221 research outputs found

    Fibromyalgia: heterogeneity in personality and psychopathology and its implications

    Get PDF
    The fibromyalgia syndrome (FM) is a chronic widespread pain condition whose etiology remains unknown and no treatment has satisfactory levels of success. A meta-analysis has identified a distinct Minnesota Multiphasic Personality Inventory-2 (MMPI-2) clinical profile between FM female patients and healthy controls, and differences between FM and other chronic pain condition with clear etiology have also been found. However, heterogeneity in this population has been suggested in several studies. We aim to assess clinical aspects in FM patients, based on personality psychopathology characteristics, in order to explore heterogeneity and the existence of core common aspects. In this cross-sectional study, a relatively homogeneous sample of 56 female FM patients (Mage = 45.95, SDage = 9.39) was assessed through MMPI-2. A K-Means cluster analysis identified two clusters, one (n = 24) with clinically significant levels in Negative Emotionality and Introversion scales. Subsequent MANOVAs identified important features of this cluster on several MMPI-2 dimensions. Moreover, several dimensions are clinically elevated in both clusters. In conclusion, the combination of psychopathological negative emotionality, interpersonal isolation, and low hedonic capacity, in a group of patients, has implications for the daily living and treatment of FM patients, and several core aspects of FM need to be addressed.info:eu-repo/semantics/acceptedVersio

    Sic1 plays a role in timing and oscillatory behaviour of B-type cyclins

    No full text
    Budding yeast cell cycle oscillates between states of low and high cyclin-dependent kinase activity, driven by association of Cdk1 with B-type (Clb) cyclins. Various Cdk1-Clb complexes are activated and inactivated in a fixed, temporally regulated sequence, inducing the behaviour known as "waves of cyclins". The transition from low to high Clb activity is triggered by degradation of Sic1, the inhibitor of Cdk1-Clb complexes, at the entry to S phase. The G(1) phase is characterized by low Clb activity and high Sic1 levels. High Clb activity and Sic1 proteolysis are found from the beginning of the S phase until the end of mitosis. The mechanism regulating the appearance on schedule of Cdk1-Clb complexes is currently unknown. Here, we analyse oscillations of Clbs, focusing on the role of their inhibitor Sic1. We compare mathematical networks differing in interactions that Sic1 may establish with Cdk1-Clb complexes. Our analysis suggests that the wave-like cyclins pattern derives from the binding of Sic1 to all Clb pairs rather than from Clb degradation. These predictions are experimentally validated, showing that Sic1 indeed interacts and coexists in time with Clbs. Intriguingly, a sic1Delta strain looses cell cycle-regulated periodicity of Clbs, which is observed in the wild type, whether a SIC1-0P strain delays the formation of Clb waves. Our results highlight an additional role for Sic1 in regulating Cdk1-Clb complexes, coordinating their appearance

    A Single Nucleotide Polymorphism in the RASGRF2 Gene Is Associated with Alcoholic Liver Cirrhosis in Men

    Get PDF
    Background Genetic polymorphisms in the RAS gene family are associated with different diseases, which may include alcohol-related disorders. Previous studies showed an association of the allelic variant rs26907 in RASGRF2 gene with higher alcohol intake. Additionally, the rs61764370 polymorphism in the KRAS gene is located in a binding site for the let-7 micro-RNA family, which is potentially involved in alcohol-induced inflammation. Therefore, this study was designed to explore the association between these two polymorphisms and susceptibility to alcoholism or alcoholic liver disease (ALD). Methods We enrolled 301 male alcoholic patients and 156 healthy male volunteers in this study. Polymorphisms were genotyped by using TaqMan® PCR assays for allelic discrimination. Allelic and genotypic frequencies were compared between the two groups. Logistic regression analysis was performed to analyze the inheritance model. Results The A allele of the RASGRF2 polymorphism (rs26907) was significantly more prevalent among alcoholic patients with cirrhosis (23.2%) compared to alcoholic patients without ALD (14.2%). This difference remained significant in the group of patients with alcohol dependence (28.8% vs. 14.3%) but not in those with alcohol abuse (15.1% vs. 14.4%). Multivariable logistic regression analysis showed that the A allele of this polymorphism (AA or GA genotype) was associated with alcoholic cirrhosis both in the total group of alcoholics (odds ratio [OR]: 2.33, 95% confidence interval [CI]: 1.32–4.11; P = 0.002) and in the group of patients with alcohol dependence (OR: 3.1, 95% CI: 1.50–6.20; P = 0.001). Allelic distributions of the KRAS polymorphism (rs61764370) did not differ between the groups. Conclusions To our knowledge, this genetic association study represents the first to show an association of the RASGRF2 G>A (rs26907) polymorphism with ALD in men, particularly in the subgroup of patients with AD. The findings suggest the potential relevance of the RAS gene family in alcoholism and ALD

    Coulomb breakup of neutron-rich 29,30^{29,30}Na isotopes near the island of inversion

    Get PDF
    First results are reported on the ground state configurations of the neutron-rich 29,30^{29,30}Na isotopes, obtained via Coulomb dissociation (CD) measurements as a method of the direct probe. The invariant mass spectra of those nuclei have been obtained through measurement of the four-momentum of all decay products after Coulomb excitation on a 208Pb^{208}Pb target at energies of 400-430 MeV/nucleon using FRS-ALADIN-LAND setup at GSI, Darmstadt. Integrated Coulomb-dissociation cross-sections (CD) of 89 (7)(7) mb and 167 (13)(13) mb up to excitation energy of 10 MeV for one neutron removal from 29^{29}Na and 30^{30}Na respectively, have been extracted. The major part of one neutron removal, CD cross-sections of those nuclei populate core, in its' ground state. A comparison with the direct breakup model, suggests the predominant occupation of the valence neutron in the ground state of 29^{29}Na(3/2+){(3/2^+)} and 30^{30}Na(2+){(2^+)} is the dd orbital with small contribution in the ss-orbital which are coupled with ground state of the core. The ground state configurations of these nuclei are as 28^{28}Na_{gs (1^+)\otimes\nu_{s,d} and 29^{29}Nags(3/2+)νs,d_{gs}(3/2^+)\otimes\nu_{ s,d}, respectively. The ground state spin and parity of these nuclei, obtained from this experiment are in agreement with earlier reported values. The spectroscopic factors for the valence neutron occupying the ss and dd orbitals for these nuclei in the ground state have been extracted and reported for the first time. A comparison of the experimental findings with the shell model calculation using MCSM suggests a lower limit of around 4.3 MeV of the sd-pf shell gap in 30^{30}Na.Comment: Modified version of the manuscript is accepted for publication in Journal of Physics G, Jan., 201

    Pathogen- and Host-Directed Antileishmanial Effects Mediated by Polyhexanide (PHMB)

    Get PDF
    BACKGROUND:Cutaneous leishmaniasis (CL) is a neglected tropical disease caused by protozoan parasites of the genus Leishmania. CL causes enormous suffering in many countries worldwide. There is no licensed vaccine against CL, and the chemotherapy options show limited efficacy and high toxicity. Localization of the parasites inside host cells is a barrier to most standard chemo- and immune-based interventions. Hence, novel drugs, which are safe, effective and readily accessible to third-world countries and/or drug delivery technologies for effective CL treatments are desperately needed. METHODOLOGY/PRINCIPAL FINDINGS:Here we evaluated the antileishmanial properties and delivery potential of polyhexamethylene biguanide (PHMB; polyhexanide), a widely used antimicrobial and wound antiseptic, in the Leishmania model. PHMB showed an inherent antileishmanial activity at submicromolar concentrations. Our data revealed that PHMB kills Leishmania major (L. major) via a dual mechanism involving disruption of membrane integrity and selective chromosome condensation and damage. PHMB's DNA binding and host cell entry properties were further exploited to improve the delivery and immunomodulatory activities of unmethylated cytosine-phosphate-guanine oligodeoxynucleotides (CpG ODN). PHMB spontaneously bound CpG ODN, forming stable nanopolyplexes that enhanced uptake of CpG ODN, potentiated antimicrobial killing and reduced host cell toxicity of PHMB. CONCLUSIONS:Given its low cost and long history of safe topical use, PHMB holds promise as a drug for CL therapy and delivery vehicle for nucleic acid immunomodulators

    Exome sequencing of early-onset patients supports genetic heterogeneity in colorectal cancer

    Get PDF
    Colorectal cancer (CRC) is a complex disease that can be caused by a spectrum of genetic variants ranging from low to high penetrance changes, that interact with the environment to determine which individuals will develop the disease. In this study, we sequenced 20 early-onset CRC patients to discover novel genetic variants that could be linked to the prompt disease development. Eight genes, CHAD, CHD1L, ERCC6, IGTB7, PTPN13, SPATA20, TDG and TGS1, were selected and re-sequenced in a further 304 early onset CRC patients to search for rare, high-impact variants. Although we found a recurring truncating variant in the TDG gene shared by two independent patients, the results obtained did not help consolidate any of the candidates as promising CRC predisposing genes. However, we found that potential risk alleles in our extended list of candidate variants have a tendency to appear at higher numbers in younger cases. This supports the idea that CRC onset may be oligogenic in nature and may show molecular heterogeneity. Further, larger and robust studies are thus needed to unravel the genetics behind early-onset CRC development, coupled with novel functional analyses and omic approaches that may offer complementary insight

    Carotid ultrasound is useful for the cardiovascular risk stratification in patients with hidradenitis suppurativa

    Get PDF
    INTRODUCTION: Hidradenitis suppurativa (HS) is a chronic inflammatory cutaneous disease which has been associated with an increased risk of adverse cardiovascular (CV) outcomes. Adequate stratification of the CV risk is an issue of major importance in patients with HS. To analyze the usefulness of carotid ultrasound (US) assessment for the CV disease risk stratification compared with a traditional score, the Framingham risk score (FRS), in a series of patients with HS. METHODS: Cross-sectional study of 60 patients with HS without history of CV events, diabetes mellitus or chronic kidney disease. Information on CV risk factors was collected and the FRS was calculated. Thus, the patients were classified into low, intermediate and high-CV disease risk categories based on FRS. Carotid US was performed in all participants, and the presence of atherosclerotic plaques was considered as a marker of high CV risk. RESULTS: HS patients had a mean age of 45.1±10.2 years, and 55% were female. The median FRS was 5.7 (IQR: 3.1-14.7). Twenty-four (40%) of the patients were classified into the low risk group, 28 (46.7%) in the intermediate risk group, and 8 (13.3%) into the FRS-high risk category. Noteworthy, carotid US revealed that about one-third of the patients (17/52; 32.6%) in the FRS-based low and intermediate risk categories had carotid plaques, and, therefore, they were reclassified into a high-risk category. CONCLUSION: CV risk in HS patients may be underestimated by using the FRS. Carotid US may be useful to improve the CV risk stratification of patients with HS.This study was funded through an unrestricted grant provided by AbbVie to MGL. AbbVie has not played any role in study design, data collection and analysis, decision to publish or preparation of the manuscript

    Unveiling the multi-step solubilization mechanism of sub-micron size vesicles by detergents

    Get PDF
    Funding: EPSRC (EP/P030017/1).The solubilization of membranes by detergents is critical for many technological applications and has become widely used in biochemistry research to induce cell rupture, extract cell constituents, and to purify, reconstitute and crystallize membrane proteins. The thermodynamic details of solubilization have been extensively investigated, but the kinetic aspects remain poorly understood. Here we used a combination of single-vesicle Förster resonance energy transfer (svFRET), fluorescence correlation spectroscopy and quartz-crystal microbalance with dissipation monitoring to access the real-time kinetics and elementary solubilization steps of sub-micron sized vesicles, which are inaccessible by conventional diffraction-limited optical methods. Real-time injection of a non-ionic detergent, Triton X, induced biphasic solubilization kinetics of surface-immobilized vesicles labelled with the Dil/DiD FRET pair. The nanoscale sensitivity accessible by svFRET allowed us to unambiguously assign each kinetic step to distortions of the vesicle structure comprising an initial fast vesicle-swelling event followed by slow lipid loss and micellization. We expect the svFRET platform to be applicable beyond the sub-micron sizes studied here and become a unique tool to unravel the complex kinetics of detergent-lipid interactions.Publisher PDFPeer reviewe

    Multifunctional, self-assembling, anionic peptide-lipid nanocomplexes for targeted siRNA delivery

    Get PDF
    Formulations of cationic liposomes and polymers readily self-assemble by electrostatic interactions with siRNA to form cationic nanoparticles which achieve efficient transfection and silencing in vitro. However, the utility of cationic formulations in vivo is limited due to rapid clearance from the circulation, due to their association with serum proteins, as well as systemic and cellular toxicity. These problems may be overcome with anionic formulations but they provide challenges of self-assembly and transfection efficiency. We have developed anionic, siRNA nanocomplexes utilizing anionic PEGylated liposomes and cationic targeting peptides that overcome these problems. Biophysical measurements indicated that at optimal ratios of components, anionic PEGylated nanocomplexes formed spherical particles and that, unlike cationic nanocomplexes, were resistant to aggregation in the presence of serum, and achieved significant gene silencing although their non-PEGylated anionic counterparts were less efficient. We have evaluated the utility of anionic nanoparticles for the treatment of neuronal diseases by administration to rat brains of siRNA to BACE1, a key enzyme involved in the formation of amyloid plaques. Silencing of BACE1 was achieved in vivo following a single injection of anionic nanoparticles by convection enhanced delivery and specificity of RNA interference verified by 5' RACE-PCR and Western blot analysis of protein
    corecore