536 research outputs found

    Hopping Conduction in Disordered Carbon Nanotubes

    Full text link
    We report electrical transport measurements on individual disordered carbon nanotubes, grown catalytically in a nanoporous anodic aluminum oxide template. In both as-grown and annealed types of nanotubes, the low-field conductance shows as exp[-(T_{0}/T)^{1/2}] dependence on temperature T, suggesting that hopping conduction is the dominant transport mechanism, albeit with different disorder-related coefficients T_{0}. The field dependence of low-temperature conductance behaves an exp[-(xi_{0}/xi)^{1/2}] with high electric field xi at sufficiently low T. Finally, both annealed and unannealed nanotubes exhibit weak positive magnetoresistance at low T = 1.7 K. Comparison with theory indicates that our data are best explained by Coulomb-gap variable range hopping conduction and permits the extraction of disorder-dependent localization length and dielectric constant.Comment: 10 pages, 5 figure

    Conserved charges and supersymmetry in principal chiral and WZW models

    Get PDF
    Conserved and commuting charges are investigated in both bosonic and supersymmetric classical chiral models, with and without Wess-Zumino terms. In the bosonic theories, there are conserved currents based on symmetric invariant tensors of the underlying algebra, and the construction of infinitely many commuting charges, with spins equal to the exponents of the algebra modulo its Coxeter number, can be carried out irrespective of the coefficient of the Wess-Zumino term. In the supersymmetric models, a different pattern of conserved quantities emerges, based on antisymmetric invariant tensors. The current algebra is much more complicated than in the bosonic case, and it is analysed in some detail. Two families of commuting charges can be constructed, each with finitely many members whose spins are exactly the exponents of the algebra (with no repetition modulo the Coxeter number). The conserved quantities in the bosonic and supersymmetric theories are only indirectly related, except for the special case of the WZW model and its supersymmetric extension.Comment: LaTeX; 49 pages; v2: minor changes and additions to text and ref

    Chemical telemetry of OH observed to measure interstellar magnetic fields

    Full text link
    We present models for the chemistry in gas moving towards the ionization front of an HII region. When it is far from the ionization front, the gas is highly depleted of elements more massive than helium. However, as it approaches the ionization front, ices are destroyed and species formed on the grain surfaces are injected into the gas phase. Photodissociation removes gas phase molecular species as the gas flows towards the ionization front. We identify models for which the OH column densities are comparable to those measured in observations undertaken to study the magnetic fields in star forming regions and give results for the column densities of other species that should be abundant if the observed OH arises through a combination of the liberation of H2O from surfaces and photodissociation. They include CH3OH, H2CO, and H2S. Observations of these other species may help establish the nature of the OH spatial distribution in the clouds, which is important for the interpretation of the magnetic field results.Comment: 11 pages, 2 figures, accepted by Astrophysics and Space Scienc

    Gravitational Lensing at Millimeter Wavelengths

    Full text link
    With today's millimeter and submillimeter instruments observers use gravitational lensing mostly as a tool to boost the sensitivity when observing distant objects. This is evident through the dominance of gravitationally lensed objects among those detected in CO rotational lines at z>1. It is also evident in the use of lensing magnification by galaxy clusters in order to reach faint submm/mm continuum sources. There are, however, a few cases where millimeter lines have been directly involved in understanding lensing configurations. Future mm/submm instruments, such as the ALMA interferometer, will have both the sensitivity and the angular resolution to allow detailed observations of gravitational lenses. The almost constant sensitivity to dust emission over the redshift range z=1-10 means that the likelihood for strong lensing of dust continuum sources is much higher than for optically selected sources. A large number of new strong lenses are therefore likely to be discovered with ALMA, allowing a direct assessment of cosmological parameters through lens statistics. Combined with an angular resolution <0.1", ALMA will also be efficient for probing the gravitational potential of galaxy clusters, where we will be able to study both the sources and the lenses themselves, free of obscuration and extinction corrections, derive rotation curves for the lenses, their orientation and, thus, greatly constrain lens models.Comment: 69 pages, Review on quasar lensing. Part of a LNP Topical Volume on "Dark matter and gravitational lensing", eds. F. Courbin, D. Minniti. To be published by Springer-Verlag 2002. Paper with full resolution figures can be found at ftp://oden.oso.chalmers.se/pub/tommy/mmviews.ps.g

    Global Fluctuation Spectra in Big Crunch/Big Bang String Vacua

    Full text link
    We study Big Crunch/Big Bang cosmologies that correspond to exact world-sheet superconformal field theories of type II strings. The string theory spacetime contains a Big Crunch and a Big Bang cosmology, as well as additional ``whisker'' asymptotic and intermediate regions. Within the context of free string theory, we compute, unambiguously, the scalar fluctuation spectrum in all regions of spacetime. Generically, the Big Crunch fluctuation spectrum is altered while passing through the bounce singularity. The change in the spectrum is characterized by a function Δ\Delta, which is momentum and time-dependent. We compute Δ\Delta explicitly and demonstrate that it arises from the whisker regions. The whiskers are also shown to lead to ``entanglement'' entropy in the Big Bang region. Finally, in the Milne orbifold limit of our superconformal vacua, we show that Δ1\Delta\to 1 and, hence, the fluctuation spectrum is unaltered by the Big Crunch/Big Bang singularity. We comment on, but do not attempt to resolve, subtleties related to gravitational backreaction and light winding modes when interactions are taken into account.Comment: 68 pages, 1 figure; typos correcte

    Cosmological Perturbations in a Big Crunch/Big Bang Space-time

    Full text link
    A prescription is developed for matching general relativistic perturbations across singularities of the type encountered in the ekpyrotic and cyclic scenarios i.e. a collision between orbifold planes. We show that there exists a gauge in which the evolution of perturbations is locally identical to that in a model space-time (compactified Milne mod Z_2) where the matching of modes across the singularity can be treated using a prescription previously introduced by two of us. Using this approach, we show that long wavelength, scale-invariant, growing-mode perturbations in the incoming state pass through the collision and become scale-invariant growing-mode perturbations in the expanding hot big bang phase.Comment: 47 pages, 4 figure

    Relativistic Hydrodynamic Evolutions with Black Hole Excision

    Full text link
    We present a numerical code designed to study astrophysical phenomena involving dynamical spacetimes containing black holes in the presence of relativistic hydrodynamic matter. We present evolutions of the collapse of a fluid star from the onset of collapse to the settling of the resulting black hole to a final stationary state. In order to evolve stably after the black hole forms, we excise a region inside the hole before a singularity is encountered. This excision region is introduced after the appearance of an apparent horizon, but while a significant amount of matter remains outside the hole. We test our code by evolving accurately a vacuum Schwarzschild black hole, a relativistic Bondi accretion flow onto a black hole, Oppenheimer-Snyder dust collapse, and the collapse of nonrotating and rotating stars. These systems are tracked reliably for hundreds of M following excision, where M is the mass of the black hole. We perform these tests both in axisymmetry and in full 3+1 dimensions. We then apply our code to study the effect of the stellar spin parameter J/M^2 on the final outcome of gravitational collapse of rapidly rotating n = 1 polytropes. We find that a black hole forms only if J/M^2<1, in agreement with previous simulations. When J/M^2>1, the collapsing star forms a torus which fragments into nonaxisymmetric clumps, capable of generating appreciable ``splash'' gravitational radiation.Comment: 17 pages, 14 figures, submitted to PR

    Anthropogenic Space Weather

    Full text link
    Anthropogenic effects on the space environment started in the late 19th century and reached their peak in the 1960s when high-altitude nuclear explosions were carried out by the USA and the Soviet Union. These explosions created artificial radiation belts near Earth that resulted in major damages to several satellites. Another, unexpected impact of the high-altitude nuclear tests was the electromagnetic pulse (EMP) that can have devastating effects over a large geographic area (as large as the continental United States). Other anthropogenic impacts on the space environment include chemical release ex- periments, high-frequency wave heating of the ionosphere and the interaction of VLF waves with the radiation belts. This paper reviews the fundamental physical process behind these phenomena and discusses the observations of their impacts.Comment: 71 pages, 35 figure

    Search for displaced vertices arising from decays of new heavy particles in 7 TeV pp collisions at ATLAS

    Get PDF
    We present the results of a search for new, heavy particles that decay at a significant distance from their production point into a final state containing charged hadrons in association with a high-momentum muon. The search is conducted in a pp-collision data sample with a center-of-mass energy of 7 TeV and an integrated luminosity of 33 pb^-1 collected in 2010 by the ATLAS detector operating at the Large Hadron Collider. Production of such particles is expected in various scenarios of physics beyond the standard model. We observe no signal and place limits on the production cross-section of supersymmetric particles in an R-parity-violating scenario as a function of the neutralino lifetime. Limits are presented for different squark and neutralino masses, enabling extension of the limits to a variety of other models.Comment: 8 pages plus author list (20 pages total), 8 figures, 1 table, final version to appear in Physics Letters
    corecore