1,512 research outputs found

    A Physical Scaling Method to Incorporate Regional Physical Characteristics in Future Climatic and Hydrologic Predictions

    Get PDF
    In this thesis an original Physical Scaling (SP) method for downscaling Global Circulation Model (GCM) based climatic projections has been developed, tested and applied over a study region. The model formulation can take into account regional physical characteristics like land-cover and elevation into the model formulation. A thorough verification of the method and its extension: SP with Surrounding pixel information (SPS) method has been performed and their performance towards downscaling GCM based precipitation, surface temperature and air temperature has been compared with many state-of-the-art downscaling models like Bias Correction Spatial Downscaling (BCSD) method, Statistical DownScaling Method (SDSM) and Generalized Linear Modeling (GLM). The SPS method extends SP method by also taking into account neighborhood physical characteristics into the downscaling process. A major benefit of the presented downscaling approaches is that they can account for non-stationarity in physical characteristics of the region of interest like changes in land-cover as well as their neighborhoods. This represents a major contribution in the field of statistical downscaling literature since it brings the benefits of physically based dynamic downscaling into a statistical downscaling framework. Proposed models are used to isolate physically sourced climatic and hydrologic contributions in four catchments located within the southern Saskatchewan region of Canada. Contributions towards flood magnitudes are also studied for low to high return period flooding events. Results indicate that the contributions of catchment physical characteristics towards shaping climatic and hydrologic regimes in the analyzed catchments are statistically significant. Further significant variability in the detected changes exists over catchment space and analyzed time-period. Finally the results from this thesis highlight the importance of further exploration of physically driven climatic changes, and the need to find out how to incorporate them while making future streamflow predictions. The developed SP and SPS methods are highly relevant and useful in a non-stationary world which is set to experience rapid climatic and geophysical changes in the future

    On the Statistical and Scaling Properties of Observed and Simulated Soil Moisture

    Get PDF
    abstract: Soil moisture (θ) is a fundamental variable controlling the exchange of water and energy at the land surface. As a result, the characterization of the statistical properties of θ across multiple scales is essential for many applications including flood prediction, drought monitoring, and weather forecasting. Empirical evidences have demonstrated the existence of emergent relationships and scale invariance properties in θ fields collected from the ground and airborne sensors during intensive field campaigns, mostly in natural landscapes. This dissertation advances the characterization of these relations and statistical properties of θ by (1) analyzing the role of irrigation, and (2) investigating how these properties change in time and across different landscape conditions through θ outputs of a distributed hydrologic model. First, θ observations from two field campaigns in Australia are used to explore how the presence of irrigated fields modifies the spatial distribution of θ and the associated scale invariance properties. Results reveal that the impact of irrigation is larger in drier regions or conditions, where irrigation creates a drastic contrast with the surrounding areas. Second, a physically-based distributed hydrologic model is applied in a regional basin in northern Mexico to generate hyperresolution θ fields, which are useful to conduct analyses in regions and times where θ has not been monitored. For this aim, strategies are proposed to address data, model validation, and computational challenges associated with hyperresolution hydrologic simulations. Third, analyses are carried out to investigate whether the hyperresolution simulated θ fields reproduce the statistical and scaling properties observed from the ground or remote sensors. Results confirm that (i) the relations between spatial mean and standard deviation of θ derived from the model outputs are very similar to those observed in other areas, and (ii) simulated θ fields exhibit the scale invariance properties that are consistent with those analyzed from aircraft-derived estimates. The simulated θ fields are then used to explore the influence of physical controls on the statistical properties, finding that soil properties significantly affect spatial variability and multifractality. The knowledge acquired through this dissertation provides insights on θ statistical properties in regions and landscape conditions that were never investigated before; supports the refinement of the calibration of multifractal downscaling models; and contributes to the improvement of hyperresolution hydrologic modeling.Dissertation/ThesisDoctoral Dissertation Civil, Environmental and Sustainable Engineering 201

    An Integrative Information Aqueduct to Close the Gaps between Satellite Observation of Water Cycle and Local Sustainable Management of Water Resources

    Get PDF
    [EN] The past decades have seen rapid advancements in space-based monitoring of essential water cycle variables, providing products related to precipitation, evapotranspiration, and soil moisture, often at tens of kilometer scales. Whilst these data effectively characterize water cycle variability at regional to global scales, they are less suitable for sustainable management of local water resources, which needs detailed information to represent the spatial heterogeneity of soil and vegetation. The following questions are critical to effectively exploit information from remotely sensed and in situ Earth observations (EOs): How to downscale the global water cycle products to the local scale using multiple sources and scales of EO data? How to explore and apply the downscaled information at the management level for a better understanding of soil-water-vegetation-energy processes? How can such fine-scale information be used to improve the management of soil and water resources? An integrative information flow (i.e., iAqueduct theoretical framework) is developed to close the gaps between satellite water cycle products and local information necessary for sustainable management of water resources. The integrated iAqueduct framework aims to address the abovementioned scientific questions by combining medium-resolution (10 m-1 km) Copernicus satellite data with high-resolution (cm) unmanned aerial system (UAS) data, in situ observations, analytical- and physical-based models, as well as big-data analytics with machine learning algorithms. This paper provides a general overview of the iAqueduct theoretical framework and introduces some preliminary results.The authors would like to thank the European Commission and Netherlands Organisation for Scientific Research (NWO) for funding, in the frame of the collaborative international consortium (iAqueduct) financed under the 2018 Joint call of the Water Works 2017 ERA-NET Cofund. This ERA-NET is an integral part of the activities developed by the Water JPI (Project number: ENWWW.2018.5); the EC and the Swedish Research Council for Sustainable Development (FORMAS, under grant 2018-02787); Contributions of B. Szabo was supported by the Janos Bolyai Research Scholarship of the Hungarian Academy of Sciences (grant no. BO/00088/18/4).Su, Z.; Zeng, Y.; Romano, N.; Manfreda, S.; Francés, F.; Ben Dor, E.; Szabó, B.... (2020). An Integrative Information Aqueduct to Close the Gaps between Satellite Observation of Water Cycle and Local Sustainable Management of Water Resources. Water. 12(5):1-36. https://doi.org/10.3390/w12051495S13612

    A Review on Different Modeling Techniques

    Get PDF
    In this study, the importance of air temperature from different aspects (e.g., human and plant health, ecological and environmental processes, urban planning, and modelling) is presented in detail, and the major factors affecting air temperature in urban areas are introduced. Given the importance of air temperature, and the necessity of developing high-resolution spatio- temporal air-temperature maps, this paper categorizes the existing approaches for air temperature estimation into three categories (interpolation, regression and simulation approaches) and reviews them. This paper focuses on high-resolution air temperature mapping in urban areas, which is difficult due to strong spatio-temporal variations. Different air temperature mapping approaches have been applied to an urban area (Berlin, Germany) and the results are presented and discussed. This review paper presents the advantages, limitations and shortcomings of each approach in its original form. In addition, the feasibility of utilizing each approach for air temperature modelling in urban areas was investigated. Studies into the elimination of the limitations and shortcomings of each approach are presented, and the potential of developed techniques to address each limitation is discussed. Based upon previous studies and developments, the interpolation, regression and coupled simulation techniques show potential for spatio-temporal modelling of air temperature in urban areas. However, some of the shortcomings and limitations for development of high-resolution spatio- temporal maps in urban areas have not been properly addressed yet. Hence, some further studies into the elimination of remaining limitations, and improvement of current approaches to high-resolution spatio-temporal mapping of air temperature, are introduced as future research opportunities

    Understanding and Predicting Vadose Zone Processes

    Get PDF
    Vadose zone hydrologic and biogeochemical processes play a significant role in the capture, storage and distribution of contaminants between the land surface and groundwater. One major issue facing geoscientists in dealing with investigations of the unsaturated zone flow and transport processes is the evaluation of heterogeneity of subsurface media. This chapter presents a summary of approaches for monitoring and modeling of vadose zone dynamics in the presence of heterogeneities and complex features, as well as incorporating transient conditions. Modeling results can then be used to provide early warning of soil and groundwater contamination before problems arise, provide scientific and regulatory credibility to environmental management decision-making process to enhance protection of human health and the environment. We recommend that future studies target the use of RTMs to identify and quantify critical interfaces that control large-scale biogeochemical reaction rates and ecosystem functioning. Improvements also need to be made in devising scaling approaches to reduce the disconnect between measured data and the scale at which processes occur

    Development of a Downscaling Scheme for a Coarse Scale Soil Water Estimation Method

    Get PDF
    Many river basins worldwide, especially in semi-arid regions, are adversely impacted by poor hydrological infrastructure or are poorly characterized due to limited or no hydrologic data. This condition challenges water-management authorities, who benefit from reliable prediction of the hydrological dynamics that can be made by means of hydrological models. Because of the lack of sufficient or reliable data, often such models are difficult to calibrate and to validate. This study addresses this data limitation by formulating and testing an independent validation tool for hydrological models that can be applied to downscale macro-scale soil water data derived from a remotely sensed scatterometer dataset. This proposed method uses the concept of hydrological response units (HRU) to analyze the spatial variability within one scatterometer footprint. The HRUs are treated as model entities in the process oriented hydrological model J2000 that was applied to the Great Letaba River catchment (ca. 4.700 km²) in South Africa. The soil water time series results were then compared to the remotely sensed data set and the downscaling scheme derived. First, the analysis conducted on footprint scale highlights the similarities in predicting the soil water generation over the long term and in seasonal terms. It also exhibits that the absolute values of both time series can not be used for further investigation, due to differences in the observed soil water volume. Second, the resulted simulated soil water time series were used to establish the downscaling method. Here, the study provides promising results that allow the downscaling of the coarse scale soil water calculated dataset, based upon the landscape related parameters of land cover, soil group and precipitation. The study findings indicate that, by linking the two concepts, hydrological modeling and remote sensing, water management authorities should be able to reduce certain prediction uncertainties of the applied models

    Novel Satellite-Based Methodologies for Multi-Sensor and Multi-Scale Environmental Monitoring to Preserve Natural Capital

    Get PDF
    Global warming, as the biggest manifestation of climate change, has changed the distribution of water in the hydrological cycle by increasing the evapotranspiration rate resulting in anthropogenic and natural hazards adversely affecting modern and past human properties and heritage in different parts of the world. The comprehension of environmental issues is critical for ensuring our existence on Earth and environmental sustainability. Environmental modeling can be described as a simplified form of a real system that enhances our knowledge of how a system operates. Such models represent the functioning of various processes of the environment, such as processes related to the atmosphere, hydrology, land surface, and vegetation. The environmental models can be applied on a wide range of spatiotemporal scales (i.e. from local to global and from daily to decadal levels); and they can employ various types of models (e.g. process-driven, empirical or data-driven, deterministic, stochastic, etc.). Satellite remote sensing and Earth Observation techniques can be utilized as a powerful tool for flood mapping and monitoring. By increasing the number of satellites orbiting around the Earth, the spatial and temporal coverage of environmental phenomenon on the planet has in-creased. However, handling such a massive amount of data was a challenge for researchers in terms of data curation and pre-processing as well as required computational power. The advent of cloud computing platforms has eliminated such steps and created a great opportunity for rapid response to environmental crises. The purpose of this study was to gather state-of-the-art remote sensing and/or earth observation techniques and to further the knowledge concerned with any aspect of the use of remote sensing and/or big data in the field of geospatial analysis. In order to achieve the goals of this study, some of the water-related climate-change phenomena were studied via different mathematical, statistical, geomorphological and physical models using different satellite and in-situ data on different centralized and decentralized computational platforms. The structure of this study was divided into three chapters with their own materials, methodologies and results including: (1) flood monitoring; (2) soil water balance modeling; and (3) vegetation monitoring. The results of this part of the study can be summarize in: 1) presenting innovative procedures for fast and semi-automatic flood mapping and monitoring based on geomorphic methods, change detection techniques and remote sensing data; 2) modeling soil moisture and water balance components in the root zone layer using in-situ, drone and satellite data; incorporating downscaling techniques; 3) combining statistical methods with the remote sensing data for detecting inner anomalies in the vegetation covers such as pest emergence; 4) stablishing and disseminating the use of cloud computation platforms such as Google Earth Engine in order to eliminate the unnecessary steps for data curation and pre-processing as well as required computational power to handle the massive amount of RS data. As a conclusion, this study resulted in provision of useful information and methodologies for setting up strategies to mitigate damage and support the preservation of areas and landscape rich in cultural and natural heritage
    • …
    corecore