Allele, NEA: Non-Effect Allele, EA-Freq: Frequency of

Effect Allele.

(PDF)

Table S5 SNPs associated with adiponectin at genome-wide

significant levels (p,561028) using the fixed-effect model in

women only in European populations (including Discovery and

Follow-Up phases).

(PDF)

Table S6 SNPs associated with adiponectin at genome-wide

significant levels (p,561028) using fixed-effect models in men

only in Euopean populations.

(PDF)

Table S7 Association results of nominally significant SNPs with

Type 2 Diabetes in the DIAGRAM+ Consortium. EA: Effect

Allele, NEA: Non-Effect Allele. B) Association results of nominally

significant SNPs with diabetes-related traits in the MAGIC

Consortium. Fasting glucose and 2 h glucose in mmol/L; Insulin

in pmol/L, EA: Effect Allele, NEA: Non-Effect Allele. C)

Association results of nominally significant SNPs with diabetes-
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related traits in the GIANT and Body fat GWAS consortia. The

beta expressed in inverse normally transformed BMI units (i.e.

interpretable as SD or Z-score), shows the change in BMI per

additional effect allele.,*Results that are statistically significant,

accounting for the number of independent SNPs, are highlighted

in bold., EA: Effect Allele, NEA: Non-Effect Allele, EA-Freq:

Frequency of Effect Allele. D) Association results of nominally

significant SNPs with lipid traits in the GLGC Consortium. For

these traits the effect size is in SD units, based on standard error-

weighted meta-analysis. *Results that are statistically significant,

accounting for the number of independent SNPs are highlighted in

bold., EA: Effect Allele, NEA: Non-Effect Allele, EA-Freq:

Frequency of Effect Allele.

(PDF)

Text S1 Supplemental data include description of study cohorts

and funding.

(DOCX)
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Recherche 8090 , Pasteur Institute, Lille 2 –Droit et Santé University, Lille,
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France.

77 Department of Public Health and Clinical Medicine, Section for

Nutritional Research, Umeå University, Umeå, Sweden.
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University Hospital, Umeå, Sweden.
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