45 research outputs found

    Dynamic early identification of hip replacement implants with high revision rates. Study based on the NJR data from UK during 2004-2012

    Get PDF
    BACKGROUND: Hip replacement and hip resurfacing are common surgical procedures with an estimated risk of revision of 4% over 10 year period. Approximately 58% of hip replacements will last 25 years. Some implants have higher revision rates and early identification of poorly performing hip replacement implant brands and cup/head brand combinations is vital. AIMS: Development of a dynamic monitoring method for the revision rates of hip implants. METHODS: Data on the outcomes following the hip replacement surgery between 2004 and 2012 was obtained from the National Joint Register (NJR) in the UK. A novel dynamic algorithm based on the CUmulative SUM (CUSUM) methodology with adjustment for casemix and random frailty for an operating unit was developed and implemented to monitor the revision rates over time. The Benjamini-Hochberg FDR method was used to adjust for multiple testing of numerous hip replacement implant brands and cup/ head combinations at each time point. RESULTS: Three poorly performing cup brands and two cup/ head brand combinations have been detected. Wright Medical UK Ltd Conserve Plus Resurfacing Cup (cup o), DePuy ASR Resurfacing Cup (cup e), and Endo Plus (UK) Limited EP-Fit Plus Polyethylene cup (cup g) showed stable multiple alarms over the period of a year or longer. An addition of a random frailty term did not change the list of underperforming components. The model with added random effect was more conservative, showing less and more delayed alarms. CONCLUSIONS: Our new algorithm is an efficient method for early detection of poorly performing components in hip replacement surgery. It can also be used for similar tasks of dynamic quality monitoring in healthcare

    WNT7B mediates autocrine Wnt/ÎČ-catenin signaling and anchorage-independent growth in pancreatic adenocarcinoma

    Get PDF
    Developmental and cancer models show Wnt/ÎČ-catenin-dependent signaling mediates diverse phenotypic outcomes in the pancreas that are dictated by context, duration and strength of activation. While generally assumed to be pro-tumorigenic, it is unclear to what extent dysregulation of Wnt/ÎČ-catenin signaling impacts tumor progression in pancreatic adenocarcinoma (PDAC). In the present study, Wnt/ÎČ-catenin activity was characterized across a spectrum of PDAC cell lines and primary tumors. Reporter and gene expression based assays revealed wide heterogeneity in Wnt/ÎČ-catenin transcriptional activity across PDAC cell lines and patient tumors, as well as variable responsiveness to exogenous Wnt ligand stimulation. An experimentally-generated, pancreas-specific gene expression signature of Wnt/ÎČ-catenin transcriptional activation was used to stratify pathway activation across a cohort of resected, early stage PDAC tumors (N=41). In this cohort, higher Wnt/ÎČ-catenin activation was found to significantly correlate with lymphvascular invasion and worse disease specific survival (median survival time 20.3 versus 43.9 months, log rank P=0.03). Supporting the importance of Wnt ligand in mediating autocrine Wnt signaling, Wnt/ÎČ-catenin activity was significantly inhibited in PDAC cell lines by WLS gene silencing and the small molecule inhibitor IWP-2, both of which functionally block Wnt ligand processing and secretion. Transcriptional profiling revealed elevated expression of WNT7B occurred in PDAC cell lines with high levels of cell autonomous Wnt/ÎČ-catenin activity. Gene knockdown studies in AsPC-1 and HPAF-2 cell lines confirmed WNT7B mediated cell autonomous Wnt/ÎČ-catenin activation, as well as an anchorage-independent growth phenotype. Our findings indicate WNT7B can serve as a primary determinant of differential Wnt/ÎČ-catenin activation in PDAC. Disrupting the interaction between Wnt ligands and their receptors may be a particularly suitable approach for therapeutic modulation of Wnt/ÎČ-catenin signaling in PDAC and other cancer contexts where Wnt activation is mediated by ligand expression rather than mutations in canonical pathway members

    Activation of Latent HIV Using Drug-Loaded Nanoparticles

    Get PDF
    Antiretroviral therapy is currently only capable of controlling HIV replication rather than completely eradicating virus from patients. This is due in part to the establishment of a latent virus reservoir in resting CD4+ T cells, which persists even in the presence of HAART. It is thought that forced activation of latently infected cells could induce virus production, allowing targeting of the cell by the immune response. A variety of molecules are able to stimulate HIV from latency. However no tested purging strategy has proven capable of eliminating the infection completely or preventing viral rebound if therapy is stopped. Hence novel latency activation approaches are required. Nanoparticles can offer several advantages over more traditional drug delivery methods, including improved drug solubility, stability, and the ability to simultaneously target multiple different molecules to particular cell or tissue types. Here we describe the development of a novel lipid nanoparticle with the protein kinase C activator bryostatin-2 incorporated (LNP-Bry). These particles can target and activate primary human CD4+ T-cells and stimulate latent virus production from human T-cell lines in vitro and from latently infected cells in a humanized mouse model ex vivo. This activation was synergistically enhanced by the HDAC inhibitor sodium butyrate. Furthermore, LNP-Bry can also be loaded with the protease inhibitor nelfinavir (LNP-Bry-Nel), producing a particle capable of both activating latent virus and inhibiting viral spread. Taken together these data demonstrate the ability of nanotechnological approaches to provide improved methods for activating latent HIV and provide key proof-of-principle experiments showing how novel delivery systems may enhance future HIV therapy

    Environmental effects of ozone depletion, UV radiation and interactions with climate change : UNEP Environmental Effects Assessment Panel, update 2017

    Get PDF
    Peer reviewe

    In vitro reactivation of latent HIV-1 by cytostatic bis (thiosemicarbazonate) gold(III) complexes

    Get PDF
    BACKGROUND : A number of cytostatic agents have been investigated for the ability to reactivate latent viral reservoirs, which is a major prerequisite for the eradication of HIV-1 infection. Two cytostatic bis(thiosemicarbazonate) gold(III) complexes (designated 1 and 2) were tested for this potential in the U1 latency model of HIV-1 infection. METHODS : Cell viability in the presence or absence of 1 and 2 was determined using a tetrazolium dye and evidence of reactivation was assessed by p24 antigen capture following exposure to a latency stimulant, phorbol myristate acetate (PMA) and or test compounds. The latency reactivation mechanism was explored by determining the effect of the complexes on protein kinase C (PKC), histone deacetylases (HDAC) and proinflammatory cytokine production. RESULTS : The CC50 of the complexes in U1 cells were 0.53 ± 0.12 ÎŒM for 1 and 1.0 ± 0.4 ÎŒM for 2. In the absence of PMA and at non toxic concentrations of 0.2 and 0.5 ÎŒM, 1 and 2 significantly (p ≀ 0.02) reactivated virus in U1 cells by 2.7 and 2.3 fold respectively. In comparison, a 2.6 fold increase (p = 0.03) in viral reactivation was observed for hydroxyurea (HU), which was used as a cytostatic and latent HIV reactivation control. Viral reactivation was absent for the complexes during co-stimulation with PMA indicating the lack of an additive effect between the chemicals as well as an absence of inhibition of PMA induced HIV reactivation but for HU inhibition of the stimulant’s activity was observed (p = 0.01). Complex 1 and 2 activated PKC activity by up to 32% (p < 0.05) but no significant inhibition of HDAC was observed. Increases in TNF-α levels suggested that the reactivation of virus by the complexes may have been due to contributions from the latter and the activation of PKC. CONCLUSION : The ethyl group structural difference between 1 and 2 seems to influence bioactivity with lower active concentrations of 1, suggesting that further structural modifications should improve specificity. The cytostatic effect of 1 and 2 and now HIV reactivation from a U1 latency model is consistent with that of the cytostatic agent, HU. These findings suggest that the complexes have a potential dual (cytostatic and reactivation) role in viral “activation/elimination”.AuTEK Biomed (Mintek and Harmony Gold),Technology Innovation Agency (TIA) and the University of Pretoria.http://www.biomedcentral.com/bmcinfectdis/hb201

    Lipid nanoparticle (LNP) characterization and uptake in various cell types.

    No full text
    <p>(A) LNP were synthesized and characterized for their size by dynamic light scattering. (B) The membrane stain wheat germ agglutinin (WGA) visualized in blue was used with fluorescent microscopy in order to visualize the uptake of LNP-FITC (green) after a 16 hr incubation with HeLa cells. (C) WGA visualized in red was used to observe LNP-FITC (green) uptake in primary macrophages. (D) CEM cells were visualized by phase contrast images with LNP (green) using fluorescent microscopy. (E) LNP uptake in CEM cells was dose and energy dependent as detected by fold increase in FITC mean fluorescent intensity (MFI) using flow cytometry. (F) LNP uptake in CEM cells also increased over time as detected by flow cytometry.</p

    Simultaneous incorporation of the protease inhibitor nelfinavir (Nel) and bryostatin-2 (Bry) into the lipid nanoparticles (LNP-Bry-Nel) can both activate latent virus expression and inhibit viral spread.

    No full text
    <p>(A) CEM cells were infected with HIV<sub>NL4-3</sub> and the cells were incubated for 3 days in the presence of various drug combinations including LNP-Bry-Nel. Viral p24 protein in the culture supernatant was measured by ELISA. (B) LNP-Bry-Nel was further tested for its ability to activate latent virus in J-Lat 10.6 cells as measured by induction of GFP expression. Error bars indicate the standard deviation of triplicate data points and are representative of at least 2 experiments. Media represents untreated infected cultures and LNP-con represents non-drug loaded nanoparticles.</p
    corecore