23 research outputs found

    Study and Development of Mechatronic Devices and Machine Learning Schemes for Industrial Applications

    Get PDF
    Obiettivo del presente progetto di dottorato è lo studio e sviluppo di sistemi meccatronici e di modelli machine learning per macchine operatrici e celle robotizzate al fine di incrementarne le prestazioni operative e gestionali. Le pressanti esigenze del mercato hanno imposto lavorazioni con livelli di accuratezza sempre più elevati, tempi di risposta e di produzione ridotti e a costi contenuti. In questo contesto nasce il progetto di dottorato, focalizzato su applicazioni di lavorazioni meccaniche (e.g. fresatura), che includono sistemi complessi quali, ad esempio, macchine a 5 assi e, tipicamente, robot industriali, il cui utilizzo varia a seconda dell’impiego. Oltre alle specifiche problematiche delle lavorazioni, si deve anche considerare l’interazione macchina-robot per permettere un’efficiente capacità e gestione dell’intero impianto. La complessità di questo scenario può evidenziare sia specifiche problematiche inerenti alle lavorazioni (e.g. vibrazioni) sia inefficienze più generali che riguardano l’impianto produttivo (e.g. asservimento delle macchine con robot, consumo energetico). Vista la vastità della tematica, il progetto si è suddiviso in due parti, lo studio e sviluppo di due specifici dispositivi meccatronici, basati sull’impiego di attuatori piezoelettrici, che puntano principalmente alla compensazione di vibrazioni indotte dal processo di lavorazione, e l’integrazione di robot per l’asservimento di macchine utensili in celle robotizzate, impiegando modelli di machine learning per definire le traiettorie ed i punti di raggiungibilità del robot, al fine di migliorarne l’accuratezza del posizionamento del pezzo in diverse condizioni. In conclusione, la presente tesi vuole proporre soluzioni meccatroniche e di machine learning per incrementare le prestazioni di macchine e sistemi robotizzati convenzionali. I sistemi studiati possono essere integrati in celle robotizzate, focalizzandosi sia su problematiche specifiche delle lavorazioni in macchine operatrici sia su problematiche a livello di impianto robot-macchina. Le ricerche hanno riguardato un’approfondita valutazione dello stato dell’arte, la definizione dei modelli teorici, la progettazione funzionale e l’identificazione delle criticità del design dei prototipi, la realizzazione delle simulazioni e delle prove sperimentali e l’analisi dei risultati.The aim of this Ph.D. project is the study and development of mechatronic systems and machine learning models for machine tools and robotic applications to improve their performances. The industrial demands have imposed an ever-increasing accuracy and efficiency requirement whilst constraining the cost. In this context, this project focuses on machining processes (e.g. milling) that include complex systems such as 5-axes machine tool and industrial robots, employed for various applications. Beside the issues related to the machining process itself, the interaction between the machining centre and the robot must be considered for the complete industrial plant’s improvement. This scenario´s complexity depicts both specific machining problematics (e.g. vibrations) and more general issues related to the complete plant, such as machine tending with an industrial robot and energy consumption. Regarding the immensity of this area, this project is divided in two parts, the study and development of two mechatronic devices, based on piezoelectric stack actuators, for the active vibration control during the machining process, and the robot machine tending within the robotic cell, employing machine learning schemes for the trajectory definition and robot reachability to improve the corresponding positioning accuracy. In conclusion, this thesis aims to provide a set of solutions, based on mechatronic devices and machine learning schemes, to improve the conventional machining centre and the robotic systems performances. The studied systems can be integrated within a robotic cell, focusing on issues related to the specific machining process and to the interaction between robot-machining centre. This research required a thorough study of the state-of-the-art, the formulation of theoretical models, the functional design development, the identification of the critical aspects in the prototype designs, the simulation and experimental campaigns, and the analysis of the obtained results

    Parallel Manipulators

    Get PDF
    In recent years, parallel kinematics mechanisms have attracted a lot of attention from the academic and industrial communities due to potential applications not only as robot manipulators but also as machine tools. Generally, the criteria used to compare the performance of traditional serial robots and parallel robots are the workspace, the ratio between the payload and the robot mass, accuracy, and dynamic behaviour. In addition to the reduced coupling effect between joints, parallel robots bring the benefits of much higher payload-robot mass ratios, superior accuracy and greater stiffness; qualities which lead to better dynamic performance. The main drawback with parallel robots is the relatively small workspace. A great deal of research on parallel robots has been carried out worldwide, and a large number of parallel mechanism systems have been built for various applications, such as remote handling, machine tools, medical robots, simulators, micro-robots, and humanoid robots. This book opens a window to exceptional research and development work on parallel mechanisms contributed by authors from around the world. Through this window the reader can get a good view of current parallel robot research and applications

    Kinematics and Robot Design II (KaRD2019) and III (KaRD2020)

    Get PDF
    This volume collects papers published in two Special Issues “Kinematics and Robot Design II, KaRD2019” (https://www.mdpi.com/journal/robotics/special_issues/KRD2019) and “Kinematics and Robot Design III, KaRD2020” (https://www.mdpi.com/journal/robotics/special_issues/KaRD2020), which are the second and third issues of the KaRD Special Issue series hosted by the open access journal robotics.The KaRD series is an open environment where researchers present their works and discuss all topics focused on the many aspects that involve kinematics in the design of robotic/automatic systems. It aims at being an established reference for researchers in the field as other serial international conferences/publications are. Even though the KaRD series publishes one Special Issue per year, all the received papers are peer-reviewed as soon as they are submitted and, if accepted, they are immediately published in MDPI Robotics. Kinematics is so intimately related to the design of robotic/automatic systems that the admitted topics of the KaRD series practically cover all the subjects normally present in well-established international conferences on “mechanisms and robotics”.KaRD2019 together with KaRD2020 received 22 papers and, after the peer-review process, accepted only 17 papers. The accepted papers cover problems related to theoretical/computational kinematics, to biomedical engineering and to other design/applicative aspects

    Investigation into the applications of genetic algorithms to control engineering

    Get PDF
    Bibliography: pages 117-120.This thesis report presents the results of a study carried out to determine possible uses of genetic algorithms to problems in control engineering. This thesis reviewed the literature on the subject of genetics and genetic algorithms and applied the algorithms to the problems of systems parameter identification and Pl/D controller tuning. More specifically, the study had the following objectives: To investigate possible uses of genetic algorithms to the task of system identification and Pl/D controller tuning. To do an in depth comparison of the proposed uses with orthodox traditional engineering thinking which is based on mathematical optimisation and empirical studies. To draw conclusions and present the findings in the form of a thesis. Genetic algorithms are a class of artificial intelligence methods inspired by the Darwinian principles of natural selection and survival of the fittest. The algorithm encodes potential solutions into chromosome-like data structures that. are evolved using genetic ·operators to determine the optimal solution of the problem. Fundamentally, the evolutionary nature of the algorithm is introduced through the operators called crossover and mutation. Crossover fundamentally takes two strings, selects a crossing point randomly and swaps segments of the strings on either side of the crossover point to create two new individuals. There are three variations of crossover which were considered in this thesis: single point crossover, two point crossover and uniform crossover. It was important that these be given careful consideration since much of the outcome of the algorithm is influenced by both the choice and the amount with which they are applied

    Robots in machining

    Get PDF
    Robotic machining centers offer diverse advantages: large operation reach with large reorientation capability, and a low cost, to name a few. Many challenges have slowed down the adoption or sometimes inhibited the use of robots for machining tasks. This paper deals with the current usage and status of robots in machining, as well as the necessary modelling and identification for enabling optimization, process planning and process control. Recent research addressing deburring, milling, incremental forming, polishing or thin wall machining is presented. We discuss various processes in which robots need to deal with significant process forces while fulfilling their machining task

    Computational intelligence approaches to robotics, automation, and control [Volume guest editors]

    Get PDF
    No abstract available

    Bio-Inspired Robotics

    Get PDF
    Modern robotic technologies have enabled robots to operate in a variety of unstructured and dynamically-changing environments, in addition to traditional structured environments. Robots have, thus, become an important element in our everyday lives. One key approach to develop such intelligent and autonomous robots is to draw inspiration from biological systems. Biological structure, mechanisms, and underlying principles have the potential to provide new ideas to support the improvement of conventional robotic designs and control. Such biological principles usually originate from animal or even plant models, for robots, which can sense, think, walk, swim, crawl, jump or even fly. Thus, it is believed that these bio-inspired methods are becoming increasingly important in the face of complex applications. Bio-inspired robotics is leading to the study of innovative structures and computing with sensory–motor coordination and learning to achieve intelligence, flexibility, stability, and adaptation for emergent robotic applications, such as manipulation, learning, and control. This Special Issue invites original papers of innovative ideas and concepts, new discoveries and improvements, and novel applications and business models relevant to the selected topics of ``Bio-Inspired Robotics''. Bio-Inspired Robotics is a broad topic and an ongoing expanding field. This Special Issue collates 30 papers that address some of the important challenges and opportunities in this broad and expanding field

    Dynamic state estimation for mobile robots

    Get PDF
    The scientific goal of this thesis is to tackle different approaches for effective state estimation and modelling of relevant problems in the context of mobile robots. The starting point of this dissertation is the concept of probabilistic robotics, an emerging paradigm that combines state-of-the-art methods with the classic probabilistic theory, developing stochastic frameworks for understanding the uncertain nature of the interaction between a robot and its environment. This allows introducing relevant concepts which are the foundation of the localisation system implemented on the main experimental platform used on this dissertation. An accurate estimation of the position of a robot with respect to a fixed frame is fundamental for building navigation systems that can work in dynamic unstructured environments. This development also allows introducing additional contributions related with global localisation, dynamic obstacle avoidance, path planning and position tracking problems. Kinematics on generalised manipulators are characterised for dealing with complex nonlinear systems. Nonlinear formulations are needed to properly model these systems, which are not always suitable for real-time realisation, lacking analytic formulations in most cases. In this context, this thesis tackles the serial-parallel dual kinematic problem with a novel approach, demonstrating state-of-the-art accuracy and real-time performance. With a spatial decomposition method, the forward kinematics problem on parallel robots and the inverse kinematics problem on serial manipulators is solved modelling the nonlinear behaviour of the pose space using Support Vector Machines. The results are validated on different topologies with the analytic solution for such manipulators, which demonstrates the applicability of the proposed method. Modelling and control of complex dynamical systems is another relevant field with applications on mobile robots. Nonlinear techniques are usually applied to tackle problems like feature or object tracking. However, some nonlinear integer techniques applied for tasks like position tracking in mobile robots with complex dynamics have limited success when modelling such systems. Fractional calculus has demonstrated to be suitable to model complex processes like viscoelasticity or super diffusion. These tools, that take advantage of the generalization of the derivative and integral operators to a fractional order, have been applied to model and control different topics related with robotics in recent years with remarkable success. With the proposal of a fractional-order PI controller, a suitable controller design method is presented to solve the position tracking problem. This is applied to control the distance of a self-driving car with respect to an objective, which can also be applied to other tracking applications like following a navigation path. Furthermore, this thesis introduces a novel fractional-order hyperchaotic system, stabilised with a full-pseudo-state-feedback controller and a located feedback method. This theoretical contribution of a chaotic system is introduced hoping to be useful in this context. Chaos theory has recently started to be applied to study manipulators, biped robots and autonomous navigation, achieving new and promising results, highlighting the uncertain and chaotic nature which also has been found on robots. All together, this thesis is devoted to different problems related with dynamic state estimation for mobile robots, proposing specific contributions related with modelling and control of complex nonlinear systems. These findings are presented in the context of a self-driving electric car, Verdino, jointly developed in collaboration with the Robotics Group of Universidad de La Laguna (GRULL)

    Engineering Education and Research Using MATLAB

    Get PDF
    MATLAB is a software package used primarily in the field of engineering for signal processing, numerical data analysis, modeling, programming, simulation, and computer graphic visualization. In the last few years, it has become widely accepted as an efficient tool, and, therefore, its use has significantly increased in scientific communities and academic institutions. This book consists of 20 chapters presenting research works using MATLAB tools. Chapters include techniques for programming and developing Graphical User Interfaces (GUIs), dynamic systems, electric machines, signal and image processing, power electronics, mixed signal circuits, genetic programming, digital watermarking, control systems, time-series regression modeling, and artificial neural networks

    Ramon Llull's Ars Magna

    Get PDF
    corecore