132 research outputs found

    Development of a Momentum Determined Electron Beam in the 1 -45 GeV Range

    Get PDF
    A beam line for electrons with energies in the range of 1 to 45 GeV, low contamination of hadrons and muons and high intensity up to 10^6 per accelerator spill at 27 GeV was setup at U70 accelerator in Protvino, Russia. A beam tagging system based on drift chambers with 160 micron resolution was able to measure relative electron beam momentum precisely. The resolution sigma_p p was 0.13% at 45 GeV where multiple scattering is negligible. This test beam setup provided the possibility to study properties of lead tungstate crystals (PbWO_4) for the BTeV experiment at Fermilab.Comment: 12 pages, 8 figures; work done by the BTeV Electromagnetic Calorimeter grou

    Correlation of Beam Electron and LED Signal Losses under Irradiation and Long-term Recovery of Lead Tungstate Crystals

    Full text link
    Radiation damage in lead tungstate crystals reduces their transparency. The calibration that relates the amount of light detected in such crystals to incident energy of photons or electrons is of paramount importance to maintaining the energy resolution the detection system. We report on tests of lead tungstate crystals, read out by photomultiplier tubes, exposed to irradiation by monoenergetic electron or pion beams. The beam electrons themselves were used to measure the scintillation light output, and a blue light emitting diode (LED) was used to track variations of crystals transparency. We report on the correlation of the LED measurement with radiation damage by the beams and also show that it can accurately monitor the crystals recovery from such damage.Comment: 9 pages, 6 figures, LaTeX2

    LED Monitoring System for the BTeV Lead Tungstate Crystal Calorimeter Prototype

    Full text link
    We report on the performance of a monitoring system for a prototype calorimeter for the BTeV experiment that uses Lead Tungstate crystals coupled with photomultiplier tubes. The tests were carried out at the 70 GeV accelerator complex at Protvino, Russia.Comment: 12 pages, 8 figures, LaTeX2e, revised versio

    Comparison of Radiation Damage in Lead Tungstate Crystals under Pion and Gamma Irradiation

    Full text link
    Studies of the radiation hardness of lead tungstate crystals produced by the Bogoroditsk Techno-Chemical Plant in Russia and the Shanghai Institute of Ceramics in China have been carried out at IHEP, Protvino. The crystals were irradiated by a 40-GeV pion beam. After full recovery, the same crystals were irradiated using a 137Cs^{137}Cs Îł\gamma-ray source. The dose rate profiles along the crystal length were observed to be quite similar. We compare the effects of the two types of radiation on the crystals light output.Comment: 10 pages, 8 figures, Latex 2e, 28.04.04 - minor grammatical change

    Design and performance of LED calibration system prototype for the lead tungstate crystal calorimeter

    Full text link
    A highly stable monitoring system based on blue and red light emitting diodes coupled to a distribution network comprised of optical fibers has been developed for an electromagnetic calorimeter that uses lead tungstate crystals readout with photomultiplier tubes. We report of the system prototype design and on the results of laboratory tests. Stability better than 0.1% (r.m.s.) has been achieved during one week of prototype operation.Comment: 10 pages, 6 figures, LaTeX2

    Study of doubly strange systems using stored antiprotons

    Get PDF
    Bound nuclear systems with two units of strangeness are still poorly known despite their importance for many strong interaction phenomena. Stored antiprotons beams in the GeV range represent an unparalleled factory for various hyperon-antihyperon pairs. Their outstanding large production probability in antiproton collisions will open the floodgates for a series of new studies of systems which contain two or even more units of strangeness at the P‟ANDA experiment at FAIR. For the first time, high resolution Îł-spectroscopy of doubly strange ΛΛ-hypernuclei will be performed, thus complementing measurements of ground state decays of ΛΛ-hypernuclei at J-PARC or possible decays of particle unstable hypernuclei in heavy ion reactions. High resolution spectroscopy of multistrange Ξ−-atoms will be feasible and even the production of Ω−-atoms will be within reach. The latter might open the door to the |S|=3 world in strangeness nuclear physics, by the study of the hadronic Ω−-nucleus interaction. For the first time it will be possible to study the behavior of Ξ‟+ in nuclear systems under well controlled conditions

    Measurement of the t-channel single top quark production cross section in pp collisions at √s =7 TeV

    Get PDF
    Peer reviewe

    Search for microscopic black holes in pp collisions at √s̅ = 7 TeV

    Get PDF
    Peer reviewe

    Measurement of the top-quark mass in tt¯ events with dilepton final states in pp collisions at √s = 7 TeV

    Get PDF
    Open Access: This article is distributed under the terms of the Creative Commons Attribution License.-- Chatrchyan, S. et al.The top-quark mass is measured in proton-proton collisions at s√=7 TeV using a data sample corresponding to an integrated luminosity of 5.0 fb−1 collected by the CMS experiment at the LHC. The measurement is performed in the dilepton decay channel tt¯→(ℓ+Μℓb)(â„“âˆ’ÎœÂŻÂŻâ„“bÂŻ), where ℓ=e,ÎŒ. Candidate top-quark decays are selected by requiring two leptons, at least two jets, and imbalance in transverse momentum. The mass is reconstructed with an analytical matrix weighting technique using distributions derived from simulated samples. Using a maximum-likelihood fit, the top-quark mass is determined to be 172.5±0.4 (stat.)±1.5 (syst.) GeV.Acknowledge support from BMWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); MoER, SF0690030s09 and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France);BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MSI (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MON, RosAtom, RAS and RFBR (Russia); MSTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); ThEP, IPST and NECTEC (Thailand); TUBITAK and TAEK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE and NSF (USA). Individuals have received support from the Marie-Curie program and the European Research Council (European Union); the Leventis Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Foundation; the Austrian Science Fund (FWF); the Belgian Federal Science Policy Office; the Fonds pour la Formation Ă  la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWTBelgium); the Ministry of Education, Youth and Sports (MEYS) of Czech Republic; the Council of Science and Industrial Research, India; the Compagnia di San Paolo (Torino); and the HOMING PLUS program of Foundation for Polish Science, cofinanced from European Union, Regional Development Fund.Peer Reviewe
    • 

    corecore