342 research outputs found

    Martian sub-surface ionising radiation: biosignatures and geology

    Get PDF
    The surface of Mars, unshielded by thick atmosphere or global magnetic field, is exposed to high levels of cosmic radiation. This ionising radiation field is deleterious to the survival of dormant cells or spores and the persistence of molecular biomarkers in the subsurface, and so its characterisation is of prime astrobiological interest. Here, we present modelling results of the absorbed radiation dose as a function of depth through the Martian subsurface, suitable for calculation of biomarker persistence. A second major implementation of this dose accumulation rate data is in application of the optically stimulated luminescence technique for dating Martian sediments. We present calculations of the dose-depth profile in the Martian subsurface for various scenarios: variations of surface composition (dry regolith, ice, layered permafrost), solar minimum and maximum conditions, locations of different elevation (Olympus Mons, Hellas basin, datum altitude), and increasing atmospheric thickness over geological history. We also model the changing composition of the subsurface radiation field with depth compared between Martian locations with different shielding material, determine the relative dose contributions from primaries of different energies, and discuss particle deflection by the crustal magnetic fields

    Distant ionospheric photoelectron energy peak observations at Venus

    Get PDF
    The dayside of the Venus ionosphere at the top of the planet's thick atmosphere is sustained by photoionization. The consequent photoelectrons may be identified by specific peaks in the energy spectrum at 20–30 eV which are mainly due to atomic oxygen photoionization. The ASPERA-4 electron spectrometer has an energy resolution designed to identify the photoelectron production features. Photoelectrons are seen not only in their production region, the sunlit ionosphere, but also at more distant locations on the nightside of the Venus environment. Here, we present a summary of the work to date on observations of photoelectrons at Venus, and their comparison with similar processes at Titan and Mars. We expand further by presenting new examples of the distant photoelectrons measured at Venus in the dark tail and further away from Venus than seen before. The photoelectron and simultaneous ion data are then used to determine the ion escape rate from Venus for one of these intervals. We compare the observed escape rates with other rates measured at Venus, and at other planets, moons and comets. We find that the escape rates are grouped by object type when plotted against body radius

    Gromov-Witten Gauge Theory I

    Full text link
    We introduce a geometric completion of the stack of maps from stable marked curves to the quotient stack [point/GL(1)], and use it to construct some gauge-theoretic analogues of the Gromov-Witten invariants. We also indicate the generalization of these invariants to the quotient stacks [X/GL(1)], where X is a smooth proper complex algebraic variety.Comment: v3: Shorter, cleaner proof of main theorem. Accepted versio

    Cassini observations of ionospheric plasma in Saturn's magnetotail lobes

    No full text
    Studies of Saturn's magnetosphere with the Cassini mission have established the importance of Enceladus as the dominant mass source for Saturn's magnetosphere. It is well known that the ionosphere is an important mass source at Earth during periods of intense geomagnetic activity, but lesser attention has been dedicated to study the ionospheric mass source at Saturn. In this paper we describe a case study of data from Saturn's magnetotail, when Cassini was located at ? 2200 h Saturn local time at 36 RS from Saturn. During several entries into the magnetotail lobe, tailward flowing cold electrons and a cold ion beam were observed directly adjacent to the plasma sheet and extending deeper into the lobe. The electrons and ions appear to be dispersed, dropping to lower energies with time. The composition of both the plasma sheet and lobe ions show very low fluxes (sometimes zero within measurement error) of water group ions. The magnetic field has a swept-forward configuration which is atypical for this region, and the total magnetic field strength is larger than expected at this distance from the planet. Ultraviolet auroral observations show a dawn brightening, and upstream heliospheric models suggest that the magnetosphere is being compressed by a region of high solar wind ram pressure. We interpret this event as the observation of ionospheric outflow in Saturn's magnetotail. We estimate a number flux between (2.95 ± 0.43) × 109 and (1.43 ± 0.21) × 1010 cm?2 s?1, 1 or about 2 orders of magnitude larger than suggested by steady state MHD models, with a mass source between 1.4 ×102 and 1.1 ×103 kg/s. After considering several configurations for the active atmospheric regions, we consider as most probable the main auroral oval, with associated mass source between 49.7 ±13.4 and 239.8 ±64.8 kg/s for an average auroral oval, and 10 ±4 and 49 ±23 kg/s for the specific auroral oval morphology found during this event. It is not clear how much of this mass is trapped within the magnetosphere and how much is lost to the solar wind

    Microbial and operational response of an anaerobic fixed bed digester to oleic acid overloads

    Get PDF
    The effect of oleic acid overloads on biomass accumulation and activity in an anaerobic filter was investigated. An anaerobic fixed-bed reactor specially designed to allow the regular withdrawal of accumulated biomass was used for that purpose. Organic and hydraulic shocks were performed during four days, by stepwise increasing the substrate concentration from 4000 to 20 000 mg COD/l or by reducing the hydraulic retention time from 16 to 3.2 h. During the organic shock, operational performance was more affected than in the hydraulic one, which was the result of the higher degree of inhibition detected in the acetoclastic, hydrogenophilic and syntrophic activities. The ratio adhered/total biomass remained between 17 and 32% during the hydraulic shock, and between 13 and 60% during the organic shock, suggesting a more stable biofilm during the hydraulic shock. A long time (900 h) after the hydraulic shock, hydrogenophilic and syntrophic activities recovered to higher values than before the shock, but after the organic shock only acetoclastic activity recovered pre-shock values. Hydraulic shock induced an increase in tolerance to oleic acid toxicity, evidenced by an increase in the toxicity limit (IC50) from 140+/-30 to 215+/-25 mg/l.Fundação de Ciência e Tecnologia

    Surface charging and electrostatic dust acceleration at the nucleus of comet 67P during periods of low activity

    Get PDF
    We have investigated through simulation the electrostatic charging of the nucleus of Comet 67 P/Churyumov-Gerasimenko during periods of weak outgassing activity. Specifically, we have modeled the surface potential and electric field at the surface of the nucleus during the initial Rosetta rendezvous at 3.5 AU and the release of the Philae lander at 3 AU. We have also investigated the possibility of dust acceleration and ejection above the nucleus due to electrostatic forces. Finally, we discuss these modeling results in the context of possible observations by instruments on both the Rosetta orbiter and the Philae lander

    Access of energetic particles to Titan's exobase: a study of Cassini's T9 flyby

    Get PDF
    We study how the local electromagnetic disturbances introduced by Titan affect the ionization rates of the atmosphere. For this, we model the precipitation of energetic particles, specifically hydrogen and oxygen ions with energies between 1 keV and 1 MeV, into Titan's exobase for the specific magnetospheric configuration of the T9 flyby. For the study, a particle tracing software package is used which consists of an integration of the single particle Lorentz force equation using a 4th order Runge-Kutta numerical method. For the electromagnetic disturbances, the output of the A.I.K.E.F. hybrid code (kinetic ions, fluid electrons) is used, allowing the possibility of analyzing the disturbances and asymmetries in the access of energetic particles originated by their large gyroradii. By combining these methods, 2D maps showing the access of each set of particles were produced. We show that the access of different particles is largely dominated by their gyroradii, with the complexity of the maps increasing with decreasing gyroradius, due to the larger effect that local disturbances introduced by the presence of the moon have in the trajectory of the particles with lower energies. We also show that for particles with gyroradii much larger than the moon's radius, simpler descriptions of the electromagnetic environment can reproduce similar results to those obtained when using the full hybrid simulation description, with simple north-south fields being sufficient to reproduce the hybrid code results for O+ ions with energies larger than 10 keV but not enough to reproduce those for H+H+ ions at any of the energies covered in the present study. Finally, by combining the maps created with upstream plasma flow measurements by the MIMI/CHEMS instrument, we are able to estimate normalized fluxes arriving at different selected positions of the moon's exobase. We then use these fluxes to calculate energy deposition and non-dissociative N2 ionization rates for precipitating O+O+ and H+H+ ions and find differences in the ion production rates of up to almost 80% at the selected positions. All these results combined show that the electromagnetic field disturbances present in the vicinity of Titan significantly affect the contribution of energetic ions to local ionization profiles

    Remote detection of past habitability at Mars-analogue hydrothermal alteration terrains using an ExoMars Panoramic Camera emulator

    Get PDF
    JKH is funded by a Birkbeck University of London Graduate Teaching Assistantship. CRC is funded by a Royal Society of Edinburgh Personal Research Fellowship co-funded by Marie Curie Actions. The Aberystwyth research leading to these results has been funded by the UK Space Agency, ExoMars Panoramic Camera (PanCam) Grant Nos. ST/G003114/1, ST/I002758/1, STL001454/1, and the UK Space Agency CREST2 PanCam-2020 research Grant No. ST/L00500X/1. Additional Aberystwyth funding has come from The European Community’s Seventh Framework Programme (FP7/2007-2013), Grant Agreement Nos. 21881 PRoVisG, 241523 PRoViScout, and Grant Agreement No. 312377 PRoViDE. PMG is funded by a UK Space Agency Aurora Fellowship (grants ST/J005215/1 and ST/L00254X/1).A major scientific goal of the European Space Agency’s ExoMars 2018 rover is to identify evidence of life within the martian rock record. Key to this objective is the remote detection of geological substrates that are indicative of past habitable environments, which will rely on visual (stereo wide-angle, and high resolution images) and multispectral (440–1000 nm) data produced by the Panoramic Camera (PanCam) instrument. We deployed a PanCam emulator at four hydrothermal sites in the Námafjall volcanic region of Iceland, a Mars-analogue hydrothermal alteration terrain. At these sites, sustained acidic–neutral aqueous interaction with basaltic substrates (crystalline and sedimentary) has produced phyllosilicate, ferric oxide, and sulfate-rich alteration soils, and secondary mineral deposits including gypsum veins and zeolite amygdales. PanCam emulator datasets from these sites were complemented with (i) NERC Airborne Research and Survey Facility aerial hyperspectral images of the study area; (ii) in situ reflectance spectroscopy (400–1000 nm) of PanCam spectral targets; (iii) laboratory X-ray Diffraction, and (iv) laboratory VNIR (350–2500 nm) spectroscopy of target samples to identify their bulk mineralogy and spectral properties. The mineral assemblages and palaeoenvironments characterised here are analogous to neutral–acidic alteration terrains on Mars, such as at Mawrth Vallis and Gusev Crater. Combined multispectral and High Resolution Camera datasets were found to be effective at capturing features of astrobiological importance, such as secondary gypsum and zeolite mineral veins, and phyllosilicate-rich substrates. Our field observations with the PanCam emulator also uncovered stray light problems which are most significant in the NIR wavelengths and investigations are being undertaken to ensure that the flight model PanCam cameras are not similarly affected.Publisher PDFPeer reviewe

    The <i>Castalia</i> mission to Main Belt Comet 133P/Elst-Pizarro

    Get PDF
    We describe Castalia, a proposed mission to rendezvous with a Main Belt Comet (MBC), 133P/Elst-Pizarro. MBCs are a recently discovered population of apparently icy bodies within the main asteroid belt between Mars and Jupiter, which may represent the remnants of the population which supplied the early Earth with water. Castalia will perform the first exploration of this population by characterising 133P in detail, solving the puzzle of the MBC’s activity, and making the first in situ measurements of water in the asteroid belt. In many ways a successor to ESA’s highly successful Rosetta mission, Castalia will allow direct comparison between very different classes of comet, including measuring critical isotope ratios, plasma and dust properties. It will also feature the first radar system to visit a minor body, mapping the ice in the interior. Castalia was proposed, in slightly different versions, to the ESA M4 and M5 calls within the Cosmic Vision programme. We describe the science motivation for the mission, the measurements required to achieve the scientific goals, and the proposed instrument payload and spacecraft to achieve these
    • …
    corecore