7,847 research outputs found

    Surface-plasmon enhanced bright emission from CdSe quantum-dot nanocrystals

    Get PDF
    We obtained very bright light emission from CdSe quantum dots (QDs) by using the surface-plasmon (SP) coupling technique. 23-fold enhanced photoluminescence (PL) intensities and two-fold increased PL decay rates are observed when the QDs are located on evaporated gold films. This enhancement is not effective for CdSe cores with ZnS shells (ZnS/CdSe). The reason for this difference can be explained by using the SP dispersion diagram and by considering the SP coupling mechanism. We discuss the inherent merits and demerits of this technique to increase the emission efficiency. This technique will enable high-speed and efficient light emission for optically as well as electrically pumped light emitters

    Optical emission near a high-impedance mirror

    Get PDF
    Solid state light emitters rely on metallic contacts with high sheet-conductivity for effective charge injection. Unfortunately, such contacts also support surface plasmon polariton (SPP) excitations that dissipate optical energy into the metal and limit the external quantum efficiency. Here, inspired by the concept of radio-frequency (RF) high-impedance surfaces and their use in conformal antennas we illustrate how electrodes can be nanopatterned to simultaneously provide a high DC electrical conductivity and high-impedance at optical frequencies. Such electrodes do not support SPPs across the visible spectrum and greatly suppress dissipative losses while facilitating a desirable Lambertian emission profile. We verify this concept by studying the emission enhancement and photoluminescence lifetime for a dye emitter layer deposited on the electrodes

    Photonic crystals for confining, guiding, and emitting light

    Get PDF
    We show that by using the photonic crystals, we can confine, guide, and emit light efficiently. By precise control over the geometry and three-dimensional design, it is possible to obtain high quality optical devices with extremely small dimensions. Here we describe examples of high-Q optical nanocavities, photonic crystal waveguides, and surface plasmon enhanced light-emitting diode (LEDs)

    Recent advances in solid-state organic lasers

    Full text link
    Organic solid-state lasers are reviewed, with a special emphasis on works published during the last decade. Referring originally to dyes in solid-state polymeric matrices, organic lasers also include the rich family of organic semiconductors, paced by the rapid development of organic light emitting diodes. Organic lasers are broadly tunable coherent sources are potentially compact, convenient and manufactured at low-costs. In this review, we describe the basic photophysics of the materials used as gain media in organic lasers with a specific look at the distinctive feature of dyes and semiconductors. We also outline the laser architectures used in state-of-the-art organic lasers and the performances of these devices with regard to output power, lifetime, and beam quality. A survey of the recent trends in the field is given, highlighting the latest developments in terms of wavelength coverage, wavelength agility, efficiency and compactness, or towards integrated low-cost sources, with a special focus on the great challenges remaining for achieving direct electrical pumping. Finally, we discuss the very recent demonstration of new kinds of organic lasers based on polaritons or surface plasmons, which open new and very promising routes in the field of organic nanophotonics

    Spontaneous emission control in high-extraction efficiency plasmonic crystals

    Full text link
    We experimentally and theoretically investigate exciton-field coupling for the surface plasmon polariton (SPP) in waveguide-confined (WC) anti-symmetric modes of hexagonal plasmonic crystals in InP-TiO-Au-TiO-Si heterostructures. The radiative decay time of the InP-based transverse magnetic (TM)-strained multi-quantum well (MQW) coupled to the SPP modes is observed to be 2.9-3.7 times shorter than that of a bare MQW wafer. Theoretically we find that 80 % of the enhanced PL is emitted into SPP modes, and 17 % of the enhanced luminescence is redirected into WC-anti-symmetric modes. In addition to the direct coupling of the excitons to the plasmonic modes, this demonstration is also useful for the development of high-temperature SPP lasers, the development of highly integrated photo-electrical devices, or miniaturized biosensors.Comment: Spontaneous emission control in high-extraction efficiency plasmonic crystal

    Plasmon-enhanced generation of non-classical light

    Full text link
    Strong light-matter interactions enabled by surface plasmons have given rise to a wide range of photonic, optoelectronic and chemical functionalities. In recent years, the interest in this research area has focused on the quantum regime, aiming to developing ultra-compact nanoscale instruments operating at the single (few) photon(s) level. In this perspective, we provide a general overview of recent experimental and theoretical advances as well as near-future challenges towards the design and implementation of plasmon-empowered quantum optical and photo-emitting devices based on the building blocks of nanophotonics technology: metallo-dielectric nanostructures and microscopic light sources

    Enhanced light emission from top-emitting organic light-emitting diodes by optimizing surface plasmon polariton losses

    Get PDF
    We demonstrate enhanced light extraction for monochrome top-emitting organic light-emitting diodes (OLEDs). The enhancement by a factor of 1.2 compared to a reference sample is caused by the use of a hole transport layer (HTL) material possessing a low refractive index (1.52). The low refractive index reduces the in-plane wave vector of the surface plasmon polariton (SPP) excited at the interface between the bottom opaque metallic electrode (anode) and the HTL. The shift of the SPP dispersion relation decreases the power dissipated into lost evanescent excitations and thus increases the outcoupling efficiency, although the SPP remains constant in intensity. The proposed method is suitable for emitter materials owning isotropic orientation of the transition dipole moments as well as anisotropic, preferentially horizontal orientation, resulting in comparable enhancement factors. Furthermore, for sufficiently low refractive indices of the HTL material, the SPP can be modeled as a propagating plane wave within other organic materials in the optical microcavity. Thus, by applying further extraction methods, such as micro lenses or Bragg gratings, it would become feasible to obtain even higher enhancements of the light extraction.Comment: 11 pages, 6 figures, will be submitted to PR

    Quantum Electrodynamic Control of Matter: Cavity-Enhanced Ferroelectric Phase Transition

    No full text
    The light-matter interaction can be utilized to qualitatively alter physical properties of materials. Recent theoretical and experimental studies have explored this possibility of controlling matter by light based on driving many-body systems via strong classical electromagnetic radiation, leading to a time-dependent Hamiltonian for electronic or lattice degrees of freedom. To avoid inevitable heating, pump-probe setups with ultrashort laser pulses have so far been used to study transient light-induced modifications in materials. Here, we pursue yet another direction of controlling quantum matter by modifying quantum fluctuations of its electromagnetic environment. In contrast to earlier proposals on light-enhanced electron-electron interactions, we consider a dipolar quantum many-body system embedded in a cavity composed of metal mirrors and formulate a theoretical framework to manipulate its equilibrium properties on the basis of quantum light-matter interaction. We analyze hybridization of different types of the fundamental excitations, including dipolar phonons, cavity photons, and plasmons in metal mirrors, arising from the cavity confinement in the regime of strong light-matter interaction. This hybridization qualitatively alters the nature of the collective excitations and can be used to selectively control energy-level structures in a wide range of platforms. Most notably, in quantum paraelectrics, we show that the cavity-induced softening of infrared optical phonons enhances the ferroelectric phase in comparison with the bulk materials. Our findings suggest an intriguing possibility of inducing a superradiant-type transition via the light-matter coupling without external pumping. We also discuss possible applications of the cavity-induced modifications in collective excitations to molecular materials and excitonic devices

    Metallic nanostructures for efficient LED lighting

    Get PDF
    Light-emitting diodes (LEDs) are driving a shift toward energy-efficient illumination. Nonetheless, modifying the emission intensities, colors and directionalities of LEDs in specific ways remains a challenge often tackled by incorporating secondary optical components. Metallic nanostructures supporting plasmonic resonances are an interesting alternative to this approach due to their strong light–matter interaction, which facilitates control over light emission without requiring external secondary optical components. This review discusses new methods that enhance the efficiencies of LEDs using nanostructured metals. This is an emerging field that incorporates physics, materials science, device technology and industry. First, we provide a general overview of state-of-the-art LED lighting, discussing the main characteristics required of both quantum wells and color converters to efficiently generate white light. Then, we discuss the main challenges in this field as well as the potential of metallic nanostructures to circumvent them. We review several of the most relevant demonstrations of LEDs in combination with metallic nanostructures, which have resulted in light-emitting devices with improved performance. We also highlight a few recent studies in applied plasmonics that, although exploratory and eminently fundamental, may lead to new solutions in illuminatio
    • …
    corecore