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Introduction 

This chapter is divided into four sections. First, according to the theme of this 

dissertation, general background is introduced on the topics of hydrological processes, 

hydrological models, remote sensing data and climate change (Section 1.1). Second, 

detailed information on the Yarkant River basin is presented to establish why it was 

chosen as the case study (Section 1.2). and all of the datasets and sources used in this 

dissertation are also described (Section 1.3). Finally, the rationale and synopsis are 

discussed (Section 1.4)  
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1.1 Overview 

With the persistently increased demands on water resources, related issues such as 

ecological degeneration, worsening environmental systems and aggravating water 

conflicts have been caused by a shortage of available water resources. These issues have 

attracted attentions of governments and scientists, and many studies have been 

conducted in response. Since effective water resource management is necessary to 

guarantee sustainability of ecological, economic and social system, understanding of 

hydrological processes is the foundation of water resources management. Currently, 

there is little study on the hydrological processes associated with the water cycle in the 

high alpine catchment. Consequently, the water system based on the water component 

cycle has become the most important topic in the water field in the 21st century (Xia, 

2009). 

 

1.1.1 Hydrological processes 

Hydrological processes are highly complex natural system that includes the interactions 

of many nature factors. Water movements in hydrological processes dominate the 

activities of natural life and even the evolutionary processes of the environment on earth. 

Indeed, human livelihood is confined to specific regions with appropriate water access. 

In the 1950s, a schematic framework of global water cycle was established, but the 

magnitude and distribution of the water components were still unclear. Since the 1970s, 

an increasing number of observational gauges for different hydrological components 

were installed in the field, and the measurement technologies were continually improved. 

Consequently, more and better observations were obtained. Based on quantitative 

analysis of these observations, clearer understandings of the water resource cycle 

processes and distribution were obtained on the global scale (Zhang et al, 2008). During 

this period, increasing attention was focused on investigation of water resources, but the 

physical characteristics of hydrological processes and mechanisms of water component 

interactions were still not understood unambiguously. Additionally, on the finer 

catchment scale, the density of gauges was not sufficient to describe the hydrological 

processes. 

Until the 1990s, certain international organizations such as the World Climate Research 

Programme (WCRP), the International Geosphere Biosphere Programme (IGBP) (WMO, 

1987) and the Biospheric Aspects of the Hydrological Cycle (BAHC) (Gao et al., 2000) 

began to focus on the characteristics of hydrological processes and the evolving rules of 
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water resources under global change, and all of these studies on the effects of spatial 

scales. During this period, with the development of the physically based distributed 

hydrological model, the hydrological models became the most popular and primary tools 

in the study of hydrological processes on the catchment scale. The hydrological 

modelling is based on a universal understanding of interactions among hydrological 

components, but the features of hydrological processes on catchment scale always vary 

from watershed to watershed. Therefore, in-depth studies of hydrological processes 

based on modeling are still necessary, especially in certain characteristic regions. 

The arid regions add up to 40% of the global land area, and 38% of the world population 

lives in these places and faces a highly fragile environmental system. Even worse, the 

arid areas are predicted to expand to 50% under the high emission scenario of global 

change, and this expansion will pose a more severe challenge to human habitats (Huang 

et al., 2015). The Xinjiang Uygur Autonomous Province in northwest China is located in 

the Eurasian hinterland. Xinjiang is an emblematic arid region located far away from 

ocean and surrounded by high mountains. The average annual precipitation is 

approximately 150 mm, but pan-evaporation reaches 2800 mm in this region. 

Comparing its vast area, the limited water resources strongly restrict the local economic 

development and threaten the security of the ecosystem. Mountains, oases and deserts 

are the three basic ecological entities in nature, and the water cycle is strongly tied to the 

local geographical characteristics (Chen et al, 2012). Generally, rainfall and melt water 

in mountains are the main runoff-producing sources. The runoff is transported to the 

piedmont area and supports the development of oases, where most population is situated 

and most water is consumed. Due to the harsh climate, the rivers finally dry out and 

disappear in the plains area. The dominate landscapes are desert and bare land with 

sparse vegetation, which is a notably fragile ecological system.  

In the arid region, most water resources are distributed in the independent inland river 

basin and with the domination of melt water in the mountain area, and development of 

the piedmont oasis mostly depends on the volumes of runoff derived from the mountain 

region whose hydrological system is particularly tied to the unequal characteristics of 

different seasons (Kang, 1998). The Consortium of Universities for the Advancement of 

Hydrological Science Inc. (CUAHSI) (Roger et al. 2004) also indicated the importance 

of mountainous hydrological processes and reported that the hydrological processes 

determine the water availability, land cover and influence the local climate in inland 

river basins. Therefore, a comprehensive understanding of the water resources in the 

mountain region is the foundation of water resources management for the downstream 
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oasis. However, the complex hydrological processes and extreme heterogeneity of 

response units in the high alpine catchment make the catchment modeling more difficult.  

1.1.2 Hydrological model 

The hydrological model is a simplification of complex hydrological phenomena and an 

important tool used to study these hydrological processes (Beven, 2001). The 

development of the hydrological models during different periods is presented in Table 

1-1. The mathematical equations used to describe one certain water movement were 

taken as the origins of the hydrological model (Chow et al, 1988), such as the 

Saint-Vennant equation for surface runoff, the Richard equation for soil interflow in the 

unsaturated zone and the MacCarthy equation for channel flow. Since the 1950s, 

different water movements were joined from a systematic perspective, and the model 

focused on the processes of rainfall-runoff that established in this period. However, the 

physical relationships among water components were replaced by statistical 

relationships, and thus the models were referred to as “black-box models” in this period. 

During the 1960s to the 1980s, the physically based model was developed, including the 

interactions of hydrological components and routing scheme for generating the final 

hydrography at the outlet. In this period, a number of lumped conceptual models were 

widely developed, such as the Stanford Watershed Model (Crawford and Linsley 1966), 

the Hydrologiska Fyrans Vattenbalans model (abbreviated as HBV) (Bergstrom 1972), 

the Nedbør-Afstrømnings Model (abbreviated as NAM) (Nielsen and Hansen 1973) and 

the Snowmelt Runoff Model (abbreviated as SRM) (Martinec 1975). These models have 

improved simulations of hydrological progresses on a catchment scale. Because they are 

simple and less data-intensive, the lumped conceptual models still have practical value 

in current hydrological studies. However, applications of these models also have been 

strongly restricted because they cannot reflect the heterogeneity of the catchment. 

After the 1980s, improvements in computational power and spatial technology made it 

possible to implement heterogeneous simulations for the hydrological response units. 

Contemporary, the concerning of hydrology study also had been extended to the related 

issues, such as water quality, catchment ecological system, local climate change and 

human activities, these issues required to consider the differences of catchment 

hydrological processes. In this manner, the distributed hydrological models, which 

generally include a more strict and detailed physical foundation and development of a 

distributed parameter set, that differences in the hydrological response units can be 

reflected in the distributed hydrological models. Compared with other types of 
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hydrological models, the advantages of the distributed hydrological models include the 

following: i) more accurate and stricter describing in the physical mechanism of 

hydrological processes; ii) ease of simulating the response of hydrological processes to 

changes in an underlying surface (land use/cover change); iiv) ability to reflect the 

spatial heterogeneity of catchment; iv) ease of combination with geographic information 

and remote sensing data; and v) utility in assessment of ecology, climate change and 

water resources management strategies via coupling with other models.  

Table 1-1 Development of the hydrological models 

Period Development Explanation Issues of concern 

1930s-1950s 
Establishment of related 

concepts and theories 

Basic laws of water 

movement 
Flood  

1950s-1960s 
Modeling of hydrological 

components 

Relationship of 

rainfall-runoff 
Flood  

1960s-1980s Lumped hydrological model 
Hydrological processes on 

the catchment  

Flood and water 

resources management 

1980s~present 
Distributed model and 

coupling of multiple models 

Heterogeneity of the 

hydrology responses 

Flood and water 

resources management, 

climate change, etc. 

 

The Soil and Water Assessment Tool (SWAT) (Arnold, 1998) and the European 

Hydrological System (MIKE SHE) (Abbott, 1986a, 1986b) are currently the two most 

popular physically distributed hydrological models, which represent two distinct 

approach of hydrological modeling. In hydrological simulation of these two models, the 

water balance theory is used as the overall governing equation, and most hydrological 

processes are included. The hydrological flow charts are illustrated in Figure 1.1. These 

two models have been successfully applied in various fields world-wide, such as irrigation 

planning (Dechmi et al., 2012; Jayatilaka and Storn, 1998), flood forecasting (Zhang et al., 

2014; Sahoo et al., 2006), influence of climate change on water resources (Najafi et al., 

2011; Lirong et al., 2012), water pollution (Galván et al., 2009; Pisinaras et al., 2010), 

and exchange between surface and ground water (Bosson et al., 2012; Thompson et al., 

2004) and so on. 

Fontaine et al. (Fontaine, 2002) incorporated a modified snowfall-snowmelt routine 

using elevation bands in the SWAT model, and this improvement allowed the SWAT 

model to be used in mountainous catchments (Robert, 2008; Debele et al., 2009; 

Rahman et al., 2012). MIKE SHE is a determinate hydrological model in which the 

catchment is split into a number of square grids with elevation information, and the 
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meteorological data can be imported into each grid independently (DHI, 2007) such that 

the variation of precipitation and temperature with elevation can be reflected. The MIKE 

SHE model has been successfully applied in mountain terrains (Smerdon et al., 2009; 

Liu et al., 2012). Most studies in mountain watersheds with the SWAT or MIKE SHE 

model were primarily focused on snowmelt by a single model. The accuracy of a single 

model spatially applied in hydrological processes simulation seems incredulous (Sefton, 

1997). 
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*UZ: unsaturated zone, SZ: saturated zone 

Figure 1.1 Hydrological flow chart of SWAT (a, Adapted from Arnold et al. 1998) and MIKE 

SHE (b, Adapted from Abbott et al. 1986a, 1986b). Boxes represent different hydrological 

processes, ellipses represent various water storage and arrows represent water flow directions. 

 

1.1.3 Application of remote sensing 

The establishment and application of distributed hydrological models have higher 

requirements for forcing data relative to lump models. Furthermore, to produce a more 

accurate simulation, abundant and accurate data are also required for model’s multiple 

calibrations. However, the gauged observations are hard to satisfy the complete 

requirements of hydrological modelling in mountainous regions, not matter in forcing or 

calibrating. In Xinjiang, the density of meteorological stations is quite low with one 

station per every 4000 km2. Even worse, most of gauged stations are located in front of 

the mountains, and the representativeness of these stations for the mountainous area is 

quite deficient. Therefore, scarcity of data further increases difficulties to apply the 

distributed hydrological models in high alpine catchment. 

With respect to the ungauged and insufficiently gauged catchment, the International 

Association of Hydrological Sciences (IAHS) has specifically drawn up a key study plan 

known as Prediction in Ungauged Basins (PUB) (Sivapalan, 2003). The PUB plan 
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focuses on estimation of the predictive uncertainty and its subsequent reduction. 

According to this central theme, certain programs were suggested: 1) establishment of 

interpretation by reanalysis of previous data and comparison of different catchments; 2) 

development of catchment modeling based on selected new data sources such as remote 

sensing data; 3) improvement in the accuracy of hydrological process simulation though 

uncertainty analysis.  

Remote sensing data offer the features of timely updates, wide coverage range, spatial 

distribution, abundant information and low costs (Bi et al., 2002). Applications of 

remote sensing data in the studies of hydrological process have greatly reduced the 

uncertainty related to forcing data and parameter estimation. In results, the simulations 

in ungauged or insufficiently gauged catchments have been improved. Generally, the 

application of remote sensing in hydrology can be summarized based on two aspects: i) 

the direct application as the measurement of hydrological data and parameters, such as 

snow-covered areas, land use types and precipitation, etc.; and ii) the indirect application 

in calculation of hydrological variables based on remote sensing spectrum, such as 

evapotranspiration and soil moisture content. 

In the distributed hydrological model, the catchment is divided into grids or sub-basins 

that can be easily coupled with the grid remote sensing data. However, the scale 

matching between remote sensing data and the hydrology calculated units, and the 

precision of the remote sensing data are still two challenging issues. Consequently, due 

to the spatial resolution and accuracy of remotely sensed data, the necessary 

downscaling and bias correct has to be appropriately considered.  

 

1.1.4 Climate change 

There is not any doubt for the effects of climate change on water resources system it the 

world. The climate system is a complex system that scientists intends to describe the 

interactions of ocean, land and atmosphere, by combining a series of equations. In the 

past several decades, the world's meteorologists have made significant progress in 

building a dynamic framework that includes application of the semi-Lagrangian method, 

incorporation of a reference atmosphere, construction of an energy balance and 

improvement of the land surface model (Dai et al., 2003) as well as better computing 

techniques. After continuous development, the GCM that explains the climate system 

using mathematic-physical equations has been viewed as the main tool in studies of the 

interactive factors (Edwards, 2010). Indeed, a climate model is a mathematical tool used 
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to represent the physical and chemical processes via computer code such that 

climate-related scenario simulations can be run and future trends predicted at certain 

space and time scales (Lynch, 2008). 

The United Nations Intergovernmental Panel on Climate Change (IPCC) Fifth 

Assessment Report (AR5) uses the Coupled Model Intercomparison Project Phase 5 

(CMIP5) to forecast future climate change (IPCC, 2013). The average temperatures have 

increased by approximately 0.74 °C from 1906 to 2005, and on a global scale, these 

warming values are expected to continually increase by 0.3-4.8 °C at the end of the 21st 

century. Climate change could place greater pressures on the water system (Christierson 

et al., 2012), agriculture (Rosenzweig et al., 2014), forestry (Hanewinkel et al., 2013), 

ecological balance (Bellard et al., 2012), human health (Martens, 2014) and other related 

aspects. These issues have been of high concern to the scientific community, the public, 

and governments since the 1970s. In the mid-1980s, changes in hydrological cycling due 

to climate change became one of the hottest topics and issues of widest concerned by 

scholars and scientists (Milly, 2007; Vorosmarty et al., 2000).  

Water is a primary factor in atmospheric circulation, and the impact of climate change 

on hydrological processes is strong, including many aspects of precipitation, stream 

runoff, evapotranspiration, soil water contents and so on. These changes could result in 

temporal and spatial re-distribution of water resources and might drive a greater 

frequency and stronger intensity of extreme floods and droughts. All of these evidences 

pose serious challenges to water resources management and sustainable development of 

society and ecosystem in the future. In addition, agricultural water requirements have 

also increased with global warming (Roosmalen et al., 2016). In short, the impact of 

climate change on water resources is profound and has great significance.  

For inland river basins in arid region, snowpack and glacier melt water contribute a great 

proportion to their total stream runoff. Glaciers are also known as “solid reservoirs” and 

“water towers” in arid regions, and their melt water is highly sensitive to climate change. 

IPCC (2013) stated that global glaciers and spring snow coverage in the northern 

hemisphere have already decreased in area by 15-85% and 7-15%, respectively, because 

of global warming. Arid regions with fragile ecological systems and weak stability are 

highly sensitive to climate change. The availability of water resources are so important 

that it literally means life for human, livelihood and ecosystem security. Climate change 

has strongly affected the hydrothermal conditions in mountain regions in terms of the 

runoff producing. In the background of global warming, the adjustment capacity of 
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glaciers to water resources is decreasing that reduction corresponds to shrinking of these 

“solid reservoirs”. In this manner, the uncertainties in the water cycle have increased in 

mountain regions. The stability of ecological systems in downstream oases has been 

threatened under the current climate change situation due to the uncertainty of water 

resources. 

 

1.2 Study area 

1.2.1 Geographic features 

The Yarkant River (Figure 1.2) located in the southwestern margin of Xinjiang province 

is the longest headstream of the Tarim River, which is the largest inland river in the 

world. The Tarim River basin is one of the largest closed hydrological drainage systems 

and is ideal land for agriculture. No runoff contributes to the main channel of the Tarim 

River, and all of the water consumption comes from the headstreams. The Yarkant River 

is located between 74°28′-80°54′ E and 34°50′-40°31′ N, the length of main channel is 

near 1097 km, and the total area is approximately 9.89×104 km2. The mountainous area 

is approximately 6.08×104 km2 and accounts for 61.5% of the region. The Yarkant River 

originates from the north slope of Karakoram, which contains an irrigated district, the 

Yarkant River oasis, with an area of 2.5×104 km2 in the downstream of outlet 

hydrological station Kaqun. After outflow from this oasis, the Yarkant River passes by 

the Taklimakan desert and turns to the northeast. Finally, the Yarkant River converges 

with the Kashgar River, Aksu River and Hetian River to the south of Aksu oasis, and 

these streams flow into the Tarim River together. 

In this paper, the mountain area upstream of Kaqun station is chosen as the study area 

(Figure 1.2). This region is located in the southern portion of Central Asia and the 

northwest Tibetan Plateau, far away from the ocean and the typical arid regions of the 

world. The area of this study region covers approximately 50,248 km2. The study 

catchment has highly complex terrain, and generally, the southern portion is much 

higher in elevation than the northern portion. The topography varies from 8611 m 

(Chogori peak, the second highest peak in the world) to 1450 m with an average 

elevation of 4450 m. Mountains, gorges and basins are staggered in this region. The land 

cover types in this study area maintain a close relationship with the altitude distribution 

and present a strong spatial heterogeneity (Figure 1.3). Snowpack and glaciers are the 

uppermost land use type, contributing 26.14% and mainly situated in the region above 

5000 m. The other major land cover types are closed-open herbaceous, bare land and 



Chapter 1 

11 
 

sparse herbaceous areas normally located at less than 5000 m, with contributions of 29%, 

20% and 19.1%, respectively. Small closed open shrubs and evergreen needle-leaved 

trees are distributed around the outlet district.  

 

Figure 1.2. Locations of the Yarkant River basin and meteorological and hydrological stations 

 

 

Figure 1.3 Land use types (a) in 2010 and elevation bands (b) in the Yarkant River basin 

 

1..2.2 Meteorological features 

The Yarkant River basin is primarily controlled by the westerly airflow, and a small 
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proportion area is affected by the Indian Ocean southwest monsoon. According to the 

geographic location and terrain, the Yarkant River basin can be divided into five 

climatic regions: Kunlun Mountain region, Pamirs region, low mountain and hill region, 

plain region and desert region (Sun et al. 2006). In the mountain region, the winter is 

lengthy and cold, spring and autumn are short and windy, and summer is not evident. 

Because of the great entrapment capacity of the high mountains for water vapor at high 

altitude, the precipitation increases and the temperature decreases significantly with 

increasing elevation. The heterogeneity of precipitation and temperature is quite large in 

spatial distribution. The annual precipitation is approximately 450 mm in the high 

altitude areas (higher than 5000 m) and only 100 mm in the lower region (approximately 

3000 m). The mean temperature near the snowline (approximately 5500 m) is 

approximately -10.5 °C, and this value is near 11.8 °C in the plains region (Kang, 2009; 

Wang et al, 2009; Gao et al., 2010). 

The study area is a rarely observable catchment with only one internal meteorological 

station (Tashkurgan) and two adjacent stations (Shache and Pishan). Based on the 

records of the Tashkurgan station in 2000-2009, with an annual mean value of 1516.2 

mm, the pan-evaporation is much higher than the precipitation, which has an annual 

mean value of only 93.4 mm. The average temperature is 3.84 °C. The monthly 

distributions of these characteristics are shown in Figure 1.4. 

 

 

Figure 1.4 Monthly precipitation, pan-evaporation and temperature values at Tashkurgan 

station in 2000-2009 and discharge at Kaqun station in 2003-2009 
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1.2.3 Hydrological features 

Due to storage of cold air in the mountainous region and the abundant precipitation, 

valley glaciers are highly developed in the Yarkant River basin. Based on the second 

Chinese glacier inventory (Feng et al. 2015), the total number of glaciers is 3247, and the 

estimated amount of ice storage is 642.1 km3. 10 glaciers with a length of more than 20 

km and a covered area larger than 70 km2, the largest glacier is found in the Insulati 

Valley with a length of 42 km and an area of 380 km2. Chogori (8611 m) and Muztaga 

(7546 m) mountain peaks, and dozens of snow-covered mountains at an altitude of more 

than 6000 m are also developing in this region. Because of the melt water in the 

mountain region, a rich volume of average annual stream runoff with a value of 

6.87×1010 m3 is observed at Kaqun Station. The temporal distribution of discharge is 

non-uniform during the year, and the proportion from June to September is nearly 80% 

of the total annual runoff (Figure 1.4).  

The water resources from the mountain area support the development of the Yarkant 

River oasis. In this oasis, the dominant economy is irrigated agriculture that is highly 

dependent on the available water derived from the mountain area. This irrigated district 

is a major grain- and cotton-producing region and the largest agricultural irrigation 

region in Xinjiang (Tang et al., 2013). A population of 2 million lives in the Yarkant 

River oasis. However, this oasis is situated at the eastern edge of the Tahlimakan Desert. 

Because of the harsh climate conditions, the ecological system of this oasis is highly 

vulnerable and strongly restricted by the water resources from the study area. 

 

1.3 Data sets 

The two most popular spatially distributed hydrological models, SWAT and MIKE SHE, 

were implemented in this research. Due to the problem of low density of gauging 

stations, traditional station-based data (SBD) and remote sensing data (RSD) were used 

to drive and verify the models. Furthermore, 21 GCMs productions in CMIP5 were 

chosen as the data resources in the climate change study. 

 

1.3.1 Station-based data 

The gauged meteorological data were obtained from the China Meteorological Data 

Sharing Service System (http://cdc.cma.gov.cn/home.do), and the necessary 

meteorological factors were collected from the three stations with available long-term 

http://cdc.cma.gov.cn/home.do
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records. The records from internal station Tashkurgan were used to drive the model. 

Alternatively, two other adjacent station records from Shache and Pishan were mainly 

used to calculate the lapse rate of precipitation and temperature and to verify bias 

corrections of remote sensing data. The data for 1986-2005 were used in the climate 

change study, and data from 2003-2009 were used to set up the hydrological models. 

The Tarim Water Resources Management Bureau supported the discharges records at 

the Kaqun hydrological station. This bureau is a local governmental agency that 

oversees all affairs related to water resources in the Tarim River basin. The achieved 

discharge data were the only observations that can be used to calibrate the model outputs. 

The detailed information on the stations and collected data is listed in Table 1-2. 

Table 1-2 Collected meteorological and hydrological data 

Station Location Elevation Data Period 

Tashkurgan 75.14E, 37.46N 3090.1 m Daily precipitation, 

maximum/minimum/ 

average temperature, wind 

speed, relative humidity, 

solar radiation 

1986-2009 Pishan 78.17E, 37.37N 1375.4 m 

Shache 77.16E, 38.26N 1231.2 m 

Kaqun 76.90E, 37.98N 1450.0 m Daily discharge 2003-2009 

 

1.3.2 Remote sensing data 

Except for the necessary geodata, to overcome the problem of the weak SBD 

representativeness, spatially distributed RSD including precipitation, temperature, and 

potential evapotranspiration (PET) were obtained to replace the corresponding SBD and 

analyze the effects of different input data sources on the hydrological processes. 

Considering the importance of snow in the study area, remotely sensed snow cover area 

data were applied to verify the model outputs. The spatially distributed RSDs and their 

included properties are given in Table 1-3.  

DEM 

The Digital Elevation Model (DEM) is sourced from the Shuttle Radar Topography 

Mission (STRM) (http://srtm.csi.cgiar.org/), originally produced by the National 

Aeronautics and Space Administration (NASA). The DEM acts as the primary geodata 

for the hydrological model, and both the basic geomorphologic factors including 

elevation, slope gradient and direction et al. were given in the DEM as well as the 

catchment boundary, river network and depression information.  

http://srtm.csi.cgiar.org/
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Land use 

Based on the Landsat Thematic Mapper (TM) data, the land use is supported by the 

Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences. According 

to the plant cover types, parameters such as leaf area index (LAI), root depth (RD), crop 

coefficient (Kc) and growth cycle were obtained.  

Table 1-3 Detailed information on remote sensing data 

Data Resource Resolution Property 

DEM SRTM 90 m × 90 m Elevation 

Land use Based on the Landsat TM .shp file Ground surface covering types 

Soil types HWSD 500 m × 500 m 
Soil types and physical 

characters 

Precipitation TRMM  0.25°× 0.25° Daily precipitation 

Temperature MODIS 11C1 0.05°× 0.05° 
Daily average land surface 

temperature 

PET FEWS NET Data Portal 1°× 1° Daily PET 

Snow coverage MODIS 10A2 500 m × 500 m 
Largest snow covered area in 

8 days 

Soil 

Using the data from the Harmonized World Soil Database (HWSD) archived by the 

Flood and Agriculture Organization (FAO) and the International Institute for Applied 

Systems Analysis (IIASA), the different soil types were obtained, and the corresponding 

physical characteristics were calculated.  

Precipitation 

The remotely sensed precipitation data were sourced from the Tropical Rainfall 

Measuring Mission (TRMM), a joint mission between NASA and the Japan Aerospace 

Exploration (JAXA) Agency intended to study rainfall for weather and climate research. 

Although the TRMM satellites stopped collecting data on April 15, 2015, the 17-year 

TRMM dataset is still an important space standard for measuring precipitation. The 

initial purpose of the TRMM was to measure the rainfall throughout the tropics, where 

most of the world’s rain of the word, and the products covered from 35 degrees south to 

35 degrees north in latitude. After August 2001, the orbital altitude was shifted to 403 

km from 350 km, and larger ranges could be detected by the TRMM. Finally, the spatial 

coverage extended from 50 degrees south to 50 degrees north in latitude in the 

production of 3B42 and 3B43. Therefore, the TRMM products can be used in the study 

area. Important changes in 3B42 included the algorithm and verification, the algorithm 
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was improved by adjusting the merged-infrared precipitation rate and root-mean-square 

precipitation-error, and based on the 3B42 and gauged rainfall from the Global 

Precipitation Climatology Centre (GPCC), a monthly best-estimate precipitation rate 

was achieved using inverse-error-variance weighting (Huffman et al., 2001; 2007). 

Temperature 

The Moderate Resolution Imaging Spectroradiometer (MODIS) land surface 

temperature (LST) was chosen as the data source for the required temperature 

calculation. The MODIS LST products contain global attributes (metadata) and 

scientific data sets (SDSs) (arrays) with local attributes, and they were validated with in 

situ measurements in more than 50 clear-sky cases over a temperature range from -10 °C 

to 58 °C (Wan et al., 2002; 2004; Coll et al., 2005). MODIS 11C1 is the fifth product in 

level 3 and is a daily global LST product in a geographic projection. This product is 

created by assembling the MOD11B1 daily tiles and resampling the SDSs at 6 km grids 

to a 0.05-degree spatial resolution. 

Potential evapotranspiration  

The daily global PET derived from the United States Geological Survey (USGS) FEWS 

NET Data Portal (http://earlywarning.usgs.gov/fews/) was calculated from climate 

parameter data extracted from the Global Data Assimilation System (GDAS) analysis 

fields. The GDAS data were generated every 6 hours by the National Oceanic and 

Atmospheric Administration (NOAA). The GDAS fields used as input to the PET 

calculation include air temperature, atmospheric pressure, wind speed, relative humidity, 

and solar radiation (longwave, shortwave, outgoing and incoming). PET was computed 

for each 6-hour period and summed to obtain the daily totals.  

The daily PET was calculated on a spatial basis using the Penman-Monteith equation 

(the formulation of Shuttleworth (1992) for reference crop evaporation is used). These 

equations were standardized in accordance with FAO publication 56 for the 6-hour 

calculations (Allen et al, 1998). These PET data have a 1-degree ground resolution and 

are global in spatial extent (-180 to +180 longitude by -90 to +90 latitude). 

Snow coverage 

The snow coverage data were sourced from the MODIS product. Because snow-covered 

land typically has a notably high reflectance in the visible bands and rather low 

reflectance in the shortwave infrared band, the Normalized Difference Snow Index 

(NDSI) was used to detect the snow cover. If a cell’s NDSI was larger than 0.4 and the 

http://earlywarning.usgs.gov/fews/
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reflectivity in channel 2 was greater than 11%, this grid was identified as snow covered. 

If the snow and cloud could not be differentiated, the cloud mask was applied to correct 

the snow coverage data. 

The maximum snow cover extent was generated by readings over 8 days. If snow was 

observed in a cell on any day in the period, the cell was mapped as snow. If no snow 

was found, the cell was filled with the clear-view observation that occurred most often 

(e.g., snow-free land, lake, etc.). Cloud cover was only reported if the cell was obscured 

by clouds for all eight days in the period. Each cell's snow/no snow chronology was 

recorded using bit flags and delivered as a separate variable. 

 

1.3.3 Climate change data 

GCMs have been developed based on mathematical modeling of the general circulation 

of the planetary atmosphere, land, oceans and the Navier-Stokes equations on a rotating 

sphere with thermodynamic terms for various energy sources such as radiation and latent 

heat. The IPCC was cofounded by the World Meteorological Organization (WMO) and 

the United Nations Environment Programme (UNEP) in 1988 and is a scientific 

intergovernmental body tasked with evaluating the risk of climate change caused by 

human activity. To develop improved methods and tools for diagnosis and comparison 

of general circulation models that simulate the global climate, 20 climate modeling 

groups from around the world decided to promote a new set of coordinated climate 

model experiments what is known as CMIP5 in 2008. According to this work, a total of 

21 GCMs of CMIP5 were downloaded in this dissertation to study local climate change 

at an average ensemble level. Their information is listed in Table 1-4. 

Table 1-4 Detailed information on the 21 GCMs of CMIP5 

Order Name Institute Resolution 

1 BCC-CSM1.1-m 
Beijing Climate Center, China Meteorological 

Administration 
1.12°× 1.12° 

2 CanESM2 Canadian Centre for Climate Modeling and Analysis 2.79°× 2.82° 

3 CMCC-CM Centro Euro-Mediterraneo per I Cambiamenti Climatici 0.75°× 0.75° 

4 CNRM-CM5 

Centre National de Recherches Meteorologiques / 

Centre Europeen de Recherche et Formation Avancees 

en Calcul Scientifique 

1.4°× 1.4° 

5 ACCESS1.3 

CSIRO (Commonwealth Scientific and Industrial 

Research Organisation, Australia), and BOM (Bureau 

of Meteorology, Australia) 

1.25°× 1.87° 

6 CSIRO-Mk3.6.0 CSIRO (Commonwealth Scientific and Industrial 1.87°× 1.87° 
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Research Organisation) in collaboration with the 

Queensland Climate Change Centre of Excellence 

7 BNU-ESM 
College of Global Change and Earth System Science, 

Beijing Normal University 
2.77°× 2.81° 

8 INM-CM4 Institute for Numerical Mathematics 2.0°× 2.0° 

9 IPSL-CM5B-LR Institute Pierre-Simon Laplace 1.9°× 3.75° 

10 FGOALS-g2 
LASG, Institute of Atmospheric Physics, Chinese 

Academy of Sciences; and CESS, Tsinghua University 
2.79°× 2.81° 

11 MIROC5 

Atmosphere and Ocean Research Institute (The 

University of Tokyo), National Institute for 

Environmental Studies, and Japan Agency for 

Marine-Earth Science and Technology 

1.4°× 1.4° 

12 MIROC-ESM 

Atmosphere and Ocean Research Institute (The 

University of Tokyo), National Institute for 

Environmental Studies, and Japan Agency for 

Marine-Earth Science and Technology 

2.79°× 2.81° 

13 HadGEM2-ES Met Office Hadley Centre 1.875°× 2.5° 

14 MPI-ESM-LR Max Planck Institute for Meteorology (MPI-M) 1.87°× 1.87° 

15 MRI-ESM1 Meteorological Research Institute 1.125°× 1.125° 

16 GISS-E2-R NASA Goddard Institute for Space Studies 2°× 2.5° 

17 CCSM4 National Center for Atmospheric Research 1.25°× 1.87° 

18 NorESM1-M Norwegian Climate Centre 1.9°× 2.5° 

19 GFDL-CM3 Geophysical Fluid Dynamics Laboratory 2.0°× 2.5° 

20 GFDL-ESM2G Geophysical Fluid Dynamics Laboratory 2°× 2.5° 

21 CESM1(BGC) 
National Science Foundation, Department of Energy, 

National Center for Atmospheric Research 
0.94°× 1.25° 

 

Table 1-5 Characteristics of different RCP datasets (Riahi et al, 2007; Van et al, 2007; Hijioka et 

al, 2008; Wise et al,2009) 

RCP Emission pathway Radiative forcing Concentration of CO2 

RCP2.6 
Low emission 

Reduce after peaking 
2.6 W/m2 in 2100 490 ppm in 2100 

RCP4.5 
Sustainable emission 

Steady under critical level 

Less than 4.5 W/m2 in 

2100 
650 ppm in 2100 

RCP6.0 
Sustainable emission 

Steady under critical level 

Less than 6 W/m2 in 

2100 
860 ppm in 2100 

RCP8.5 
High emission 

Continuous increase 
8.5 W/m2 in 2100 1370 ppm in 2100 

 

Based on CMIP5, the AR5 of IPCC was issued in 2013. The Four Representative 

Concentration Pathways (RCP2.6, RCP4.5, RCP6, RCP8.5) database aimed to document 
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the emissions, concentrations, and land-cover change projections were provided to 

public. The RCPs dataset contained individual scenarios with common themes according 

to their 2100 radiative forcing level. The radiative forcing estimates were based on the 

forcing of greenhouse gases and other forcing agents but did not include direct impacts 

of land use (albedo) or forcing of mineral dust. The characteristics of different RCP 

datasets are listed in the following table. The RCP4.5 and RCP8.5 dataset were used in 

this study. In this dissertation, the RCP4.5 (an average emission level) and RCP8.5 (an 

extremely high emission level) were investigated to “average” and “extreme high” influence of 

climate change, and help us to know the “average” and “extreme” situations of hydrological 

processes in the future.  

 

1.4 Rationale and synopsis 

1.4.1 Research objectives and questions 

Shortage of water resources is a prime restriction factor for the sustainable development 

of an arid region, and the stream runoff generated in the mountains and transferred to the 

piedmont supports the water resources demands of oasis in downstream. This 

dissertation is based on the perspective of the water cycle system and aims to offer an 

accurate understanding of the hydrological processes in the mountain catchment of an 

arid region, and provide the scientific supporting to water resources management in the 

downstream region. As the basic and important tool, hydrological models’ performances 

in mountainous hydrological processes must be clarified. Firistly, the uncertainties 

derived from structure, algorithm input data and their effects on hydrological processes 

must be understood. This understanding is applicable not only for the current situation 

but also for variations under different climate change scenarios to predict future 

variances. In order to achieve this goal, the following questions must be answered. 

Question 1: How is the hydrological processes described in different hydrological 

models? 

Prompt development of the physically distributed hydrological models has made the 

hydrological model to be the most convenience tool for the studies of hydrological 

processes. While, the performances differ from region to region since the catchment 

conditions, and differ from model to model since the model structure and algorithm. For 

the particular catchment such as the Yarkant River basin in Karakoram, the extreme 

topographical and meteorological changes had made it difficult to correctly understand 

water cycle processes. The multiple calibrations of hydrological models in this 
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catchment should be basic efforts for simulated performances in hydrological processes 

(Refsgaard, 1997; Madsen, 2003), whereas insufficiently gauged observations in 

mountain catchment cannot support the multiple calibrations and a single-calibrated 

objective might negatively impact the other outputs of water components. Therefore, 

how is the performance of the hydrological models in such particular catchment? The 

model’s performances decide the understanding of hydrological processes, accurate 

evaluation of model’s simulation is a fatal problem for understanding of the hydrological 

processes. In this study, the joint application of multiple models based on the same input 

data set is used to address this challenge. The hydrological components are compared 

based on the multiple models’ output, on the one hand, the effects of the model structure 

and algorithm on hydrological processes can be quantitatively analyzed; on the other 

hand, the simulated performances can be cross-validated based on the multiple outputs 

to improve understanding the hydrological processes in the mountain catchment.  

Question 2: How do remote sensing data perform in hydrological modeling? 

The distributed hydrological model has higher requirement for input data rather than 

lumped conceptual model. As results, the scatted climate stations in the piedmont 

alluvial plain are not capable of representing the climate environment for entire 

watershed. Before the issues of low density of gauging stations can be solved, the 

accuracy and reliability of hydrological modelling in the alpine catchment have always 

been strongly restricted by this kind of problem. The spatial RSD are easy to couple with 

the distributed hydrological model and can enrich the data sources of the hydrological 

process study. The problems of scale matching and bias correction are new challenges in 

RSD application. Therefore, accuracy test and appropriate bias corrections are 

preconditions for modeling applications. Or else, the performance of the model 

simulation forced by RSD is still confusing. In this study, the remotely sensed 

precipitation, temperature and PET are processed, and their performances are studies by 

comparison with observations and benchmark modeling. 

Question 3: What are the responses of hydrologic components to different forcing 

data? 

Besides the effect of model structures and algorithms, the responses of the hydrological 

processes to the different input data sources based on the hydrological model driven by 

SBD and RSD has drawn people’s attention. Because of the complex relationships 

between the causal and resulting factors in hydrological processes, the uncertainty of 

input data take the different levels of influences on each output components. one 
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question must be answered firstly before study on the effect of input data: Which output 

of hydrological components should be used in analyzing the effect of input data? In this 

dissertation, the SDB of precipitation, temperature and PET is replaced by the corrected 

RSD in the fully distributed MIKE SHE model, and the analysis of variation (ANOVA) 

model is designed to test the significant effect of input data on different water 

components. Based on the significant relationship between input and output, the effect 

of input data’s uncertainties on the hydrological processes can be investigated. 

Question 4: What are the effects of climate change on the hydrological processes? 

Little doubt remains related to the strong effects of climate change on water resources, 

but how are these effects progressing? What are the changes in the different forms of 

water resources and redistribution? From the method of extracting the change signals of 

meteorological variables, how to obtain the all-sided and accurate signals is the first 

challenge. Based on the GCMs, in order to reduce the uncertainty of future 

meteorological data, the modified method of signal extraction was applied to understand 

the climate change trends. Combined with the well-calibrated hydrological model and 

the full understanding of uncertainties, the effects of climate change on the hydrological 

processes were obtained from a water balance perspective at the catchment scale.  

Question 1 is aimed at the model performance in hydrological processes, including the 

effects of model structure and module algorithm. Question 2 focuses on the performance 

of RSD applications in modeling. Question 3 analyzes the responses of the hydrological 

components to input data and determines how to define the significant relationships. 

According to the first three questions, the correct hydrological processes in the study 

area can be well understood. And based on this understanding, the variations in the 

climate change are addressed in Question 4. Consequently, a scientific assessment for 

hydrological processes in alpine catchment is created to support decision makers and 

relevant studies.  

 

1.4.2 Dissertation outline 

The research questions stated above are addressed in the following chapters of this 

dissertation. All the chapter are not independent, but are connected by the logical 

relationship diagrammed in a framework (Figure 1.5). The chapter design corresponds to 

the research questions, and several chapters contribute together to clarify the primary 

objective. The hydrological models set up in Chapter 2 (driven by SBD) and Chapter 3 

(driven by RSD) are the foundations for the following questions addressed in Chapter 4. 
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Chapters 2 through 4 correspond to papers published or prepared for publication in 

international peer-reviewed journals. 

 

Figure 1.5 Outline of the dissertation 

Chapter 2. Joint application of multiple models in the hydrological process study 

This chapter, which work was published in Water Resources Management (Liu et al, 

2016), describes the joint application of the SWAT and MIKE SHE models in 

hydrological processes simulation. Because of the uncertainties from their model 

structure and algorithm, a single model is not capable of accurately presenting the entire 

hydrological process, and if additional observations cannot be used in multiple 

objectives calibrations, this program’s performance could worsen. Two physically based 

and distributed hydrological models are chosen for hydrological modelling. 

Subsequently, the differences in the same water component outputs are analyzed basing 

on their model structures and algorithms. Due to the importance of snow in the alpine 

catchment, the remotely sensed snow coverage data were chosen as the validation data 

to test the output of snow storage. Additionally, one integrated description of 

hydrological processes is stated based on the model output of two representative models. 

Chapter 3. Responses of hydrological processes to the different input data 

Chapter 3, which was published in Water (Liu et al, 2016), reveals the effects of 

different input data on the hydrological processes. Due to the limitations of the satellite 
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data in terms of physical sensors, space-time coverage and spatial resolution (Prigent, 

2010), the results of raw RSD application has showed certain controversial results and 

been criticized. The appropriate bias correction methods have been used in this study to 

improve the precision of remotely sensed precipitation and temperature data. Based on 

the MIKE SHE model set up in Chapter 2, the corrected RSDs of precipitation, 

temperature and PET were applied to replace the corresponding SBD, and eight MIKE 

SHE models were established. Based on these model outputs, an innovative ANOVA 

model was implemented to define the significant effect of input data on water 

components. Finally, the spatial and temporal distinctions of sensitive water components 

were used to analyze the response to the corresponding input data. 

Chapter 4. Effects of climate change on the hydrological processes 

This chapter (Liu et al, 2016, submitted) investigated the variations of hydrological 

processes under future climate change scenarios. According to the 21GCMs of CMIP5, a 

modified quantile perturbation method (QPM) and the delta method were used for 

precipitation and temperature to extract the variable signals, respectively. These change 

signals were added to the historical observations to obtain future climate factors. After 

coupling the models, which were well calibrated in Chapters 2 and 3, the readjustment 

of future hydrological processes can be quantitatively known. 

Chapter 5 and Chapter 6 summarize and discuss the results of the previous chapters and 

also present important points for future research. A general discussion on the initial 

research questions and their results is given in Chapter 5. Chapter 6 summarizes the 

main conclusions of this dissertation and offers selected prospects for evaluation of 

hydrological processes in the alpine catchment of arid regions. 

 

1.4.3 Out of scope 

Not all aspects of this topic can be included in a given research study, and this gap 

always drives future investigations. Hydrological processes are complex natural 

phenomena, and in most catchment hydrological models, many natural processes are 

still not included in hydrological modeling or they are simplified due to difficulties of 

quantification or validation. It is a pity that snow and ice are not distinguishable in the 

SWAT and MIKE SHE model, and thus, the glacier simulation uses the same principle 

as a snow process in the two models, which is not an ideal approach. Moreover, in 

certain peak regions, snowdrifts and snow slides would be the dominant movement. 
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Unfortunately, these movements have not been included in the hydrological model, and 

thus, an aberrant phenomenon of ever-increasing snow storage was found in the 

simulation. 

In addition, more numerous gauged observations would be definitely better to carry out 

the simulation work of natural processes. The Yarkant River Basin is a catchment that is 

difficult to physically reach due to the precipitous topography conditions. Limited 

observations reduce our grasp of the physical realities, which potentially adds 

uncertainty to the hydrological modeling. 
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ABSTRACT 

To assess the accuracy of the modeling description of the spatial hydrology process in a 

high-altitude and arid mountainous catchment, and then support the scientific basis for 

the regional water resources management, a typical catchment Yarkant River basin 

located in northwest China have been chosen, and the constitution and spatial-temporal 

distribution of the multiple hydrology elements from the outputs of SWAT and MIKE 

SHE are analysed based on the modules’ structure and algorithm. In generally, the 

simulated daily discharges both from two models matched the observation well at the 

outlet, but didn’t reflect the different characteristics of SWAT and MIKE SHE, 

furthermore, the otherness of modules’ structure and algorithm have presented on the 

sub-processes including snow melt, runoff and evapotranspiration are disparate. The 

consideration of the accumulation temperature, the changing snowmelt factor and the 

snowmelt feature of the temporal distribution in SWAT is related to the generation of 

flow discharges; the spatial distribution of the snow storage is much clearer in MIKE 

SHE due to its fully distributed structure based on grids. The subsurface lateral flow has 

a significant contribution to the stream in SWAT, while the base flow to the stream in 

MIKE SHE is more closed to actuality. The MIKE SHE model leads to more soil and 

open water evaporation due to the Kristensen-Jense approach and overland water storage, 

while SWAT has three options to calculate the evapotranspiration in different ranges to 

meet the local water balance in a less spatially distributed approach.  

Key words: spatial process; hydrology elements distribution; model structure; modules’ 

algorithm; Yarkant River basin 

2.1 Introduction 

Hydrological models are essential to understand hydrological processes, for quantifying 

interactions among natural physical factors (Boorman, 1997) and assessing management 

strategies (Loukas, 2007). However, with the same input data, different hydrological 

models that are applied in same study basin might generate dissimilar simulation results. 

Even the correct global trend can be attained together, but otherness was still existed in 

the processes and spatial interactions (Ferrant et al., 2011). So the model selection 

becomes a priority for a successful hydrology studies in special region (Maurer et al., 

2010; Vansteenkiste et al., 2013).   

In practice, the selection of a model for a study area relies on many factors (Gan, 1997; 

Xu, 1999), including the catchment characteristics and the data availability. It is rare that 
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an objective model selection approach is authentic, but mostly depend on the common 

practice of modellers (Najafi et al., 2011; Nasr et al., 2007), which causes trouble for 

water resources decision makers in continuing water resource management (Wood, 

2004). Therefore, it is important to understand and quantify the impacts due to various 

conceptualizations and parameterizations in hydrological models and their simulation 

outputs in order to offer suggestions for water resource planners and managers. 

In the phase 2 of the Distributed Model Intercomparison Project (DMIP2) (Smith et al., 

2012; 2013), several distributed models was mixed compared to lumped benchmark, 

results indicated there was none single model can perform best in all cases. DANUBIA 

component (Barthel et al., 2012) comprised of 17 model components and discussed the 

integrated simulation of global change influence on agriculture and groundwater. Najafi 

et al. (2011) farther suggested that joint application of different models would be 

significant for water resource management after using four hydrological models in 

Tualatin River basin. Maurer et al. (2010) also demonstrated that the model structure is 

the essential factor for extreme flow by applying the Sacramento Soil Moisture 

Accounting (SacSMA) and Variable Infiltration Capacity (VIC) models for climate 

change investigation in the Sierra River basin. Similar phenomena were observed by Shi 

et al. (2011) in the Huaihe River from the modelled results of the SWAT and 

Xin’Anjiang models. These previous studies emphasized the importance of model 

selection and combined application of multiple models, however, there is little focus on 

the model performance of spatial hydrological processes, but only the discharges, and 

did not give detail interpretations of output deviations among different models.  

Since SWAT and MIKE SHE can fulfil their modelling tasks independently, there are 

only small numbers of studies intended to quantify the differences between two of them. 

Furthermore, most attentions focused on the goodness of fit indices for the modelled 

discharges at outlet (El-Nasr et al., 2005; Golmohammadi et al., 2014). While, the 

calibration solely at basin outlets alone and ignoring other hydrologic components was 

not able to greatly improve model’s reliability and accuracy (Smith et al., 2013). 

Mountainous watersheds, headstream of most river basins in arid region, play an 

important role in water resource management for the downstream region (Rahman et al., 

2012). Tarim River basin, which is the longest inland river in world, is located in 

Xinjiang Province in northwest China. The limited water resources have severely 

affected sustainable development of this region and caused a vulnerable ecological 

environment (Chen et al., 2006; Liu et al., 2011). Yarkant River is the largest tributaries 
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and primary water sources of Tarim River. Since most studies of Yarkant River basin 

have focused on the single effect of snow and glacier melt variation (Chen et al., 2006; 

2010; Gao et al., 2010; Zhang et al., 2012), it would be meaningful to perform an 

integrated modelling study and understand the simulation effect in such region. 

The study on hydrologic cycle process is the important foundation of the water resources 

utilization and management, especially in the arid region. In this paper, because of the 

extreme topographical condition, there is a strong spatial heterogeneity in Yarkant River 

basin, so two classical distributed models SWAT and MIKE SHE are chosen to apply 

jointly to assess the accuracy of modelling on the spatial hydrology process, additionally, 

the remotely sensed snow coverages are used for crossing-verifying. Excepting the 

analysis of simulated discharges at the outlet station, the spatial and temporal 

distribution of dominative sub-processes, including snowmelt, runoff and 

evapotranspiration, in the two models are compared and analysed regarding their 

arithmetic and structures to understand the model’s response in the mountainous region.  

 

2.2 Study area 

The Yarkant River basin (shown as Figure 1.2) was chosen in this study. More detailed 

information can be seen in Section 1.2. 

 

2.3 Hydrological model 

2.3.1 SWAT 

SWAT is a continuous-time, semi-distributed, and physically based model. The 

catchment is subdivided into sub-basins that are connected with the river network; the 

non-homogeneity of every sub-basin is taken into account, and the sub-basin is further 

subdivided into specific soil/land use/slope characteristic units that are called hydrologic 

response units (HRUs). There is no spatial relationship or interaction among HRUs 

(Neitsch, 2011), and HRUs are the smallest computed unit in the SWAT model. The 

meteorological data, including rainfall, highest/lowest temperature, wind speed, solar 

radiation and relative humidity, are used as driving factors and to compute the variation 

in the water yield, including snow storage, evapotranspiration, water content in the soil, 

etc. Then, the runoff contribution to the channel is achieved through water balance 

control. In the channel, the variable storage approach or Muskingum methods can be 

used to compute the channel flow. Finally, the evaporation, transmission loss and water 
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leakage from the river are subtracted to obtain the discharges in the outlet profile. 

Runoff 

In the SWAT model, the Soil Conservation Service (SCS) approach is used to calculate 

the surface flow. When the infiltration is calculated, the dynamic change process of the 

soil storage follows the change in the soil moisture content and transpiration and a 

comprehensive parameter Curve Number (CN) that represent the influence of the soil 

permeability, land use and field management on the infiltration. The CN is an 

experiential parameter, and the applicability of this value is different from HRU to 

HRU. 

The water that enters the soil may do so in three different ways in SWAT model. First, 

the water may be removed because of plant uptake or evaporation; furthermore, water 

may enter streams by moving laterally in the profile. The final option is that water 

percolates past the bottom of the soil profile and recharges the aquifer, which may also 

contribute to the stream flow. In fact, according the definition of SWAT model, the 

superimposed contribution water to streams from two last ways called base flow.  

Snowmelt 

In the SWAT model, the snowfall is stored as an accumulating snow pack, and the 

degree-day approach is used for snowmelt estimation. Because the density of the 

snowpack differs over time, when the snowpack is palled up with increasing snowfall or 

reduced by snow melt or sublimation, the amount of water is reported as the snow water 

equivalent. The mass balance of snow is expressed as 

𝑆𝑁𝑂𝑑𝑎𝑦 = 𝑆𝑁𝑂𝑑𝑎𝑦−1 + 𝑅𝑑𝑎𝑦 − 𝑆𝑁𝑂𝑠𝑢𝑏 − 𝑆𝑁𝑂𝑚𝑒𝑙                     (2 − 1) 

Where SNOday and SNOday-1 are the water content of pack on a given day and the before 

day (mm H2O), respectively; Rday is the amount of snowfall on a given day (mm H2O); 

SNOsub is the amount of sublimation on a given day (mm H2O); and SNOmel is the 

amount of snow melt on a given day (mm H2O).  

The influence of the accumulated temperature on snowmelt is considered, and the 

snowmelt temperature is determined by the snowpack temperature Tsnow and the highest 

air temperature Tmax on a given day. The snowpack temperature is determined by the 

mean daily air temperature on a given day T and the snowpack temperature on the 

previous day Tsnow-1; the influence of the two factors is adjusted by the lagging factor 

TIMP, and the snowpack temperature is calculated by  

𝑇𝑠𝑛𝑜𝑤 = 𝑇𝑠𝑛𝑜𝑤−1 ∗ (1 − 𝑇𝐼𝑀𝑃) + 𝑇 ∗ 𝑇𝐼𝑀𝑃                 (2 − 2) 
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In addition, the melt factor change follows the seasons, with the maximum and the 

minimum values occurring on the summer and winter solstices. The calculated equation 

is written below. 

𝑏𝑚𝑒𝑙 =
𝑆𝑀𝐹𝑀𝑋 + 𝑆𝑀𝐹𝑀𝑁

2
+

𝑆𝑀𝐹𝑀𝑋 − 𝑆𝑀𝐹𝑀𝑁

2
∗ sin [

2𝜋

365
∗ (𝑑𝑎𝑦 − 81)] (2 − 3） 

Where bmel is the melt factor; SMFMX is the maximum value for June 21 (mm  

H2O/day-℃); SMFMN is the minimum value for December 21 (mm H2O/day-℃); and 

day is the day number of the year. 

Finally, the snowpack and maximum air temperature are considered in the snowmelt 

calculation as follows 

𝑆𝑁𝑂𝑚𝑒𝑙 = 𝑏𝑚𝑒𝑙 ∗ 𝑆𝑁𝑂𝑐𝑜𝑣 ∗ (
𝑇𝑠𝑛𝑜𝑤 + 𝑇𝑚𝑎𝑥

2
− 𝑇𝑚𝑒𝑙)              （2 − 4） 

Where SNOmel is the amount of snowmelt on a given day (mm H2O), SNOcov is the 

fraction of the HRU area that is covered by snow, Tmax is the maximum air temperature 

on a given day (℃), and Tmel is the basic snowmelt temperature (℃). 

After obtained the snow remaining snow storage in the HRU, SWAT takes an areal 

depletion curve to considerate the unequable distribution in the subbasin. It is expressed as 

follows 

SNOcov =
SNOday

SNO100
∗ [

SNOday

SNO100
+ exp (cov1 − cov2 ∗

SNOday

SNO100
)]

−1

           (2 − 5) 

where SNOcov is the fraction of HRU area covered by snow, SNOday is the water content 

of snow pack on a given day (mm H2O), SNO100 is the threshold depth of snow at 100% 

coverage (mm H2O), cov1 and cov2 are coefficients that define the shape of the curve, 

that determined by using to known point: 95% coverage at 95% SNO100 and 50% 

coverage at a user specified fraction of SNO100.  

Evapotranspiration 

There are three methods incorporated into SWAT to estimate the PET: the 

Penman-Monteith method (Allen, 1986; Allen et al., 1989), the Priestley-Taylor method 

(Priestley and Taylor, 1972) and Hargreaves mothed (Hargreaves et al., 1985). After the 

PET has been calculated, the water intercepted by the plant canopy will evaporate at first, 

if this kind of evaporation cannot satisfy the requirement of maximum amount of the 

evapotranspiration, then the sublimation and evaporation from the soil will be occurred, 

so the actual evapotranspiration include four sources in SWAT model: canopy 

interception evaporation, snow sublimation, water evaporation from river and ponding 
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and soil evaporation/transpiration. 

 

2.3.2 MIKE SHE 

MIKE SHE is a deterministic, dynamic, physically based and fully distributed 

hydrological model that describes hydrological processes through partial differential 

equations of mass, energy and momentum conversation. The hydrological process can 

be separated into five parts: interception/evapotranspiration, overland flow, channel flow, 

unsaturated zone and saturated zone (DHI, 2007). In the horizontal direction, the 

catchment terrain is described by the number of square grids with the elevation and 

geo-information to clearly present the spatial distributed relationship. In the vertical 

direction within each grid square, the vertical variations in the soil columns, aquifer 

structure and hydrogeological characteristics are described in a number of horizontal 

layers with variable depths at each grid square. 

Runoff 

After the water falls on the ground surface, the infiltration will be calculated depends on 

the soil physical attributes and the groundwater conditions in that all of the parameters 

have a clear physical meaning. When water enters the soil of the unsaturated zone, The 

One-dimensional Richards equation and Gravity flow equation can be used to solve the 

pressure head in the unsaturated zone (Hughes and Liu, 2008), which is converted to the 

soil moisture content according to the soil moisture retention curve. Some portion of the 

soil water in the unsaturated zone is removed by plant uptake or evaporation, and the 

rest will percolate to the saturation zone, the lateral flow in the soil is ignored in MIKE 

SHE model.   

For the water infiltrated into the saturated zone, the spatial and temporal variations of 

the dependent variables are described by the three-dimensional Darcy equation that is 

solved by an iterative implicit finite difference technique. In addition, a dynamic 

coupling is set between MIKE SHE and MIKE 11 (Thompson et al., 2004) in which data 

are exchanged between the two modules after each computational time step and node to 

represent the dynamic interaction between the aquifers and stream channels. The 

channels are considered as lines running between model grid squares, and the 

river-aquifer exchange is calculated from both sides of the river based on vertical head 

gradients. When the soil moisture is saturated, and the head pressure of the aquifer water 

is higher than the surface, the aquifer water also will flow to surface and exchange with 
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the overland flow. Hence, the base flow of river only contains the contribution water 

from the saturated zone.  

Snowmelt 

The snow-melting process within the watershed was simulated with the snowmelt 

module of MIKE SHE, which uses the simple degree-day method: 

𝑆𝑁𝑂𝑚𝑒𝑙 = 𝑏𝑚𝑒𝑙 ∗ (𝑇 − 𝑇𝑚𝑒𝑙)                                        （2 − 6） 

In this module, only the average air temperature was taken into account, moreover, the 

values of the degree-day melt bmel factor and threshold melting temperature Tmel do not 

change in the temporal scale.   

Evapotranspiration 

In MIKE SHE model, the input data Reference Evapotranspiration control the maximum 

amount of the actual evapotranspiration, the calculation of the actual evapotranspiration 

is based on empirically derived equations that follow the work of Kristensen and Jensen 

(1975). In this model, the actual evapotranspiration and the actual soil moisture status in 

the root zone is calculated from the potential evaporation rate, along with maximum root 

depth and leaf area index for the plants. In addition, a Two-Layer UZ/ET (DHI, 2007) 

model has been integrated into MIKE SHE, The Two-Layer UZ/ET model divides the 

unsaturated zone into a root zone, from which ET can occur and a zone below the root 

zone, where ET does not occur. The Two-Layer Water Balance Method is an alternative 

to the more complex unsaturated flow process coupled to the Kristensen and Jensen 

module for describing actual evapotranspiration and the amount of water that recharges 

the saturated zone. In MIKE SHE model, the actual evapotranspiration can be divided 

five classes: canopy interception evaporation, snow sublimation, water evaporation from 

river and ponding, soil evaporation, and transpiration. 

 

2.4 Methodology 

2.4.1 Modeling 

The catchment boundary and river network were obtained based on the DEM in SWAT 

model, and then employed in MIKE SHE model. The catchment was divided into 25 

sub-basins and 98 HRUs in the SWAT model and grids with the resolution of 2 km × 2 

km in MIKE SHE model. The dataset recorded by Tashkurgan station were used to drive 
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SWAT and MIKE SHE, additionally, the output PET calculated based on the 

Penman-Monteith method in SWAT were taken as the input reference 

evapotranspiration of MIKE SHE.  

On a catchment scale, topography is the main influence on the meteorology. Generally, 

according to the topography factors such as elevation, gradient, slope aspect and location 

(longitude and latitude), most spatial variances of precipitation can be understood 

(Basist et al., 1994). Among thesectors, elevation is the most primary one (Daly et al., 

1994; Konrad et al., 1996; Goovaerts, 1999; 2000). In the Yarkant River basin, the 

elevation extremely changes, and the precipitation and temperature observed at 

Tashkurgan station were interpolated based on their lapse rates.  

In the SWAT model, the catchment was divided into ten elevation bands, and the 

average elevation and area proportion of all the sub-basins in each elevation band were 

calculated through ArcGIS, after which the daily precipitation and maximum and 

minimum temperatures in each elevation band were interpolated on the basis of the 

precipitation lapse rate (PLAPS) and temperature lapse rate (TLAPS). In the MIKE SHE 

model, the catchment was divided into ten regions according the elevation of each grid 

at 700-meter intervals, all the grids in a region share the same precipitation and 

temperature time series, which uses the same PLAPS and TLAPS values as those in 

SWAT. The intercepted equations are formulized as: 

𝑅𝑏𝑎𝑛𝑑 = 𝑅𝑑𝑎𝑦 + (𝐸𝐿𝑏𝑎𝑛𝑑 − 𝐸𝐿𝑔𝑎𝑢𝑔𝑒) ∗
𝑝𝑙𝑎𝑝𝑠

𝑑𝑎𝑦𝑠 ∗ 100
         𝑅𝑑𝑎𝑦 > 0.01  （2 − 7） 

𝑇𝑚𝑎𝑥,𝑚𝑖𝑛,𝑎𝑣/ 𝑏𝑎𝑛𝑑 = 𝑇𝑚𝑎𝑥,𝑚𝑖𝑛,𝑎𝑣/ 𝑑𝑎𝑦 + (𝐸𝐿𝑏𝑎𝑛𝑑 − 𝐸𝐿𝑔𝑎𝑢𝑔𝑒) ∗
𝑡𝑙𝑎𝑝𝑠

1000
     （2 − 8） 

where Rband and Tmax,min,av/band are the precipitation (mm H2O) and maximum, minimum, 

and average daily temperatures (℃) in the elevation band, respectively; Rday and 

Tmax,min,av/day are the precipitation (mm H2O) and maximum, minimum, and average daily 

temperatures (℃) at the gauged station; ELband is the mean elevation in the elevation 

band (m); ELgauge is the elevation at the gauged station (m); plaps and tlaps are the 

precipitation (mm H2O/km) and temperature (℃/km) lapse rates, respectively; days is 

the average number of precipitation days in the sub-basin per year; and 1000 is a factor 

required to convert metres to kilometres. 

Because of scarce and insufficient meteorological station, plaps and tlaps cannot be 

directly decided based on the stationary records. More useful information from the 

previous meteorological studies in this region was concluded. Therefore, according to 

the meteorological factors’ change follow the elevation (given in Section 1.2.2) and the 
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records of the around meteorological stations (Shown in Table 1-2). The plaps and tlaps 

were calculated and listed the Table 2-1. 

Table 2-1 The PCG and TCG at different altitude groups of Yarkant River basin 

Altitude group (m) <3000 3000~5000 5000~7000 >7000 

PLAPS (mm/km/year) 0.0 70.0 100.0 70.0 

TLASP (℃/km) -6.5 -6.8 -7.0 -6.8 

 

2.4.2 Calibration 

The simulated period was parted warm-up period 2000-2002, calibration period 

2003-2007 and verification period 2008-2009. In physically based hydrological model, 

the parameters normally have their special physical meanings, they should, in principle, 

be assessable from catchment data. In practice, determination of model parameters in 

each calculated unit is not possible due to scaling problems as well as experimental 

constraints. Thus, the distributed, physically based models also need calibration.The 

manual calibration of complex models is difficult to be carried out in a credible and 

consistent manner due to a number of parameters as well as parameter sensitivity and 

uncertainty (Gupta et al., 2003). The auto-calibration modules, SWAT-CUP of SWAT 

and Auto Calibration Tool (ACT) in MIKE SHE package, have been used to calibrate 

parameters to improve the calibration efficiency. Sequential Uncertainty Fitting (SUFI-2) 

(Abbaspour et al., 2004) and Shuffled Complex Evolution approach (SCE) (Vrugt et al., 

2003) were used in SWAT-CUP and ACT. The simulated daily discharge was calibrated 

by the objective function according the observation record at Kaqun station. Four 

statistical coefficients were used to determine the model performances: Nash-Sutcliffe 

efficiency coefficient (Nash et al., 1970) NSE, Pearson correlation coefficient R and 

root-mean-square error RMSE. Their formulations are written as:  

𝑁𝑆𝐸 = 1 −
∑ (𝑄𝑜𝑏𝑠,𝑖 − 𝑄𝑠𝑖𝑚,𝑖)

2𝑛
𝑖=1

∑ (𝑄𝑜𝑏𝑠,𝑖 − �̅�𝑠𝑖𝑚,𝑖)
2𝑛

𝑖=1

                            （2 − 9）  

𝑅 =
∑ (𝑄𝑜𝑏𝑠,𝑖 − �̅�𝑜𝑏𝑠,𝑖)(𝑄𝑠𝑖𝑚,𝑖 − �̅�𝑠𝑖𝑚,𝑖)

𝑛
𝑖=1

√∑ (𝑄𝑜𝑏𝑠,𝑖 − �̅�𝑜𝑏𝑠,𝑖)
2𝑛

𝑖=1
√∑ (𝑄𝑠𝑖𝑚,𝑖 − �̅�𝑠𝑖𝑚,𝑖)

2𝑛
𝑖=1

                （2 − 10） 

𝑅𝑀𝑆𝐸 = √∑ (𝑄𝑠𝑖𝑚,𝑖 − 𝑄𝑜𝑏𝑠,𝑖)
2𝑛

𝑖=1

𝑛
                               （2 − 11） 

where Qobs,i and Qsim,i are the measured and simulated discharges at ith day (m3/s), 
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respectively; �̅�𝑜𝑏𝑠 and �̅�𝑠𝑖𝑚 are the average measured and simulated discharges in the 

simulation period (m3/s), respectively; and n is the value of the time steps. 

 

2.5 Result and discussion 

2.5.1 Simulation results  

Figure 2.1 present the fitted curve of the simulation and the observation discharges at the 

Kaqun Station during 2003~2009 on the daily scale and month scale, respectively. The 

discharge hydrography curves both from the SWAT and MIKE SHE well matched with 

the observations from the October to next March. However, some fictional fluctuations 

were found in the early period of flood peak from April to May in the MIKE SHE model. 

During the peak season June to September, two simulations caught the overall trend of 

rising and recession of flood. In general, at the Kaqun station, the simulated discharge 

hydrography reflected the temporal characters of stream flow, the relative errors of the 

average annual volume of water resources were 8.2% and 0.1% in SWAT and MIKE 

SHE, respectively. The relative errors in June to September presented as 9.6% and -7.2% 

in SWAT and MIKE SHE, but higher values were obtained in April and May with 10.6% 

and 70% in SWAT and MIKE SHE.  
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Figure 2.1 The observed and simulated discharges at Kaqun station during 2003~2009 in the 

daily scale (upper one) and monthly scale (under one) 

 

According to the evaluation criteria of calibration and verification (listed in Table 2-2), 

both the applications of two models in Yarkant River basin obtained acceptable 

performances, and the SWAT was a little better than the MIKE SHE. Obviously, the 

monthly simulation is better than the daily simulation. However, the criteria of 

evaluation coefficients are not the overall referential measurements to evaluate the 

accuracy of both the magnitude and timing of the simulation flows (Beven, 2001; 

Vázquez and Feyen, 2007), but the response of a hydrological model to the natural 

hydrological process should be analysed through the variation of different hydrologic 

elements.  

Table 2-3 provides the quantification results of the average annual values of the different 

hydrologic elements from the SWAT and MIKE SHE models. From Table 2-3, it seems 

that there are some notable differences regarding the runoff contributed to stream, snow 

storage and evapotranspiration between SWAT and MIKE SHE. Because of the 

different structures and arithmetic, different constitutions and distributions would occur, 

it would be worth to exam the differences in more detailed view regarding the different 

structures and arithmetic. 

Table 2-2 Statistical coefficients of the SWAT and MIKE SHE performances on daily and 

monthly scale 

  Daily Monthly 

  NSE R2 RMSE NSE R2 RMSE 

SWAT 
Calibration 0.76 0.77 151.61 0.91 0.92 82.94 

Verification 0.75 0.81 125.12 0.88 0.91 57.72 

MIKE SHE 
Calibration 0.71 0.80 159.91 0.90 0.91 107.12 

Verification 0.67 0.76 182.50 0.86 0.90 104.80 
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Table 2-3 The average annual values of the water components from SWAT and MIKE SHE 

inYarkant River basin in 2003-2009 

Element (mm) SWAT MIKE SHE 

Precipitation 304.3 309.6 

Snowfall 237.7 231.1 

Snowmelt 145.6 152.8 

Snow storage 60.6 46.6 

Surface runoff 77.9 115.6 

Lateral flow 66.5 - 

Base flow 16.3 31.1 

Snow sublimation 31.4 31.7 

Canopy interception 13.72 15.6 

River/pound water evaporation 27.38 37.1 

Soil evaporation /Transpiration 18.2 29.8 

 

2.5.2 Runoff 

As shown in Figure 1.1, both in the SWAT and MIKE SHE, channel flow was derived 

from surface runoff and ground runoff, but the constitutions of ground runoff are quite 

distinct in two models. In the SWAT, the average annual ground water contribution was 

82.6 mm which was the sum of the aquifer (base flow with value of 16.3 mm) and soil 

water (lateral flow with value of 66.5 mm). While, the ground water contribution in the 

MIKE SHE is only from the aquifer (base flow) with average annual volume of 31.1 mm. 

The constitution and distribution of stream runoff in daily scale is presented in Figure 

2.2 below.  

Previous studies reported that the rapid lateral flow in soil profile provides a dominant 

contribution to the storm flow in headwater catchments (Kienzler and Naef, 2008; 

Verseveld et al., 2009; Swarowsky et al., 2012). Additionally, Fan et al. (2014) used the 

isotope to study the constitution of the Tizinafu River, which is located in the same 

region as that of the Yarkant River. Their result demonstrate that the greatest portions of 

ice-snowmelt water will recharge the aquifer in the area located under 2500 m, but in the 

high mountain area, the greatest portions of ice-snowmelt water will infiltrate into the 

soil and contribute to the stream as lateral flow. This feature is described reasonably in 

SWAT model with subsurface runoff contribution rate of 41.4%, what is anymore, in 

SWAT, base flow present an obvious seasonality, and little contribution to stream from 

the November to the following March (Figure 2.2).  
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Figure 2.2 The daily constitution of the simulation runoff from SWAT and MIKE SHE in 

Yarkant River basin 

In MIKE SHE, Richards and Gravity flow equation only take vertical flow into account 

in unsaturated zone, but when soil moisture is saturated, and head pressure of aquifer 

water is higher than surface, the infiltrated soil water could flow back to surface, and 

this part accounted for 39.4% of total stream runoff in this simulation (close to the 

subsurface lateral flow of 41.4% in SWAT). As well as the appropriate soil water 

recharge to aquifer, MIKE SHE got a persistent and steady contribution to stream in the 

low water period as base flow (Figure 2.2). The proportion of 21.3% agreed very well 

with the result of 23% from Fan et al. (2013), which was obtained through a multiple 

base flow separate approach. 

 

2.5.3 Snow 

Temporal distribution of snowmelt 

The simulated daily snowmelt in Yarkant River basin from 2003 to 2009 is presented in 

Figure 2.3. The temporal distribution of the snowmelt is more concentrated in SWAT, 

and the amount of snowmelt from June to September constitutes 76.8% of the annual 

snowmelt. The period of snowmelt is longer and the temporal distribution is more 

dispersive in MIKE SHE, and the amount of snowmelt from June to September 
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constitutes 58.43%. Compared with the SWAT model, more snowmelt were taken place 

in the early period of flood reason, this finding can explain why more discharges were 

given during April to May in MIKE SHE model. What's more, the different algorithms 

of the snowmelt in the two models can explain the different temporal distribution of 

snowmelt. 

 

 

Figure 2.3 The simulated daily snowmelt from SWAT and MIKE SHE in the Yarkant River 

basin 

 

In the SWAT model, the accumulated temperature what can reflect the status of solar 

radiation that significantly affects the snowmelt (Koivusalo, 2001) has been taken into 

account. However, in the MIKE SHE model, the amount of snowmelt lies on the average 

air temperature, and the change in the snowmelt closely follows the change in air 

temperature; accordingly, there is more snowmelt small peaking in MIKE SHE. What’s 

more, because of the seasonal variation of the melt factor in the SWAT model, the more 

snowmelt that occurs in summer, the higher melt factor; this is possibly another cause for 

the more concentrated distribution in the SWAT model. 

Temperature is primary and reliable in the degree-day approach: if the status of solar 

radiation and the snow pack-air temperature (Lang, 1968; Zuzel et al., 1975) and the 

seasonal variation of the melt factor (Hock, 2003) are considered, the simulation process 

would be more flexible for catching natural realities rather than only considering the air 

temperature. Consequently, the temporal distribution of the snowmelt in the SWAT 

model matches better with the runoff characteristics of Yarkant River basin, in which the 

greatest proportion of the water source derives from the melting snow and glaciers, and 

the amount of runoff from June to September accounts for 80% of the total annual runoff 

(Chen et al., 2006; 2010).  
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Spatial distribution of snow storage 

Elevation is one of central factor that significantly affects the mountain hydrological 

processes (Zhang et al., 2012), because there are large differences of the snow storage in 

the different elevation bands. The information of the elevation bands divided in Yarkant 

River is provided in Table 2-4. Because the areas of Band 9 in MIKE SHE and Band 10 

in SWAT are very small, the proportion is approximately zero. Only the bands from 1 to 

8 were chosen to compare the average depth of the annual snow storage, it has been 

illustrated in Figure 2.4.  

Table 2-4 The elevation ranges and area ratios of the elevation bands in Yarkant River basin 

parted in SWAT and MIKE SHE model 

Elevation 

bands 

Elevation  

range 

Area percentage 

SWAT MIKE SHE 

Band 1 1450~2200  3.38%  3.95% 

Band 2 2200~2900  6.04%  6.32% 

Band 3 2900~3600 11.54% 12.18% 

Band 4 3600~4300 17.32% 16.49% 

Band 5 4300~5000 27.17% 26.03% 

Band 6 5000~5700 28.64% 29.02% 

Band 7 5700~6400  5.64%  5.71% 

Band 8 6400~7100  0.25%  0.29% 

Band 9 7100~7800  0.02%  0.00% 

Band 10 7800~8611  0.00%  0.01% 

 

 

Figure 2.4 The snow storage in the different elevation bands from SWAT and MIKE SHE in 

Yarkant River basin in 2003-2009 

 

From Figure 2.4, it is apparent that in the region from 1450 m to 7100 m, the simulated 

annual snow storage is consistent in different elevation bands between SWAT and 
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MIKE SHE. Increasing storage occurs in the high mountain where the elevation is 

greater than 5000 m, and the increasing amount is prominent with the higher elevation. 

The distribution is rough because the elevation bands cannot illustrate the status of snow 

storage; hence that, the fine distribution based on the model’s resolution is presented in 

Figure 2.5. In the first column, the results are from SWAT and are distributed as a 

sub-basin; in the second column, the results are from MIKE SHE, and the average 

values of the grids under each sub-basin have been calculated and distributed as 

sub-basin; and in the third column, the results are from MIKE SHE and are displayed in 

grid view.  

As shown in Figure 2.5, the two models have a similar tendency for spatial change 

during the different seasons: at the end of March, all most catchment is covered by snow, 

snowmelt first occurs around the outlet in April, the snow melt extends to the mountain 

region approximately 4500 m from July to September, and a new increasing storage 

appears after October. But in the region in which the elevation is greater than 5500 m, 

the snow cover shows a continuously increasing trend throughout the entire year. 

Furthermore, comparing the first and second column, the similar average depth of the 

snow storage in the same district has been illustrated through year. Between the first and 

third column, the spatial distribution of MIKE SHE is much more distinct than that of 

SWAT, and the differences in the snow storage depth between the grids in MIKE SHE 

are much more obvious than in the sub-basins in SWAT. 

For the differences of snowpack, the effect of model structure cannot be detached. In the 

SWAT model, the HRU is the smallest calculated unit, but spatial relation exists in the 

sub-basins; therefore, an aerial depletion curve was introduced when considering the 

unequal distribution in the sub-basin. Based on the cognition of SWAT, the factors such 

as drifting, shading and topography that influence snow coverage vary annually, through 

which the areal coverage of snow can be corrected with the amount of snow in the 

sub-basin. The aerial depletion curve makes the spatial distribution more uniform. As a 

fully distributed model, in MIKE SHE model, each grid can reflect the actual spatial 

change of the snow storage in that place, consequently, the spatial distribution is more 

distinct. 
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Figure 2.5 Simulated snowpack of SWAT (1st column), MIKE SHE in sub-basin(2nd column) 

and MIKE SHE (3rd column) in Yarkant River basin on 31st Mar. (1st row), 30th Jun. (2nd row), 

30th Sep. (3rd row) and 31st Dec. (4th row) 2003 

 

Remotely sensed crossing-verification 

In consideration of the importance of snow in the Yarkant River basin, the remotely 

sensing snow coverage data MODIS 10A2 (Table 1-3) was taken as a kind of 

crossing-verified data to test the MIKE SHE’s output. The recognition accuracy rate of 

MODIS 10A2 to the snow covered area reached 88% in the north Xinjiang region 

(Huang et al, 2008). Since the poor recognition to the thin snowpack (Huang et al, 2008), 
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the grid in the MIKE SHE model which the snow covered depth were more than 50 mm 

was defined as snow coverage, otherwise, it should be defined as no snow coverage. 

Their crossing-verification figure was illustrated as Figure 2.6. 

 

Figure 2.6 Remotely sensed snow coverage (1st row), simulated of MIKE SHE (2nd row) in 

Yarkant River basin on 31st Mar. (1st column), 30th Jun. (2nd column), 30th Sep. (3rd column) 

and 31st Dec. (4th column) 2003 

Relative to the remote sensing data, MIKE SHE’s output in snow coverage presented the 

relative errors of -3.1%，43%，-12.9% and -11.6% on the four different timings. The 

snowpack around 5000 m region mostly was melted in June and August, this is late 

correspond to remote sensing monitoring; can caused the high errors at end of June. 

Generally, the similarly overall tendencies both in temporal or spatial changes were 

found in remote sensing data and MIKE SHE’s output. This crossing-verification 

indirectly resulted in the accuracy of MIKE SHE’s simulation. 

 

2.5.4 Evapotranspiration 

In this study, Penman-Monteith approach was selected to estimate the PET in SWAT 

model. Basin on Table 2-2, the differences of ETa between SWAT and MIKE SHE were 

greatly reflected on river/pound water evaporation and soil evaporation/transpiration, 

while the other values are similar. Subsequently, the annual ETa in MIKE SHE was 23.5 

mm more than that in SWAT. For the difference in river/pound water evaporation, it is 

possible that the spatial relationship between calculated units is one cause. As shown in 
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Figure 1.1, in SWAT, HRUs are controlled by water balance independently, the surface 

runoff would directly contribute to the stream without the over land flow concentration. 

But the grids in MIKE SHE are linked by hydrodynamic relation, and the flood 

detention area is considered in the over land flow calculation, what the result is that 

larger area of water surface in MIKE SHE model may cause more water evaporation. 

The soil evaporation in SWAT is limited by soil moisture content. When the water 

content of a soil layer is below field capacity, the evaporative demand will be reduced 

according to the following equations. 

          Esoil
′ = Esoil ∗ exp [

2.5 ∗ (SW − FC)

FC − WP
]  𝑤ℎ𝑒𝑛 𝑆𝑊 ≤ 𝐹𝐶          (2 − 12) 

            Esoil
′ = Esoil  𝑤ℎ𝑒𝑛 𝑆𝑊 > 𝐹𝐶                                   (2 − 13) 

Where Esoil
′  is the evaporative demand for soil layer adjusted for actual water content 

(mm); Esoil is the evaporative demand (mm); SW is the actual soil water content; FC 

and WP are the soil water content at field capacity and wilting point respectively. In 

addition to limiting the amount of water removed by evaporation in dry conditions, 

SWAT also defined a maximum value of soil evaporation that is 80% of the plant 

available water on a given day, and calculated as the total water content of the soil layer 

minus the water content of the soil layer at wilting point, this setting is also available 

under the bare land. At finally, the actual soil evaporation Esoil
′′  can be expressed as 

equation11 in below. 

Esoil
′′ = min(Esoil

′ , 0.8 ∗ (SW − WP))                      (2 − 14) 

However, in the MIKE SHE model, soil evaporation is restricted to the leaf area index, 

root depth and upper node in the unsaturated zone and all of the water in the soil will be 

used to meet the soil evaporation. Even the initial water content in the soil can 

compensate for the insufficient soil evaporation demand. Therefore, there could be more 

soil evaporation in the MIKE SHE model. 
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Figure 2.7 The daily average evapotranspiration of SWAT (1st column), MIKE SHE in 

sub-basin(2nd column) and MIKE SHE (3rd column) in Yarkant River from Jan.~Mar. (first 

line), Apr.~Jun. (second line), Jul.~Sep. (third line), and Oct.~Dec (forth line) 2003 

 

From the aspect of spatial distribution based on Figure 2.7, this relationship can be seen: 

in addition to the effect of temperature, the land use has significantly affected the spatial 

distribution of evapotranspiration. Comparing the first and second rows under the same 

resolution, the tendency of the spatial change is similar in the different seasons between 

the SWAT and MIKE SHE models: the evapotranspiration around the outlet of the 

catchment is much higher than that of the mountain area because of the temperature 

change in low and high mountain region. The difference is much more obvious in the 
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summer season. However, relative to the spatial resolution of MIKE SHE from the first 

and third rows, the semi-distributed SWAT model cannot support the specific 

information about the spatial distribution. 

Combined with two models’ simulation in evapotranspiration, some understanding can 

be obtained. In Yarkant River basin, water body evaporation was the primary way, and 

since the large area of snow cover, the sublimation was the second evaporation way. 

With the temperature change and plant growth, about 45% of annual evapotranspiration 

was happened during July to September. In the spatial distribution, the volume of 

evaporation in the region covered by evergreen needle-leaved tree was the highest with 

the approximate value of 290 mm per year, and the plant transpiration was the dominant 

way. Following is the region covered by closed open herbaceous with the annual value 

of 160 mm. The lowest region is the permanent snow coverage, and the annual volume 

was about 40 mm. 

 

2.6 Summary and Conclusions 

Based on the statistic evaluation indices of discharges calibration on Kaqun station, both 

SWAT and MIKE SHE got acceptable performances in Yarkant River basin. Because 

there is no more observations can be used to calibrate models, it would be reasonable to 

cautiously draw the conclusions for model responses to hydrological processes. 

Therefore, the differences of multiple hydrologic components from two models were 

intercompared based on modules’ structures and algorithms, the main consequences 

include the following aspects. 

The phenomenon that most of ice-snowmelt water will infiltrate into the soil and 

contribute to the stream as subsurface runoff have been described by SWAT, with a 

contribution proportions of 41.4%. While, MIKE SHE generated a more reasonable base 

flow with a contribution of 21.3% also ignoring the soil lateral flow. SWAT obtained a 

better snowmelt process corresponding to the character of the river flow, but cannot 

distinctly reflect the spatial features of snowpack that could be detailedly achieved by 

MIKE SHE. The less ETa in SWAT has been mainly caused by less water surface area 

and restrictive setup of soil evaporation function. In comparison, MIKE SHE also 

provided more information regarding the evapotranspiration being closely related to land 

use. 

From the careful quantifying and reasoning mentioned above, the application of the 

SWAT and MIKE SHE models in Yarkant River basin can agree with natural 
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observations in some aspects but not in the entire cycle processes. However, combined 

the outputs from two models, SWAT complements the subsurface lateral flow to MIKE 

SHE which had a better groundwater simulation in this mountainous region; MIKE SHE 

can supplement the spatial distribution of snowpack and ETa for SWAT’s output. 

Therefore, some statements of the hydrological processes can be given as : 1) there were 

steady groundwater can contribute to the stream as base flow, taking account of 21% 

approximately; and the lateral interflow was the important contribution for the stream 

flow, take account of 40% approximately. 2) June to September was the concentrated 

snowmelt period with the proportion more than 70%; the region above 5000 m was 

mostly the permanent snow coverage. 3) water evaporation and sublimation were the 

primary evaporation ways, most evaporation dissipation was taken placed in the regions 

covered well vegetation and concentrated on July to September. 

Without the multiple calibrations, a single model hardly clarifies the whole hydrological 

processes in the alpine catchment. Based on the joint application of multiple models, not 

only an improved understanding of hydrological processes can be obtained, but also the 

interpretations of variations between two models stated how the structure and algorithm 

impact on hydrological processes and provided an inspiring reference to hydrological 

processes study in other catchments with unique features. In future study on arid and 

scarcely gauged alpine basin, the joint application of multiple hydrological models and 

combined results could be an effective way to control the uncertainties from modules’ 

structure and algorithm, and improving understanding of hydrological processes. 
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the different input data 
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Response of hydrological processes to input data in high alpine catchment—an 
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ABSTRACT 

Most attentions have been paid to flow in studies on the hydrological model’s input data; 

however, the point discharge data hardly interpret the deviations of the spatial input data 

in the distributed hydrological model. To study the effect of the different input data 

sources on hydrological processes in the catchment scale, eight MIKE SHE model 

programmes driven by the station-based data (SBD) and remote sensing data (RSD) were 

implemented. The significant influences of the input variables to water components were 

examined by an analysis of variance (ANOVA) model and catchment hydrology 

responses have been quantified through different water components. Results suggested 

that, compared to the SBD, the RSD precipitation resulted in greater differences in snow 

storage in the different elevation bands and that the RSD temperature led to more 

snowpack areas with a thinner depth; these changes in snowpack provided a positive 

interpretation of the distinctions of precipitation and temperature between RSD and SBD. 

For the potential evapotranspiration (PET), the larger RSD value caused less plant 

transpiration because of the adjusted parameters to satisfy the outflow. On the catchment 

scale, the spatiotemporal distribution of the responding sensitive water component (which 

can be defined by the ANOVA model) indicated a rational approach to assess the impact 

of the input data on the hydrological processes. 

Key words: input data; hydrological processes; statistic hypothesis test; spatiotemporal 

distribution; Yarkant River; MIKE SHE 

 

3.1 Introduction 

Model simulation is a principal approach for studying hydrological processes on a 

catchment scale; however, the accuracy of the modelling results has been dwarfed owing 

to the uncertainties of the model, which are derived from the model parameters, input data 

and model structures (Beven et al, 1992). Most studies (Jasper et al, 2003; Misgana et al, 

2005; Zhang et al., 2009; Jin et al., 2010) have analyzed the uncertainty of the 

parameters by different methods and the calibration focused on the model’s parameters 

has implied the contributions from other sources of uncertainty (Ajami et al., 2006). 

However, it is unreasonable to detect uncertainty sources through the parameters 

assessment because of the highly non-linear relations among the hydrologic cycle. Ajami 

(Ajami et al., 2007) confirmed the importance of the input data and model structure to the 

model output by using the Integrated Bayesian Uncertainties Estimator (IBUNE), which 

considered all three of the uncertainty sources. Kavetski (Kavetski et al., 2006) 
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demonstrated a multitude of distinctions in the predicted hydrographs and calibrated 

parameters based on the Bayesian total error analysis, with or without consideration of the 

input uncertainty of the precipitation data. Similar conclusions were also drawn by Xu 

(Xu et al., 2006) by investigating the performance of the precipitation errors on seasonal 

and spatial distribution in a conceptual model. In addition to the precipitation data, 

Thompson’s (Thompson et al., 2014) research revealed that the PET-related uncertainty 

existed in high and low discharge. Furthermore, a number of works illustrated that the 

uncertainties of the input data may profoundly impact the predicted water resources 

(Abbaspour et al., 2009; Bastola et al., 2011), river runoff (Chien et al., 2013; Xu et al., 

2013) and extreme flow events (Dobler et al., 2012; Zhang et al., 2014). However, few 

attentions have been paid to the effect of the different input data on the whole hydrologic 

cycle process in a catchment scale.  

In a mountain catchment with scarce gauges, the uncertainties of the input data are 

amplified owing to the lack of observed data (Blazkova et al., 2002). With the 

development of satellite technology, RSD affords abundant information to drive, calibrate 

and validate hydrological models (Stisen et al., 2008), especially, the RSD enriched the 

data resources in understanding the hydrological processes of the high-cold alpine 

catchment (Chen et al., 2014). Some applications of RSD in the hydrological model (even 

on semi-arid/arid watersheds) have attained a promising performance (Liu et al., 2012; 

Sun et al., 2012; Deus et al., 2013). However, most of the precious studies focused on 

the performance assessment of the RSD application only based on the calibrated output, 

but not the whole process.  

RSD also supplies a wealth of new observation types, which can be applied to assess the 

model uncertainty (Van, 2011). According to the examination of McMichael et al. (2006), 

the uncertainty of the predictions among seven leaf area index (LAI) scenarios is less than 

10% in the MIKE SHE simulation. Sun et al. (2012) demonstrated that the contributed 

uncertainties derived from RSD are smaller compared with those of the model parameters. 

However, Knoche et al. (2014) argued that the high-resolution land surface temperature 

(LST) data did not yield a positive result, and that the simulated hydrographs cannot 

explain the differences of the input data. Owing to the limitations of the satellite data in 

terms of the physical sensors, space–time coverage and spatial resolution (Prigent, 2010), 

the application of raw RSD has been threatened and has resulted in some controversial 

results. In addition, these analyses based on the simulated discharges cannot appropriately 

reveal the characteristics of the spatial impact from RSD.  
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This paper intends to characterize the influences of the different input data sources based 

on the variation of a distributed simulation output. Eight MIKE SHE model programmes 

(forced by SBD and RSD) are calibrated separately so as to obtain the most optimal 

performance. The significant impact of the input data on different water components is 

determined via an ANOVA model. Then, the effect of the different input data on the 

hydrological processes are studied through the distribution of the sensitive water 

components. 

 

3.2 Study area 

The Yarkant River basin (shown as Figure 1.2) was chosen in this study. More detailed 

information can be seen in Section 1.2. 

 

3.3 Forcing data 

The employed data sets (including the SBD and RSD) have been introduced in section 

1.3.1 and section 1.3.2. Their processing methods are mentioned below. 

 

3.3.1 Station data 

The station meteorological data of Tashkurgan were interpolated based on the Equation 

2-6 and 2-7. The same interpolations of precipitation and temperature were used in 

SWAT and MIKE SHE. When the PET calculated by SWAT on the sub-basin scale 

based on the Penman-Monteith equation, it was used in MIKE SHE as the input 

reference evapotranspiration. 

 

3.3.2 TRMM 

The remotely sensed precipitation data 3B42 version 6 with a spatial resolution of 0.25° 

was chosen. Although the TRMM V6 data had been calibrated on a global scale by using 

rain gauge stations (Huffman et al., 2007) and played an accelerative role as input data in 

the hydrological modeling research (Collischonn et al., 2008; Li et al., 2012), in such a 

mountainous region as the Yarkant River basin with arid climate conditions, extreme 

topography and few rain gauges, the accuracy is still unfavorable, especially on a daily 

temporal scale (Ji et al., 2013).  

According to the recorded data from 2000 to 2009 at the Tashkurgan, Shache and Pishan 

meteorological stations, an examination was applied to diagnose whether the TRMM 
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satellite detected the correct precipitation events (Equations 3-1 and 3-2). In this 

examination, TRMMdec is defined as the total number of days on which the precipitation 

events were detected by TRMM but not recorded by SBD on the same date, SBDdec is 

defined as the total number of days with precipitation events occurring in SBD but not in 

TRMM on the same date, TRSBdec is defined as the total number of days on which 

precipitation events were detected by both TRMM and SBD. In addition, Dr and Dw are 

considered as the probability of the correct and incorrect precipitation events detected by 

TRMM and calculated for the satellite grids the stations are on. Their calculations can be 

written as: 

𝐷𝑟 =
𝑇𝑅𝑆𝐵𝑑𝑒𝑐

𝑇𝑅𝑆B𝑑𝑒𝑐 + 𝑆𝐵𝐷𝑑𝑒𝑐
                                               (3 − 1) 

𝐷𝑤 =
𝑇𝑅𝑀𝑀𝑑𝑒𝑐

𝑇𝑅𝑀𝑀𝑑𝑒𝑐 + 𝑇𝑅𝑆𝐵𝑑𝑒𝑐
                                         (3 − 2) 

The evaluation results are listed in Table 3-1; for the three stations, the Dw values are much 

larger than Dr, this indicated many precipitation events detected by TRMM were 

redundant. In the deep analysis, the different intensity classes of precipitation were 

estimated by the same approach, the results suggested that the high values of Dw mainly 

correspond  with the low-intensity precipitation events (<0.3 mm) with a high probability 

for incorrect precipitation events (Dw_0.3) (Table 3-1). 

Table 3-1. Comparison between the raw and corrected TRMM precipitation 

Station Dr Dw Dw_0.3 Rraw Rcor 

Tashkurgan 0.54 0.75 0.95 0.11 0.45 

Shache 0.21 0.87 0.96 0.67 0.77 

Pishan 0.15 0.88 0.99 0.36 0.67 

As concluded from Table 3-1, the direct application of the raw TRMM data in the Yarkant 

River basin for model simulation is inappropriate. Therefore, a correction is executed 

based on the local intensity scaling (LOCI) approach (Schmidli et al., 2006), which can 

correct the wet-day frequencies and intensities and effectively improve the raw data with 

too many drizzle days. First, a wet-day threshold Pthres was determined from the raw 

TRMM data to ensure that the threshold exceedance matched the SBD, this value was set 

as 0.3 because the TRMM detected too many redundant rainy days with amount of 

precipitation less than 0.3 mm (Table 3-1), and then a scaling factor sm was calculated and 

used to ascertain that the mean of the corrected precipitation was equal to the observed 

precipitation, the equations are written as:  
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𝑠𝑚 =
𝜇(𝑃𝑆𝐵𝐷,𝑚|𝑃𝑆𝐵𝐷,𝑚 > 0)

𝜇(𝑃𝑇𝑅𝑀𝑀.𝑟𝑎𝑤,𝑚|𝑃𝑇𝑅𝑀𝑀.𝑟𝑎𝑤,𝑚 > 𝑃𝑡ℎ𝑟𝑒𝑠)
                             (3 − 3) 

𝑃𝑇𝑅𝑀𝑀.𝑐𝑜𝑟,𝑚 = {
0,       𝑖𝑓 𝑃𝑇𝑅𝑀𝑀.𝑟𝑎𝑤,𝑚 < 𝑃𝑡ℎ𝑟𝑒𝑠

𝑃𝑇𝑅𝑀𝑀.𝑟𝑎𝑤,𝑚 × 𝑠𝑚, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                     (3 − 4) 

Where PSBD, m and PTRMM.raw, m are the SBD and raw TRMM precipitation in the mth month, 

and PTRMM.cor, m is the corrected TRMM precipitation in the mth month. 𝜇(.) represents the 

expectation operator (e.g., 𝜇 (PTRMM,.raw, m) is the mean value of the raw TRMM 

precipitation at a given month m). 

After correction, the quality of the raw TRMM data improved largely; comparing with the 

raw TRMM, the corrected TRMM was much closer to the SBD in the aspect of the mean 

annual precipitation. In addition, the monthly correlation coefficient (SBD and raw 

TRMM Rraw, SBD and corrected TRMM Rcor) also got a remarkable improvement (Table 

3-1). Eventually, this correction approach can be spread to the whole basin based on the 

ordinary Kriging method with a circular model interpolated sm using ArcGIS and 

providing the revised TRMM data. 

 

3.3.4 LST 

Regarding the MOD11C1, daily LST data with a spatial resolution of 0.05° was used. The 

Version 4.1 was chosen because of its better presentation in semi-arid and arid regions 

(Hulley et al., 2009). The daily air mean temperature data are needed as an input by 

MIKE SHE; previous research affirmed that there is a good linear regression relation 

between LST and air temperature (Vogt et al., 1997; Cristóbal et al., 2008). Because of 

the missing LST data in the the Shache station, the data at the Tashkurgan and Pishan 

stations were diagrammatized to verify this relation (Figure 3.1). 

The mean values of the regression coefficients at the Tashkurgan and Pishan stations were 

utilized in a simple transform equation in the Yarkant River basin, based on the Equation 

3-5, the daily mean air temperature for the MIKE SHE model was acquired. 

𝑇𝑎𝑖𝑟 = 0.7592 ∗ 𝐿𝑆𝑇 − 5.565                                       (3 − 5) 
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Figure 3.1 Regression relation between the daily air temperature and LST at the Tashkurgan 

and Pishan station in 2000~2009 

 

3.3.4. PET  

The remotely sensed PET were introduced in section 1.3.2 and directly used in the 

MIKE SHE model as the input reference evapotranspiration data. 

 

3.4. Methodology 

3.4.1 Model programmes 

Because of the strong spatial heterogeneity with the extreme topographical conditions and 

well coupling with the RSD, the fully distributed hydrological model MIKE SHE was 

employed in this study to catch the detailed spatial variation. The detailed introductions 

about MIKE SHE can be found in section 2.3.2. In MIKE SHE, all input and output data 

can achieve the same spatial resolution as set in the model, in this way, the spatial features 

and distinctions of the inputs and outputs can be well embodied. 

Table 3-2 Eight models in this research based on the different input data 

Data source Model 

Abbreviation Rainfall Temperature Evapotranspiration 

station station station STA 

TRMM station station TRMM 

station LST station LST 

station station GPET GPET 

TRMM LST station TRLS 

TRMM station GPET TRGP 

station LST GPET LSGP 

TRMM LST GPET RSD 

In this study, the MIKE SHE model set up in Chapter 2 was taken as a benchmark and 
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three types of RSD (precipitation, temperature and PET) and their combinations were 

applied individually to replace the SBD. Finally, eight models were utilized based on the 

different input data (Table 3-2). The entire simulated period is uniform from 2000 to 

2009, including the warm-up period of 2000-2002, calibration period of 2003-2007 and 

verification period of 2008-2009. 

 

3.4.2 Calibration 

In order to obtain an optimal performance for each model, the same calibration procedures 

have been executed separately. The Auto Calibration Tool based on the global 

optimization algorithm Shuffled Complex Evolution (SCE), which is a part of the MIKE 

SHE package was chosen for calibration. The main significant parameters of snowmelt, 

including the degree-day factor (DDF) and threshold melting temperature (TMT), land 

surface flow including Manning values (MAN), interflow including horizontal (HHC) 

and vertical hydraulic conductivity (VHC), evapotranspiration including LAI and root 

depth (RD), were chosen for calibration. In the calibration, the standard deviation (STD) 

was chosen as a statistic type of output measure and the weighted sum of STD was taken 

as an objective function. Additionally, the same three statistical coefficients given in 

section 2.4.1 were used as the judged criteria of the performances.  

 

3.4.3 Hypothesis test 

The natural processes of hydrologic cycles constitute a complex system with highly 

nonlinear relations between the “affected” and the “caused”. To evaluate the effect of the 

input data uncertainty on the hydrological process, it is necessary to define the sensitivity 

of the water components to the different input data. In this study, a statistical hypothesis 

test based on the ANOVA model, which is useful in comparing three or more groups for 

statistical significance, has been chosen to test the significant effect of the input data on 

water components. 

Three types of input data (precipitation, temperature and PET) were taken as effect factors 

A, B and C, they were investigated at a, b and c levels, respectively and a=b=c=2 (SBD 

and RSD two levels); when A is at i level (i=1,2), B is at j level (j=1,2), C is at k level 

(k=1,2), the resulting water component can be denoted by ui,j,k. The ANOVA model 

(Michael et al., 2005) for three factors with fixed effects can be identified as:  

𝑦𝑖𝑗𝑘𝑚 = 𝑢 … + 𝛼𝑖 + 𝛽𝑗 + 𝛾𝑘 + (𝛼𝛽)𝑖𝑗 + (𝛼𝛾)𝑖𝑘 + (𝛽𝛾)𝑗𝑘 + (𝛼𝛽𝛾)𝑖𝑗𝑘 + 휀𝑖𝑗𝑘𝑚 (3-6) 
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Where 𝑦𝑖𝑗𝑘𝑚 is the observation for the mth case or trial for the treatment consisting of ith 

level of A, the jth level of B, and the kth level of C; 𝑢 … is the grand mean of all 

dependent variables; 𝛼𝑖, 𝛽𝑗 and 𝛾𝑘 are the main effects of factors A, B and C; (𝛼𝛽)𝑖𝑗, 

(𝛼𝛾)𝑖𝑘 and (𝛽𝛾)𝑗𝑘 are the main effects of the two-factor interaction; (𝛼𝛽𝛾)𝑖𝑗𝑘 is the 

main effect of the three-factor interaction; 휀𝑖𝑗𝑘𝑚 is the independent random error that 

follows a normally distributed N(0, 𝛿2). 

Based on the equation 3-6, the 𝑦𝑖𝑗𝑘𝑚 in different levels of each factor and their sum of 

squares can be written as equation 3-7. 

SSTO = SSA + SSB + SSC + SSAB + SSAC + SSBC + SSABC + SSE     (3 − 7) 

The mean square is equal to the sum of squares divided by the corresponding degree of 

freedom, and it can be given as follows: 

MSSA =
SSA

a − 1
, MSSB =

SSB

b − 1
, MSSB =

SSB

c − 1
 

MSSAB =
𝑆𝑆𝐴𝐵

(𝑎 − 1)(𝑏 − 1)
, MSSAC =

𝑆𝑆𝐴𝐶

(𝑎 − 1)(𝑐 − 1)
, MSSBC =

𝑆𝑆𝐵𝐶

(𝑏 − 1)(𝑐 − 1)
 

MSSABC =
𝑆𝑆𝐴𝐵𝐶

(𝑎 − 1)(𝑏 − 1)(𝑐 − 1)
, MSSE =

𝑆𝑆𝐸

𝑎𝑏𝑐(𝑛 − 1)
 

Finally, when factor A is tested, we assume that the null hypothesis H0, which means 

that the influence of the factor on the result is not significant, could be acceptable. Thus, 

𝛼1 = 𝛼2 = 0 ; in this case, FA=MSSA/MSSE is F[a-1,(n-1)abc] distributed, and the 

probability p=P(F[a-1,(n-1)abc]>FA) can be calculated. When the calculated p-value is 

larger than the significance level (α), set as 0.05 in this study, suggesting that the 

assumption is correct, the null hypothesis H0 will be accepted; otherwise, the alternative 

hypothesis Ha should be accepted. Other hypotheses could be tested in the same way. 

The prerequisite for the hypothesis, the calculation of the appropriate test statistic’s 

F-value and the percentile of the F distribution, are charted in Table 3-3. 

Table 3-3 The formulation of the test’s statistics and percentile of the F distribution of the main 

effects of three factors and their interaction 

Test statistics Percentile of F distribution 

F𝐴 = 𝑀𝑆𝐴 𝑀𝑆𝑆𝐸⁄  F[𝑎 − 1, (𝑛 − 1)𝑎𝑏𝑐] 

F𝐵 = 𝑀𝑆𝐵 𝑀𝑆𝑆𝐸⁄  F[𝑏 − 1, (𝑛 − 1)𝑎𝑏𝑐] 

F𝐶 = 𝑀𝑆𝐶 𝑀𝑆𝑆𝐸⁄  F[𝑐 − 1, (𝑛 − 1)𝑎𝑏𝑐] 

F𝐴∗𝐵 = 𝑀𝑆𝐴𝐵 𝑀𝑆𝑆𝐸⁄  F[(𝑎 − 1)(𝑏 − 1), (𝑛 − 1)𝑎𝑏𝑐] 

F𝐴∗𝐶 = 𝑀𝑆𝐴𝐶 𝑀𝑆𝑆𝐸⁄  F[(𝑎 − 1)(𝑐 − 1), (𝑛 − 1)𝑎𝑏𝑐] 

F𝐵∗𝐶 = 𝑀𝑆𝐵𝐶 𝑀𝑆𝑆𝐸⁄  F[(𝑏 − 1)(𝑐 − 1), (𝑛 − 1)𝑎𝑏𝑐] 

F𝐴∗𝐵∗𝐶 = 𝑀𝑆𝐴𝐵𝐶 𝑀𝑆𝑆𝐸⁄  F[(𝑎 − 1)(𝑏 − 1)(𝑐 − 1), (𝑛 − 1)𝑎𝑏𝑐] 
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3.5 Results and discussion 

3.5.1. Simulated discharges 

After separate calibration, the final values of the chosen parameters were obtained. 

Among the eight models, MAN ranged from 25 to 60 regarding different land use, while, 

for the different soil types, HHC and VHC represented a scope of 0.0003 to 0.001 and 

0.0035 to 0.01. MAN, HHC and VHC showed insignificant changes between the 

different models for the same land use or soil type. The calibrated values of other 

parameters are listed in Table 3-4. When the temperature was replaced, the parameters 

of snow (DDF and TMT) were adjusted drastically; when PET was replaced, remarkable 

changes of parameters occurred in evapotranspiration (LAI and RD). In the other causes, 

the variations were insignificant. Because of the periodic growth, LAI and RD of herbs 

are distinct in aspect of temporal variations (Fabio et al., 2008). 

Table 3-4 The final values of the calibration parameters in different models 

Models STA TRMM LST GPET TRLS TRGP LSGP RSD 

DD F(mm/day/℃) 2.01 2.03 1.25 1.98 1.25 2.00 1.23 1.25 

TMT(℃) -0.98 -1.00 -0.56 -1.01 -0.57 -1.02 -0.56 -0.55 

LAI_NLT* 3.81 3.82 3.78 2.65 3.82 2.64 2.63 2.66 

RD_NLT(mm)* 4500 4500 4500 4000 4500 4000 4000 4000 

*LAI_NLT and RD_NLT are the LAI and RD of the evergreen needle-leaved tree 

 

The TRMM, LST and GPET models were chosen to compare with the STA illustrated in 

Figure 3.2. In the TRMM model, the discharges in the early flood season from April to 

May were overestimated, more fictional fluctuations were simulated. Because the LOCI 

approach only corrects the magnitude and probability of the TRMM but not the frequency 

distribution, this might be a potential reason for the less desirable performances in the 

TRMM application. Additionally, similar but more moderate phenomena were found in 

the LST model but few differences were determined between the GPET and STA model.  
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Figure 3.2 The comparisons of daily discharge at Kaqun station between the TRMM (upper 

one), LST (middle one), GPET (under one) simulations and the STA simulation, observation 

 

Based on the multiple evaluation coefficients (Table 3-5) in the verification period, the 

performances of most model programmes were acceptable; the NSC of the models was 

higher than 0.5 and all R2 values exceeded 0.6. The STA model expressed the best result 

with the highest NSC and R2 values and the smallest RMSE, which suggested that the 

interpolation of the meteorological data based on the lapse with the elevation was feasible. 

In general, the application of the corrected RSD in the Yarkant River basin was acceptable, 

though without improvement. 
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Table 3-5 Statistical coefficients of the performance of different models 

Model STA TRMM LST GPET TRLS TRGP LSGP RSD 

NSC 0.70 0.52 0.53 0.64 0.55 0.51 0.56 0.50 

R2 0.80 0.62 0.67 0.73 0.71 0.63 0.70 0.60 

RMSE 172.10 207.15 204.49 183.52 197.35 222.81 204.11 214.66 

 

The boxplot of the mean monthly simulated discharge (Figure 3.3) at the outlet station 

derived from the eight models indicates significant differences from April to September. 

The large differences suggested that: even for the simulated discharge at the outlet 

station, which are aimed by the auto-calibration scheme, the deviations of eight 

programmes surely exist and are dominantly illustrated on the peak flow, which was 

recharged by mixed precipitation and snow melting water. However, the station 

discharges hardly explain the hydrological processes in a catchment scale. If the input 

data are only evaluated based on the simulated runoff, this evaluation will affect the other 

water balance components negatively. Alternatively, the variability of the distributed 

output is more valuable. Accordingly, the distributed water components would support a 

superior way to comprehend the effect of the input data uncertainty on the simulation of 

hydrological processes. 

 

Figure 3.3 Boxplot of the mean monthly discharges at the outlet station derived from eight 

model programmes in 2003~2009 

 

3.5.2 Sensitivities of water components 

In this study, the hypothesis tests aimed at differentiating the water components based on 

their mean annual values and each group test dataset was first adopted by the normal 

distribution and variance homogeneity test. In view of the different actual 

evapotranspiration (ETa) sources in the MIKE SHE model, ETa were divided into: snow 
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sublimation (SNOWS), canopy interception (CI), river and pound water evaporation 

(WE), soil evaporation (SOILE) and plant transpiration (PT). These five ETa sources 

together with the overland flow (OLF), base flow (BF) and snow storage (SS) were 

employed for the hypothesis test; the results of probability p values are provided in Table 

3-6.  

Table 3-6 The probability p values of the hypothesis H0 test 

Groups A B C A*B A*C B*C A*B*C 

OLF 0.000 0.221 0.691 0.040 0.714 0.399 0.336 

BF 0.003 0.436 0.008 0.087 0.619 0.450 0.553 

SS 0.003 0.000 0.945 0.001 0.828 0.415 0.430 

SNOWS 0.271 0.000 0.224 0.789 0.546 0.120 0.282 

CI 0.000 0.000 0.000 0.007 0.089 0.028 0.431 

WE 0.000 0.000 0.000 0.937 0.085 0.072 0.573 

SOILE 0.138 0.238 0.000 0.747 0.241 0.739 0.932 

PT 0.541 0.535 0.000 0.751 0.637 0.809 0.905 

 

Table 3-6 indicates that the factor A precipitation had a very significant influence on most 

of the hydrologic components, except SNOWS, SOILE and PT; the factor B temperature 

takes/has a crucial role in the snow, PI and WE process and all evapotranspiration sources 

- except SNOWS - were strongly sensitive to the factor C PET. Through the statistical 

hypothesis test, the sensitivities of the water components to the different data types have 

been illustrated intuitively and the distributed output SS can be specified to analyze the 

deviations of precipitation and temperature from RSD and SBD. PT was employed in the 

PET deviation analysis. 

 

3.5.3 Response of the hydrological processes 

Snow storage 

Figure 3.4 illustrates the spatial distribution of the simulated mean annual snow storage 

depth from the STA, TRMM, LST and GPET models. When the significant impact 

factors, precipitation and temperature of snow storage (Table 3-6) were replaced by RSD 

in the TRMM and LST models, the spatial distribution of the snowpack underwent a huge 

change. In addition, the temporal distribution in the different elevation bands (Figure 3.5) 

also represented the significant variation among STA, TRMM and LST. 

Firstly, compared with the STA model, the TRMM model resulted in significant 

variations of mean annual snow storage depth with change proportions of -9.4% and 
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12.3% in the 5000–5700 m and the higher 6400 m zones, respectively. These differences 

may be interpreted by the distribution of SBD and TRMM precipitation (Figure 3.6). 

Despite, two dataset calculated similar average annual precipitation values with 309.86 

mm and 323.14 mm, the TRMM data resulted in a more reasonable spatial distributed 

characteristic by a more reasonable isopluvial zone, which reflects the influencing 

factors distance and elevation. For the interpolated station data, the spatial distribution 

was relatively piecemeal. Compared with the average annual values of interpolated 

station data in the different elevation bands, the TRMM precipitation was 12% larger in 

the higher 6400 m zone. While in the 5000–5700 m district, the underestimation of the 

TRMM precipitation was remarkable with the percentage of 18%. These deviations 

matched well the changes in snow storage. In the region with an elevation lower than 

5000 m, since there is no permanent snowpack, the differences between the SBD and 

TRMM precipitation are not reflected in snow storage. 

 

 

Figure 3.4 Spatial distribution of the simulated mean annual  snow storage by the STA, 

TRMM, LST and GPET model in the Yarkant River basin during 2003~2009. 
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Figure 3.5 The temporal distribution of snow storage in the different elevation bands. 

 

 

Figure 3.6 Spatial distribution of the mean annual  precipitation for TRMM and SBD in the 

Yarkant River basin during 2003~2009 

Another noteworthy change in Figure 3.4 was the snow coverage area in the STA and 

LST model. The annual snow covered area with different depth bigger than 0 mm, 5 mm, 

10 mm, 15 mm in the STA and LST model was listed in Table 3-7. Compared to the 

STA model, LST obtained the total covered area increased by 17.1%, however, the snow 
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covered area with a depth exceeding 5 mm greatly decreased. These values suggest that 

there are more snow covered areas with a very thin depth (smaller than 5 mm in the LST 

model). These changes could be caused by the distinctive distribution of temperature 

datasets between SBD and LST (Figure 3.7). For SBD, a piecemeal spatial distribution 

similar to the precipitation was observed. The variation tendency in the spatial 

distribution did not show remarkable differences. Compared to SBD in the district with 

an elevation lower than 3600 m, the LST data were lower by 3.2°C. While in the 5000–

5700 m elevation band, the LST data were higher by 1.1°C than SBD. In the 3600–5000 

m region, there was little distinction between the datasets. 

Table 3-7 The snow covered area with a bigger depth than in STA and LST 

Model 0 mm（km2） 5 mm（km2） 10 mm（km2） 15 mm（km2） 

STA 30856 16228 15956 15936 

LST 36136 10204 8620 8448 

Errors 17.1% -37.1% -46.0% -47.0% 

 

 

Figure 3.7 Spatial distribution of the mean annual temperature between the station and 

TRMM data in the Yarkant River basin in 2003~2009. 

 

The detailed characteristics can be found based on Figure 3.5, in the 3600~5000 m region, 

the temperature from the two datasets were similar. Nevertheless, attributed to the smaller 

DDF and higher TMT in the LST model (Table 3-4), the snowmelt speed decreased and 

the permanent snowpack appeared; even in the 4300~5000 m region, the snow storage 

exhibited an uptrend. Finally, the LST model simulated a 52.2% increase in snow storage 

compared with the STA model in this region. However, the depth of the snowpack with an 

average of 4.2 mm at 3600~4300 m was very thin; this is why we detected the augmented 

SS0 in the LST model. In the higher 5000 m region where the dominant snowpack was 

located, the calculated higher air temperature in the LST model took a leading role and 
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caused a reduction of the annual snowpack by 41.2%. Another point of Figure 3.5 is the 

continuous increase of snow storage in the region with the elevation higher than 5700 m, 

a dominant reason is that: In this region there is hardly snowmelt because of the very 

low temperature; the snowdrift and snow slide become the primary movement methods. 

Unfortunately, these movements have not been included in MIKE SHE yet, so this snow 

storage generally increased as the accumulation of snowfall. 

 

Plant transpiration 

No matter from Figure 3.4 and Figure 3.5, there is little or no variation between the STA 

and GPET since the PET cannot significantly influence the evapotranspiration (Table 

3-6). The sensitive water component plant transpiration (Table 3-6) was taken as an 

example to analyse the effect of PET and the significant deviations between the STA 

and GPET model (Figure 3.8). Based on the Kristensen and Jensen’s method, which 

integrated the evapotranspiration simulated by MIKE SHE, the transpiration was closely 

related to the parameters’ density of the crop green material (such as LAI and RD), which 

was  derived from the land use data. Thus, according to the different land use types, the 

average annual transpirations of the four models are listed in Table 3-8. Based on the 

results, two profound changes could be noted: in the evergreen needle-leaved trees and 

closed–open herbaceous regions, the plant transpiration from the GPET model was 

smaller, with rates of 33.4% and 35.6%, than those of the STA model. These results could 

be ascribed to the smaller LAI and RD (Table 3-4) values in the GPET model adjusted to 

satisfy the water balance. 

Table 3-8 The amount of the mean annual transpiration for different land use types from four 

models in 2003~2009a 

Land use type STA(mm) TRMM(mm) LST(mm) GPET(mm) 

Evergreen Needle-leaved Tree 62.30 65.26 59.44 41.53 

Closed-open Herbaceous 15.27 15.15 14.08 9.81 

Sparse Herbaceous 4.09 3.94 3.98 2.50 

Closed-open Shrub 8.16 13.07 7.62 6.79 

Bare Areas 3.48 3.27 3.51 2.28 

Water, Snow and Glacier 0.36 0.35 0.41 0.39 
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Figure 3.8 The spatial distribution of the simulated mean annual transpiration of the STA, 

TRMM, LST and GPET model in the Yarkant River basin during 2003~2009. 

 

Because of the low resolution of the GPET data (1°), the spatial distribution feature was 

not very evident; only the monthly temporal distribution of two datasets of PET are 

compared in Figure 3.9. The mean annual PET in the Yarkant River basin was 256.5 

mm and 309.2 mm in two datasets, respectively. The higher PET in the GPET model 

was mostly detected from May to August with an increasing rate of 34.78%. Based on 

the calculation of MIKE SHE in the GPET model, the larger input PET values cause 

more evapotranspiration dissipation and a weaker simulated performance. In order to 

decrease the evapotranspiration, the transpiration was reduced through adjusting LAI 

and RD which were chosen as calibration parameters to a smaller value (Table 3-4).  

In addition, compared with STA, the reduction percentage of transpiration from GPET in 

different seasons in evergreen needle-leaved trees zones was insignificant. Owing to the 

seasonal variation of LAI and RD of the closed–open herbaceous,  peak values appear  

in summer, the change was also mainly represented from  May to August with a reduced 

proportion of 54.3% compared with 23.1% during the other months. Although the 

different ETa sources are calculated based on different parameters, all of these ETa 

sources are sensitive to PET and can yield a clearer statement regarding the uncertainty of 

the input PET. 
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Figure 3.9 The temporal distribution of the mean monthly PET from SBD and RSD in the 

whole Yarkant River basin during 2003~2009. 

 

3.6 Conclusions 

In the high and scarce gauges’ alpine watershed of the Yarkant River basin, the 

application MIKE SHE model driven by dissimilar data sources demonstrated reasonable 

results and the simulated discharge barely explained the deviations of the input data 

reflecting on the peak of flow hydrography at the outlet station.  

An ANOVA model indicated that precipitation, temperature and PET had a significant 

influence on different water components in hydrological processes on the basis of the 

ANOVA model, the sensitive component snow storage was chosen to analyse the effect 

of uncertainty in precipitation and temperature, including the plant transpiration for PET. 

The application of TRMM made the differentiation of snow storage distribution more 

evident; it was stockpiled in the higher-altitude region. Corresponding to the 

overestimation of 12% in the higher 6400 m and underestimation of 18% at 5000~5700 m 

in the TRMM precipitation, the TRMM model resulted in a coherent change of 12.3% and 

-9.4% in snow storage compared with the STA model.  

The application of LST caused a more extensive everlasting snow-covered area with a 

thinner depth. Because of the relatively smaller DDF and higher TMT, the LST model 

simulation obtained a larger snow storage area with a rate of 52.2% and a lower snow line 

in the 3600~5000 m region compared with STA. In the 5000~5700 m region, the 

overestimation of temperature intensified the snowmelt and caused a reduction of snow 

storage with a rate of 41.2%.  
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The GPET application resulted in less plant transpiration, especially in the area of high 

vegetation coverage. Compared with the STA model, owing to the larger GPET value, the 

GPET model had to reduce the plant transpiration by adjusting the calibrated parameters 

RD and LAI to satisfy the water balance. The reductions primarily occurred in the lush 

vegetation region of evergreen needle-leaved trees and closed–open herbaceous areas 

with proportions of 33.4% and 35.6%, respectively. 

The different input data sources had a significant impact on the hydrological process; 

these are hardly explained by the discharge hydrography. By examining the significant 

impact factors of the water components, the uncertainties of one certain type of input data 

can be determined by the spatiotemporal distribution of the responding water components. 

Furthermore, the proposed method in this study can be used to analyze the changes in the 

hydrological processes and the distributed patterns of water components caused by the 

different input data. In the hydrologic cycle process, one type of input data would have a 

significant effect on several water components. In this study, each water component was 

analyzed based on certain input data. The hydrology characteristics are quite different in 

various watersheds; consequently, the more prominent components should be used for 

intercomparison to define the uncertainty of the input data in the whole process. 
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ABSTRACT 

Climate change and the impacts on hydrological processes in Karakoram region are 

highly important to the available water resources in downstream oases. In this study, a 

modified quantile perturbation method (QPM) which is improved by considering the 

frequency changes in different precipitation intensity ranges, and Delta method were 

used to extract signals of change in precipitation and temperature, respectively. Using a 

historical period (1986-2005) for reference, an average ensemble of 18 available Global 

Circulation Models (GCMs) indicated that the annual precipitation will increase by 

2.9-4.4% in Representative Concentration Pathway 4.5 (RCP4.5) and by 2.8-7.9% in 

RCP8.5 in different future periods (2020-2039, 2040-2059, 2060-2079 and 2080-2099) 

due to an increased intensity of extreme precipitation events in - winter. Compared with 

historical period, the average ensemble also indicated that temperature in future periods 

will rises by 0.31-0.38 °C/10a in RCP4.5 and by 0.34-0.58 °C/10a in RCP8.5. Through 

coupling with a well-calibrated MIKE SHE model, the simulations suggested that, under 

the climate change scenarios, increasing evaporation dissipation would lead to 

decreasing snow storage in the higher altitude mountain region and likewise with regard 

to available water in the downstream region. The alterations of snow strong are quite 

different in elevation bands, the permanent snowpack area below 5600 m would 

completely vanished in 2060-2079, and the snow storage in 5600-6400 m would be 

reduced dramatically, however, there is little or no changes in the above 6400 m region. 

Warming could cause a stronger spring and early summer stream runoff and a reduced 

late summer flow due to the snowmelt change in temporal distribution. Furthermore, 

both the frequency and the intensity of the flood would be enhanced. All the changes of 

hydrological processes are stronger under RCP8.5 than those under RCP4.5. In 

Karakoram region, the transformations among different forms of water resources alter 

the distributions of hydrologic components under future climate scenarios, and more 

researches are needed about the transient water resources system and the worsening of 

flood threats in the study area. 

Keywords: climate change; hydrological processes; snow; streamflow; MIKE SHE 

modelling; Karakoram  

 

4.1 Introduction 

Nearly all regions in the world have experienced the influences of climate change on 
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water resources (IPCC, 2013). Hydrologic systems in arid/semi-arid regions are 

particularly sensitive to climate changes (Chen et al., 2006; Guo et al., 2015), as are 

highly glaciated regions (Claudia et al., 2012; Huss et al., 2008). Regarding retreating 

glaciers caused by the warming temperature, a stronger spring and early summer river 

runoff and a reduced late summer flow have been observed in the most highly glaciated 

watersheds (Barontini et al., 2009; Bavay et al., 2013; Jeelani et al., 2012; Liu et al., 

2009). However, the effects differ substantially from region to region, Su et al. (2016) 

indicated the earlier and stronger spring runoff may help the irrigation water of Indus 

Basin in the spring growing seasons. Immerzeel et al. (2010) suggested the effects in the 

Brahmaputra basins seem likely to face the severer water availability and flood security 

owing to the high dependence on the irrigated agriculture and the large population but 

the effect may be positive in Yellow River since the low dependence on melting water 

and increased upstream precipitation. In addition to stream runoff, evaporation has 

received some study, and significant increasing trends in response to climate change 

have been reported (Calanca et al., 2006; Thompson et al., 2014). Moreover, the strong 

influences on groundwater system in the large-scale agricultural catchment also have 

been ascertained (Roosmalen et al., 2009). These studies separately focused on one or 

more water components of hydrological processes under climate change but little 

attention was paid to the redistribution of water resources in hydrological processes from 

a water balance perspective.  

The snowpack and glaciers in mountainous areas play the role of a “water tower” in 

Central Asia. Along the north slope of Karakoram, the Yarkant River basin is the 

dominant catchment. In this catchment, approximately 70% of the stream runoff is 

derived from meltwater (Chen et al., 2010). In the previous studies of the Yarkant River 

basin, most studies focused on the past climate change (Chen et al., 2010; Xu et al., 

2011; Xu et al., 2013; Zhang et al., 2009) and observed the aggravating changes in 

snowpack melt and stream runoff. For the effect of future climate change, Zhang et al. 

(2012) employed a Delta method to extract the variable signals of precipitation and 

temperature, the responses of stream flow to different climate scenarios were studied, 

and found that there will be a small increase of stream flow both in May and October. 

However, the Delta method is not able to capture changes in precipitation extreme 

(Onyutha et al., 2016) and if the processing methods of GCMs include severe 

uncertainties or methodological errors, these processed data would cause further bias 

when used in hydrologic simulations. 

Teng et al (2012) suggested that one certain GCM coupling 5 hydrological models, the 
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deviations of the simulated results were about 7%, however, one certain hydrological 

model coupling 15 different GCMs, the deviations increased to 28%-35%. Several 

downscaling methods were compared in Ghosh’s (2012) study and the results indicated 

that most uncertainties were derived from GCMs and authors suggested that the average 

ensemble of GCMs could be a better choice. Quintana et al (2010) applied the 

dynamical downscaling, statistical downscaling and bias correction to deal with the 

GCM data and found that the uncertainties caused by the processing methods would be 

enlarged in the hydrology simulation. Thus, firstly, the local climate change in the 

Yarkant River basin must be clarified based on an appropriate method and then 

understand the response of hydrological processes. 

Change in precipitation is surely complex and crucial among hydrometeorology factors. 

In the past several decades, a clear enhancement in heavy precipitation has been 

investigated in many regions (Min et al., 2011) and this meteorological process could 

change the frequency or intensity of extreme hydrologic events (Eric et al., 2014). 

Previously, some studies (Liu et al., 2011; Ntegeka et al., 2014; Taye et al., 2011; 

Willems and Vrac, 2011) extracted the change signals of precipitation frequency and 

intensity based on the quantile perturbation method (QPM) to obtain a reasonable 

temporal distribution of future precipitation. The perturbation approach is one of 

common methods to obtain the differences between current and future climate 

(Lettenmaier et al. 1999; Middelkoop et al., 2001), and the quantile-based perturbation 

approach that considers the intensity perturbation on the different quantiles is available 

for extreme precipitation events (Onyutha et al., 2016). Based on the perturbation 

approach, the QPM was developed by Ntegeka et al (2008), and both the changes in 

intensify and frequency of rainy days were taken into account separately. In these 

studies, according to the overall change in frequency, new random precipitation events 

were generated based on a historical observation sorting. Through comparing the new 

average value with the scenario data series, several times of random generation sets were 

reselected to ensure a total amount of change. Although random generation can 

accelerate the processing procedure, it may also add uncertainties to the newly generated 

data series because of the randomly added or subtracted precipitation events.  

The objectives of this paper are investigating the local climate change and the effects on 

the hydrological processes in the Yarkant River basin of Karakoram region. In the 

scenarios of the Representative Concentration Pathways 4.5 and 8.5 (RCP4.5 and 

RCP8.5), 21-member GCM’s average variable signals of precipitation and temperature 

were extracted in the meteorological station. Referring to the observed data, the future 
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meteorological data can be obtained and used to drive a well-calibrated MIKE SHE 

model. On the basis of simulated outputs, the changes of different water components in 

the hydrological processes are tested. In this process, two points are characterized, i) A 

modified QPM improved by considering the frequency changes in the different 

precipitation intensity ranges. Through this approach, the uncertainties caused by 

randomly adding or subtracting precipitation events can be decreased when new data 

series are generated. ii) Quantifying the response of hydrological processes from a water 

balance perspective in a catchment scale. In this way, not only the stream runoff but also 

the redistribution of water resources and change in different forms of water resources 

can be clarified. 

 

4.2 Study area and data 

The Yarkant River basin (shown as Figure 1.2) was chosen in this study. More detailed 

information can be found in Section 1.2. 

And the climate change data including 21 GCM and their detailed information have 

been mentioned in 1.3.3. 

 

4.3 Methodology 

At present, there are two major approaches to using GCMs runs for assessment, which 

also represent two totally different logics: i) Dynamic downscaling by RCM model with 

one boundary forcing; and ii) statistic downscaling with idea of statistic accounting with 

large number of samples. Dynamic downscaling use one best GCM runs as boundary data 

to force the RCM model in order to get the detailed and spatial information all over study 

area. While, it means, the model setup, calibration and validation processes has massive 

work load (Solman and Nunez, 1999). Statistic downscaling has less work load and use 

the general trend of selected runs to represent the climate change trend. Moreover, the 

statistical method can be applied based the multiple GCMs, which is available to reduce 

the uncertainty of GCMs (Ghosh et al, 2010). 

In this study, the statistical method is employed to extracted the change signals of the 

stationary data series in GCMs. Compared with HP, all change signals of precipitation 

and temperature in four FPs featured by each GCM were extracted statistically. Due to 

the uncertainty among GCMs, the average tendency of multiple GCMs was strongly 

suggested (Ghosh et al, 2012); therefore, the average ensemble of available GCMs was 
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employed. Based on the extracted change signals, the future precipitation and 

temperature in different periods were generated by a modified QPM and Delta method, 

and use to force a well-calibrated MIKE SHE model. Then the hydrological processes in 

future periods can be obtained through MIKE SHE’s simulation. The modified QPM 

and the Delta method were used to analyse the data for each calendar month. The time 

series data of the GCMs’ historical runs and scenario runs were extracted on the location 

of Tashkurgan station (Figure 1.2).  

 

4.3.1 Modified QPM for precipitation 

For the precipitation time series, the frequency change and quantile perturbation should 

not be completely independent indexes; rather, their relationship should be determined. 

In the modified QPM, the specific locations of added or subtracted rainy events defined 

by frequency changes were determined in the rank time series of precipitation data. 

Eleven quantiles, with values of 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9, 

were selected to divide the rank time series into 12 segments in accordance with 

different grades of precipitation intensity. In each segment, the due number of rainy days 

can be calculated based on the quantile value and compared with the existing numbers of 

rainy days in this segment, and the added or subtracted numbers of rainy days can be 

decided.  

A large deviation was noted among GCMs’ precipitation (Baguis et al. 2010; Liu et al. 

2011). Therefore, in order to obtain a more accurate average trend from the selected 

GCMs, based on the annual precipitation of 21 GCMs. The consistency check was 

implemented by Eq. (1), the outliers examined by Eq.(1) would be rejected by 

consistency check.  

P ∈ MEAN ± STD                                                  (4 − 1) 

Where P stands for the annual precipitation of each GCM and MEAN and STD are the 

average value and standard deviation of the 21 GCMs, respectively. According to the 

results of consistency examination, three GCMs (CanESM2, ACCESS1.3 and 

HadGEM2-ES) were deprecated. Based on the 18 remaining GCMs, the frequency 

change of rainy days when the daily precipitation exceeded 0.1 mm and the quantile 

perturbations at the quantiles i in each GCM were formulated as  

𝑓𝑅𝐷_𝑚 =
𝐹𝑃_𝑅𝐷𝑚

𝐻𝑃_𝑅𝐷𝑚
                                                        (4 − 2) 
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𝑓𝑃𝐼(𝑖,𝑚) =
𝐹𝑃_𝑃𝐼(𝑖,𝑚)

𝐻𝑃_𝑃𝐼(𝑖,𝑚)
                                                   (4 − 3) 

where 𝑓𝑅𝐷_𝑚 represents the monthly frequency change factor of rainy days in the mth 

month; 𝐹𝑃_𝑅𝐷𝑚 and 𝐻𝑃_𝑅𝐷𝑚 are the number of rainy days in the mth month of the 

FPs and HP, respectively; 𝑓𝑃𝐼(𝑖,𝑚) is the precipitation intensity perturbation factor at the 

quantile i in the mth month; and 𝐹𝑃_𝑃𝐼(𝑖,𝑚) and 𝐻𝑃_𝑃𝐼(𝑖,𝑚)  are the precipitation 

intensities at the quantile i in the mth month of the FPs and HP, respectively. The 18 

GCMs’ average ensemble is written as 𝑓𝑅𝐷_𝑚
̅̅ ̅̅ ̅̅ ̅ and 𝑓𝑃𝐼(𝑖,𝑚)

̅̅ ̅̅ ̅̅ ̅̅ ̅ 

For each calendar month (m=1, 2, …, 11,12), the detailed steps are  as follows: 

1. Calculate the number of rainy days (OBS_RDm) and quantiles of each precipitation 

event (OBS_PI(i,m)) in the observed time series of HP; 

2. Interpolate FP_PI(i,m) and HP_PI(i,m) in the GCMs, maintaining the same quantile 

i with OBS_PI(i,m) throughout the linear method, then calculate fPI(i,m) based on 

Eq. (3) and fPI(i,m)
̅̅ ̅̅ ̅̅ ̅̅  ; 

3. Obtain the future precipitation intensity at each quantile i ( NOBS_PI(i,m) ), 

formulated as NOBS_PI(i,m) = OBS_PI(i,m) ∗ fPI(i,m)
̅̅ ̅̅ ̅̅ ̅̅ ; 

4. Obtain the number of future rainy days ( NOBS_RD m ), formulated as 

NOBS_RD m = OBS_RDm ∗ fRD_m
̅̅ ̅̅ ̅̅ ̅; 

5. Count the existing number of rainy days (NE) for which quantile i is not more than 

0.01 in step 3; 

6. Calculate the due numbers of rainy days (ND) for which quantile i is not more than 

0.01 based on the result in step 4, formulated as ND = NOBS_RD m ∗ 0.01. 

If  ND > NE , (ND − NE), no rainy days should be replaced in step 3, and the 

precipitation of added rainy days is equal to average value of existing rainy days NE. 

Perform the above subtraction and round the difference between ND and NE to the 

nearest integer;  

7. Sequentially repeat steps 5 and 6 at the other quantiles (0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 

0.6, 0.7, 0.8 and 0.9) until the number of rainy days in step 3 is equal to 

NOBS_RD m. 
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In this modified QPM, the future precipitation time series only included the quantile 

perturbation signal initially obtained in step 3, then through the frequency change in 

each segment divided by quantiles, the lacking or redundant rainy days are defined (step 

4 to step 6). Finally, adding or subtracting these rainy days with fixed values in 

accordance with the precipitation intensity in each segment, the rank time series of the 

future precipitation data are obtained. 

 

4.3.2 Delta method for temperature 

Regarding temperature, no frequency issue needs to be considered, so the Delta method 

(Gleick. 1986; Hay et al. 2000) was employed so as to extract the monthly change 

temperature signal. By calculating the mean monthly absolute difference between the 

HP and FPs in the GCMs, the change factor of temperature can be obtained. The future 

daily temperature is calculated as: 

𝑇𝑁𝑂𝐵𝑆(𝑚,𝑑) = 𝑇𝑂𝐵𝑆(𝑚,𝑑) + (𝑇𝐹𝑃(𝑚) − 𝑇𝐻𝑃(𝑚))                       (4 − 4) 

where 𝑇𝑁𝑂𝐵𝑆(𝑚,𝑑) is the future temperature of the FHs on the dth day in the mth month; 

𝑇𝑂𝐵𝑆(𝑚,𝑑)is the observation temperature on the dth day in the mth month and 𝑇𝐹𝑃(𝑚) and 

𝑇𝐻𝑃(𝑚) represent the average temperature of the GCMs in the mth month of the FPs and 

HP, respectively. 

 

4.3.3 Hydrological modeling 

Due to the strong spatial heterogeneity in extreme topographical conditions and the good 

performances in hydrological processes, the fully distributed hydrological model MIKE 

SHE was employed in this study to catch the detailed spatial variation. The model’s 

establishment and calibration can be found in chapter 2 and 3. Additionally, the 

performances of this well-calibrated model have been introduced. In this climate change 

study, the generated meteorological data in the future period were used to couple the 

MIKE SHE model. 

 

4.4 Future climate change 

4.4.1 Precipitation 
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Changes in frequency 

The mean monthly frequency changes of the different FPs with respect to HP 

determined by the GCMs are similar between RCP4.5 and RCP8.5 (Figure 3). In general, 

from September to the following March, the number of rainy days continuously declines 

in FPs; this declining trend is stronger in RCP8.5 than in RCP4.5. Nevertheless, the 

number of rainy days mostly increases in June and July and exhibits moderate change 

ratios. Regarding mean annual rainy days, 18 GCMs’ average ensemble indicates little 

change, with factors of 1.00, 0.99, 0.98 and 0.97 in RCP4.5 and of 1.00, 0.99, 0.97 and 

0.94 in RCP8.5. However, the uncertainties among the 18 GCMs present large ranges: 

0.92-1.09, 0.88-1.11, 0.90-1.11 and 0.88-1.11 in RCP4.5 and 0.93-1.07, 0.89-1.15, 

0.84-1.18 and 0.76-1.04 in RCP8.5, and the deviations among 18 GCMs in different 

periods mainly reflect on summer. 

 

 

Figure 4.1 The mean frequency changes of the rainy days in each month of future periods 

relative to those of the history period determined by the 18 GCMs 
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Table 4-1 The average, maximum/minimum values of the annual rainy days change factors in 

future periods relative to those of the history period determined by the 18 GCMs 

 FP1 FP2 FP3 FP4 

RCP4.5 

Mean 1.00 0.99 0.98 0.97 

Maximum 1.09 1.11 1.11 1.11 

Minimum 0.92 0.88 0.90 0.88 

RCP8.5 

Mean 1.00 0.99 0.97 0.94 

Maximum 1.07 1.15 1.18 1.04 

Minimum 0.93 0.89 0.84 0.76 

 

Quantile perturbation  

The precipitation data at the quantiles of 0.01, 0.05, 0.1, 0.2 and 0.5 were chosen to 

illustrate the mean monthly quantile perturbation of precipitation intensity in the 

different FPs relative to those in HP determined by the GCMs (Figure 4.2). Both in two 

scenarios, the rainfall intensity at the different quantiles will not drastically change in 

summer, however, significant variations occur in winter. The intensity of extreme 

precipitation (at the 0.01 quantile) in winter is the most significant and much stronger in 

RCP 8.5. Such as in January of PF4, the average increased proportion can be as high as 

40% in RCP4.5 and 67% in RCP8.5 and the ranges represent -19%-221% in RCP4.5 and 

-15%-258% in RCP8.5. Compared to extreme precipitation, the other precipitation 

intensities show a slightly growing perturbation. 
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Figure 4.2The mean quantile perturbations of precipitation intensity in each month of future 

periods relative to those of the history period determined by the 18 GCMs 

 

Precipitation volume  

After adding these average change signals to the observation using the modified QPM, 

new time series were obtained to describe the future situation. The monthly change rate 

of precipitation volume in FPs is provided in Figure 4.3. In two scenarios, owing to the 

trending-off effect of incremental rainy days and reduced precipitation intensity, the 

volumes of precipitation barely shift in summer. However, the stronger precipitation 

intensity is more than offset by declining rainy days; therefore, more abundant 

precipitation occurs in winter. Finally, compared with the HP, the annual precipitation in 

FPs demonstrates upward tendencies and is listed in Table 4-2. Based on the average 

ensemble of 18 GCMs, in the future, primarily because of heavier extreme precipitation 

in winter, the annual precipitation in the Yarkant River basin will exhibit a moderate 

increasing trend until 2100 in both scenarios but stronger in RCP8.5. 
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Figure 4.3 The amount change rates of the generated future monthly precipitation with respect 

to those observed in the history period 

 

Table 4-2 The increased rates of annual precipitation in future periods relative to the history 

period 

Scenario FP1 FP2 FP3 FP4 

RCP4.5 2.9% 3.6% 3.0% 4.4% 

RCP8.5 2.8% 5.3% 6.3% 7.9% 

 

4.4.2 Temperature  

The monthly absolute change in temperature in the FPs with respect to that of the HP is 

presented in Figure 4.4. Obviously, because of the different greenhouse gas emission 

scenarios, the warming will slow down at the end of this century in RCP4.5 but will 

keep a continuous rising tendency in RCP8.5. After 2060, the warming rate will 

moderately decrease and present the values from 0.38°C/10a at the beginning to 

0.31°C/10a at the end of this century. The high emission of RCP8.5 causes an increase 

in warming rates from 0.34°C/10a at the beginning to 0.59°C/10a at the end of this 

century. The temperature changes are much larger than the precipitation in GCM. 
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Furthermore, in the FPs, the wide range of warming trends relative to HP among 18 

GCMs (listed in Table 4-3) suggests that the large uncertainties among the different 

GCMs, it is really hard to choose one certain GCM in climate change, however, the 

average ensemble of most GCMs in CMIP 5 could be a better choice. 

 

 

Figure 4.4 The mean monthly changes in temperature of future periods compared to those of 

the history period determined by the 18 GCMs 

 

Table 4-3 The average, maximum/minimum values of the annual rainy days change factors in 

future periods relative to those of the history period determined by the 18 GCMs 

Warming rate（°C/10a） FP1 FP2 FP3 FP4 

RCP4.5 

Mean 0.38 0.38 0.36 0.31 

Maximum 0.20 0.18 0.13 0.17 

Minimum 0.61 0.71 0.82 0.75 

RCP8.5 

Mean 0.34 0.44 0.53 0.59 

Maximum 0.11 0.19 0.32 0.39 

Minimum 1.16 0.88 1.07 1.11 

 

The Yarkant River basin is a high-altitude mountain catchment, and the cold air 

gathering effect of mountain in on popular topic in the physical geography study 
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(Michael et al. 2005; Baguis et al. 2010). Considering the elevation-dependent warming 

in the mountain region (Rangwala et al. 2012), one nearby meteorological station, 

Pishan station, which is located at 1 375 m, was used to investigate the elevation lapse 

rate (EPR) of the temperature in the GCMs. The average yearly temperature of the 

GCMs, both in RCP4.5 and RCP8.5- at Tashkurgan and Pishan station are listed in 

Table 4-4. Before 2060, the warming in the mountainous region is lower than the plain 

region with a value of 0.91°C, this differences will decrease to 0.75°C. During climate 

change, the different warming in the mountain and plain region will cause the EPR 

change, according to the Table 4-4, the quantified values of EPR change can be 

calculated. No matter in RCP4.5 or RCP8.5, warming differences between two stations 

are very close in different HPs, therefore, the EPR of the future temperature in the 

MIKE SHE model will decrease by 0.54 °C/km before 2060 and 0.44 °C/km after 2060. 

Table 4-4 The average yearly temperature determined the GCMs at Tashkurgan and Pishan 

station and the elevation lapse rates (EPR) were calculated based on these two stations. 

 HP FP1 FP2 FP3 FP4 

RCP4.5 

Tashkurgan (°C) -5.84 -4.53 -3.79 -3.13 -2.90 

Pishan (°C) 3.22 5.45 6.18 6.69 6.90 

Differences (°C) / -0.92 -0.91 -0.76 -0.74 

EPR change(°C/km) -5.28 -5.82 -5.81 -5.73 -5.72 

RCP8.5 

Tashkurgan (°C) -5.84 -4.68 -3.46 -1.84 -0.29 

Pishan (°C) 3.216 5.3 6.49 7.95 9.5 

Differences (°C) / -0.92 -0.90 -0.73 -0.74 

EPR change(°C/km) -5.28 -5.82 -5.8 -5.71 -5.71 

 

4.5 Effects on hydrological processes 

4.5.1 Variation in water components 

Based on the simulated results using the MIKE SHE model of the Yarkant River basin, 

the quantified water balance components at the catchment scale for each period are 

listed in Table 4-5. Because of the impact of climate change, all water components will 

be influenced correspondingly. Though the precipitation moderately changes in the 

future, the water resources in different forms would change strongly. With  an 

increasing  temperature, the stockpile (snow storage) would reduce persistently, at the 

end of this century, the snow storage will reduce 16.6 mm in RCP4.5 and 26.3 mm in 

RCP8.5 relative to 1986~2005. What is more, the dissipation (evapotranspiration) is 

more significant, the increase at the end of this century shows the values of 23.5 mm in 
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RCP4.5 and 47.3 mm in RCP8.5. Clearly, the variations in dissipation exceed those of 

the stockpile and supply and the diminishing snow storage in the mountain region and 

streamflow to the downstream region will be consumed by the increasing 

evapotranspiration and these changes are more dramatically in RCP8.5. In this way, the 

available water resources in the downstream oasis could decrease and face a more 

limited situation. The detailed variation of snow and streamflow would be analysed 

thoroughly. 

Table 4-5 The annual amounts of the water balance components in the Yarkant River basin 

during each period 

Water components HP FP1 FP2 FP3 FP4 

RCP4.5 

Precipitation (mm） 262.1 269.8 268.8 270.0 273.7 

Snow storage（mm） 36.9 31.8 25.5 20.7 20.3 

Stream runoff (mm) 110.2 107.5 108.5 107.7 106.3 

Evapotranspiration (mm) 108.6 118.3 123.7 128.7 132.1 

RCP8.5 

Precipitation (mm） 262.1 268.4 274.5 278.0 279.4 

Snow storage（mm） 36.9 34.6 23.9 18.1 10.6 

Stream runoff (mm) 110.2 106.1 112.1 107.8 103.6 

Evapotranspiration (mm) 108.6 119.9 129.5 143.1 155.9 

 

4.5.2 Snow 

Snow/Precipitation 

The snow/precipitation (S/P) means the proportion of snow to the total precipitation. 

Snow is an important water component of the hydrological processes in the alpine 

catchment. In the MIKE SHE model, a critical temperature is used to distinguish the 

different precipitation forms, snow or rain. Therefore, under the future climate change 

scenarios, the S/P would be very sensitive to warming. With the temperature increasing 

in the Yarkant River basin, more and more snowfall could translate to rainfall in FPs and 

it mostly occurs during May to September. However, the variations are very rare during 

November to next April in RCP4.5 and December to next February in RCP8.5 (shown in 

Figure 4.5). Comparing the FP3 and FP4, the S/P in each month is similar in RCP4.5 but 

reduces continually in RCP8.5, these represent the same change tendency in temperature 

in two scenarios. Though the total volume of precipitation will just vary a little, the 

forms will change sharply.  Compared to  the HP, the change ratios of S/P from June 

to September are presented as -4.6%, -13%, -24.5%, -25.6% in RCP4.5 and -2.2%, 

-16.1%, -38%, -54.7% in RCP8.5, however, these values in other months are only given 
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as -0.3%, -4.3%, -5.4%, -6.8% in RCP4.5 and -0.9%, -2.2%, -6.8%, -10.7% in RCP8.5. 

Thus, despite the warmer temperature, precipitation hardly tends to occur as rain and 

snow still are the primary precipitation form in winter. 

 

 

Figure 4.5 The monthly values of S/P in different periods in the Yarkant River basin 

 

 

Snowmelt 

With the rising temperature, not only the snowfall but also the snow storage and 

snowmelt could change greatly. In the scenario of RCP4.5, before 2060, May is a month 

for accumulating snowpack but after 2060, it becomes a month of snow dissipation 

(Figure 4.6). Moreover, the degradation trend will be stronger in July and weaker in 

August. These variations of snow storage change coincide with the snowmelt. The 

monthly distribution of snowmelt in FP1 is similar to HP but after 2040, snowmelt 

caused by a warming trend will exhibit an increased occurrence in the earlier period 

(April to May) (Figure 4.6). Therefore, the less snowpack melts in June, the peak in July 

becomes more spiculate. Together with the drastically decreased snowfall in summer, 
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the snowmelt in a later period (August to October) also represents the distinct reduction. 

This tendency will be more severe after 2060. The change in snowmelt is also reflected 

on the snow storage.  

 

 

Figure 4.6 The monthly volumes of snowpack change and snowmelt in each period in the 

Yarkant River basin in RCP4.5 

This tendency will be more severe in the scenario of RCP8.5 (Figure 4.7). Similarly, the 

initial snowpack accumulation could become snowpack dissipation after 2060 in May. 

What is more, September is a month of snow dissipation before 2060, but after 2060 it 

becomes a snowpack balance. For the distribution of snowmelt, the peak will move 

forward to June from July after 2060. The significant increase in snowmelt could begin 

in March and last to June and a directly vast decrease will occur from July, due to the 

decreasing snowfall from May to September and the increasing snowmelt from March to 

May. 
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Figure 4.7 The monthly volumes of snowpack change and snowmelt in each period in the 

Yarkant River basin in RCP8.5 

Snow storage 

Based on Figure 4.6 and 4.7, no matter which different period or scenario, a new cycle 

of snowpack accumulation could begin in September and the snow storage in August is 

the minimum of the entire year and is defined as permanent snow storage in this study. 

In this way, snow storage at the end of August can simply be considered as permanent 

snow storage. Figure 4.8 provides the spatial distribution of snowpack on August 31st of 

each period’s last year. Under two scenarios of RCP4.5 and RCP8.5, before 2060, most 

middle mountain regions could be covered by a thin snowpack and the permanent snow 

cover area accounted for 34.4% of the entire catchment. However, the covered area in 

the middle mountains will vanish during 2060-2079 and the permanent snow storage 

area could decrease by 82.3%, occupying only 5.95%.  
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Figure 4.8 The spatial distribution of the snowpack on August 31st of the last year in each 

period under RCP4.5 (first row) and RCP8.5 (second row) 

 

In accordance with Figure 4.8, Figure 4.9 illustrates the distribution of permanent snow 

storage in the different elevation bands. By comparing the snow storage distribution in 

the elevation bands before and after 2060, the permanent snow storage region will be 

lifted by 600 m and the snow accumulation around 5000-5600 m will vanish completely 

in 2060-2079.  Although the location of the permanent snow storage remains the same 

before 2060, compared with HP, the volumes of snow storage at 5000-5600 m in FP1 

and FP2 will diminish significantly, with proportions of 33.2% and 72.1% in RCP4.5, 

16.4% and 84.4% in RCP8.5. The shrinkages of snow storage in 5600-6400 are 

significantly different between RCP4.5 and RCP8.5, especially after 2060. The climate 

change scenario of RCP4.5 will decrease snow storage in 5600-6400 with the ratios of 

3.6%, 8.8%, 17.3% and 19.4% in the FPs relative to HP. However, under RCP8.5, the 

effect become much acuter, most permanent snow storage will disappear at the end of 

the century and the proportion reduced by 0.2%, 8.6%, 27.2% and 61% in FPs. Different 

phenomena  occurs in the extreme cold regions above 6400 m, where the average 

annual temperature was -19.5 °C in the HP, the small or absent change in permanent 

snow storage in two scenarios suggests that the rising temperature hardly affects the 

snow at this elevation because the increased temperature mostly remains lower than the 

snow’s critical melting temperature. 
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Figure 4.9 The distribution of permanent snow storage in the different elevation bands on 

August, 31st of each period’s last year  

It is also noticeable that the climate change trend in the low-altitude regions should not 

simply be extended to high-altitude regions. If the elevation-dependent warming is not 

considered when processing the temperature using GCMs, the warming in high-altitude 

regions will be overestimated and results  in a large deviation (e.g. the disappearance of 

permanent snow storage at 5000-5600 m will be earlier and completely vanish after 

2040). The deviation will hinder an understanding of future changes in water resources. 

 

4.5.3 Streamflow 

At  catchment outlet of Kaqun station, the streamflow in the FPs will change with 

ratios of -2.6%, -1.5%, -2.2%, -3.5% in RCP4.5 and -3.7%, 1.7%, -2.2%, -6.0% in 

RCP8.5 (Table 4-5), compared to the HP. In general, the runoff reflects a decreased 

tendency and suggests that less water resources will be available for the downstream 

region. Similar to the change in snowmelt, the streamflow rises in spring and early 

summer and drops in late summer (Figure 4.10). In FP1, the monthly streamflow at 
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Kaqun keeps a very similar distribution as in HP but the discharge in May and July 

began to rise because of more melting water in FP2. After 2060, other variations 

regarding the reductions in August and September need to be noted. In RCP8.5, the 

discharge in July will cut down because of more melting water in HP4 relative to HP3. 

All of these changes reflect a high correlation with snowmelt. From a temporal 

perspective, May to September will remain the flood season with contribution ratios of 

80.5%, 81.5%, 82.4%, 82.8% in RCP4.5 and 80.6%, 82.3%, 83.6%, 83.1% in RCP8.5. 

This very moderate growth discharge in the flood season is mainly ascribed to stronger 

and more flood events and can be further explained by the following analysis.  

 

 

Figure 4.10 Average monthly discharge in each period at Kaqun station 

Figure 4.11 illustrates the exceedance probability curves of the simulated discharge at 

Kaqun station for each period. For extreme flows with exceedance probabilities below 

0.08, the average discharge will significantly increase with the ratios of 17.2%, 20.5%, 

24.3%, 25.6% in the four FPs of RCP4.5 relative to the HP and these values represent 

1.4%, 13.8%, 27%, 20.6% in RCP8.5. The normal flow with exceedance probabilities 

from 0.08 to 0.4  show  moderate variations before 2060 and quantify  the ratios of 
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1.6% and -4.3% in RCP4.5, -4.6% and -1.7% in RCP8.5. However, the variations 

became more drastic after 2060 and demonstrate values of -10.7% and -13.1% in 

RCP4.5 and -16.7% and -20.2%. Alternatively, the flows with exceedance probabilities 

above 0.4 will be correspondingly reduced by 8.6%, 13.4%, 16.4%, 18.3% in RCP4.5 

and 6.4%, 14.1%, 25.1%, 27.0% in RCP 8.5.  

 

 

Figure 4.11 Exceedance probabilities of the simulated discharge at Kaqun station in each 

period 

The variance of the flow probability indicates that the disequilibrium of the water 

resources will be more severe in the future; thus more water will be involved in flood 

events and less water will be available in the dry season, the phenomenon will be 

stronger in RCP8.5 than RCP4.5. One possible reason for these changes is that more 

snowfall will be replaced by rainfall, and snowmelt will move forward and more melt 

water concentrates in early summer. These variations accelerate the river conflux and 

increase the frequency and intensity of flooding. Considering a hypothesis, the events of 

daily discharge above 1000 m3/s (with exceedance probabilities smaller than 0.01) are 
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taken as the flood, the occurrence frequencies are quantified in the HPs and represent  

values of 1.8%, 2.1%, 2.5% 2.5% of RCP4.5 and 1.1%, 1.6%, 2.7%, 2.3% of RCP8.5. 

Additionally, the occurrence time moves earlier: from the middle of June in the HP to 

early June after 2020 and as early as late May after 2060, it could even happen in middle 

May in FP4 of RCP8.5. These changes indicated a more severe flood security and an 

unsteady distribution of water resources. 

 

4.5 Conclusions 

A 21-member average ensemble of GCMs under RCP4.5 and RCP8.5 was used to 

analyse the climate change impact in the Yarkant River basin in Karakoram. A modified 

QPM was employed in order to extract the change signals of precipitation in GCMs. In 

this modified QPM, according to the frequency variations in different quantile segments, 

the added and subtracted rainy days were assigned to a fixed range in the rank time 

series. The Delta method with elevation-dependent warming was applied to process the 

temperature change trends in GCMs. All the change signals of precipitation and 

temperature presented the notable uncertainties among the employed GCMs. Referring 

to the observed meteorological data in the baseline period, an average ensemble of 

change signals were used to generate the future meteorological data. Coupled with a 

well-calibrated MIKE SHE model, the responses of the hydrological processes to 

climate change were analysed from a water balance perspective. 

In the Yarkant River basin, this century’s precipitation growth in the FPs (mean ratios of 

2.9%-4.4% in RCP4.5 and 2.8%-7.9% in RCP8.5) will be triggered primarily by the 

enhanced intensity of extreme precipitation in winter. In two scenarios, the slight 

increase in frequency and decrease in intensity at different quantiles result in little 

variation of the precipitation volume in summer. In winter, the stronger precipitation 

intensity is more than offset by declining rainy days and consequently, the precipitation 

in winter exhibits an increasing trend. Concerning temperature, the warming tendencies 

are obviously distinct between two scenarios, RCP4.5 shows the moderately mean ratio 

with 0.31/10a-0.38/10a in FPs, but RCP8.5 presents the ever-increasing values with 

0.34/10a-0.59/10a. Furthermore, because warming is elevation dependent, the 

temperature in the low-altitude region increases more dramatically than  in the 

high-altitude region and the EPR values indicate differences of 0.54 °C/km and 

0.44 °C/km before and after 2060, respectively. 

Under the influence of the local climate change, the spatiotemporal distribution of snow 
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will alter sharply and a large variation will develop between the different elevation 

bands. In each FP, snowfall will decrease significantly from June to September with 

proportions of 6.4%-28.9% in RCP4.5 and 3.4%-61.7% in RCP8.5 and the snowmelt 

from March to May will be enhanced; as a result, increasingly less snowpack is melting 

from August to October. For the permanent snow-covered region, the altitude will lift by 

600 m during 2060-2079, and the covered area at 5000-5600 m will completely vanish.  

At 5600-6400 m, snow storage will diminish significantly (by 19.4% in RCP4.5 and 61% 

in RCP8.5) by the end of this century. However above 6400 m, because the increased 

temperature hardly exceeds the critical value for snowmelt, little or no change in snow 

storage occurs in this region. 

The streamflow at the catchment outlet will exhibit a moderate descending trend and a 

more severe disequilibrium. Because of the more intense dissipation via 

evapotranspiration, the predicted discharge in HPs at Kaqun station will diminish at a 

ratio of 1.5%-3.5% in RCP4.5 and 2.2%-6% in RCP8.5. More importantly, the runoff 

distribution will be much more incongruous. As the snowmelt changes, streamflow will 

also increase from spring until early summer and decrease in late summer. Furthermore, 

earlier and stronger flood events will happen more frequently.  

In the Yarkant River basin, the future climate change will strongly impact the 

hydrological processes and trigger a significant reform of water resources. The enhanced 

evapotranspiration will also result in more water consumption. The shrinking of the 

snow-covered area and snow storage volume will reduce the water storage in solid form 

in the high mountainous region. The declining streamflow at the mountain outlet will 

threaten the available water resources for agricultural downstream irrigation. Moreover, 

in the future flood period, a larger flood discharge and more frequent flood events will 

create greater challenges for flood security. These responses of hydrological processes 

indicate that the future climate change could strongly affect the water resources and thus 

a new strategy for irrigation agriculture in the downstream region is needed so as to 

adapt to the water variation supplied by the alpine catchment.  
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General discussion 

This chapter presents an overview of the research objectives and reviews the main 

answers to the research questions (Section 5.1). Then, critical reflections on the 

methodologies are summarized, including how to answer the research questions in a 

more effective way (Section 5.2). Eventually, recommendations for future work are 

proposed (Section 5.3). 
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5.1 Summary and discussion of research questions 

Water resources are essential for economic development and ecological stabilization in 

arid and semi-arid regions. In order to improve the utilization efficiency of limited water 

resources, many studies (Williams, 1999; Ma et al., 2005; Zhang et al., 2010) have been 

conducted over the past several decades and focused on the relations among 

environment, ecology, and climate change. Mountain hydrology plays a key role in the 

management of water resources in arid and semi-arid regions. Hydrologic feedbacks in 

mountainous regions dominate the availability of water resources, influence human 

activities, constitute ecological and environmental systems, and contribute to global and 

regional climate variability (Roger et al., 2006). A better understanding of hydrological 

processes could greatly help to systematically handle with water resource issues. 

However, because of the extreme topographic patterns, steep altitudinal gradients of 

meteorological variables, high seasonal variability of hydrologic components, low 

density and weak representativeness of gauging, and the complex water cycle, 

hydrological processes in study area are significantly different from those in 

lower-elevation regions and increase the modeling difficulties (Kang et al, 2007). The 

Yarkant River basin is a typical high alpine catchment in an arid region. Its water supply 

sustains the livelihood of more than 9 million people in the Tarim River basin. Since the 

previous studies of hydrological processes in the Yarkant River basin were still 

insufficient, the primary theme of this dissertation is to investigate the hydrological 

processes and their variation under climate change in the Yarkant River basin and 

support local water authorities to understand the local hydrological features. 

From the general goal, four research questions were distilled.  

RQ1: How is the hydrological processes described in different hydrological models? 

RQ2: How do remote sensing data perform in hydrological modeling? 

RQ3: What are the responses of hydrologic components to different forcing data? 

RQ4: What are the effects of climate change on the hydrological processes? 

The four research questions were rephrased and answered in Chapters 2-4. The 

corresponding research objectives of each question attempt to address the main 

challenges in understanding hydrological processes in alpine catchments. An overview 

of the research objectives, methods used and findings is given in Table 5-1. This table 

aids in understanding the links between the research objectives and the research 

questions, and how they are presented in each chapter.  
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RQ1: How is hydrological processes described in different hydrological models? 

Because of the limitations of the understanding and mathematical expression of natural 

hydrological processes, hydrological models cannot completely describe natural 

processes and are built in a simplified and conceptual way using different structures and 

algorithms (Moradkhani et al, 2008). Consequently, each model has its own unique 

characteristics and respective applications (Gayathri et al, 2015), and hydrological 

models have often produced uncertain results regarding the probable changes in spatial 

and temporal distributions of calibrated hydrologic components (Yang et al, 2000; Jiang 

et al, 2007; Barthel et al, 2012). Moreover, model descriptions of overall integrated 

processes are much more uncertain. To answer the question RQ1, the models SWAT 

and MIKE SHE were jointly applied for hydrological modeling in Chapter 2. The joint 

application is based on the cross-calibration of main hydrologic components, including 

runoff, snow and evapotranspiration. Afterward, the hydrological processes and the 

influences of model structure and algorithm were analyzed. 

Firstly, we evaluated the discharge hydrography of SWAT and MIKE SHE simulations 

at the Kaqun station. After calibration the discharge hydrography curves were generally 

well matched with the observations and presented an accurate result of the calibrated 

output. However, huge differences were found in the constitution of stream runoff, snow 

distribution and evapotranspiration distribution. These differences in various models 

indicate that some biases may be caused in our understanding of these hydrological 

processes based one single simulation.  

Regarding the contribution of stream runoff, several studies have identified that 

subsurface lateral flow is a dominant contributor to storm flow in headwater catchments 

(Swarowsky et al., 2012; Kienzler and Naef, 2008; Verseveld et al., 2009). Fan et al. 

(2014) used isotopes to study the constitution of the Tizinafu River (neighboring to the 

Yarkant River) and found that most melt water above 2500m would infiltrate into the 

soil and contribute to the stream as subsurface lateral flow. The SWAT model calculated 

that the subsurface lateral flow comprised 41.4% of the total flow. Because of the 

algorithm differences, the lateral flow in soil profiles was ignored by MIKE SHE model. 

The MIKE SHE model did not consider this phenomenon, but gave the steady and 

uninterrupted base flows in the Yarkant River. Fan et al (2013) used multiple base flow 

separation methods and determined that steady and uninterrupted base flows contributed 

21.3% of the total flow. This ratio was much closer to the MIKE SHE simulation result 

of 23% and suggested the better base flow simulation in MIKE SHE model. 
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Table 5-1 Overview of the contents of this dissertation 

Chapter  RQ Objectives Employed methods Main findings 

Chapter 2: Joint 

application of multiple 

models in hydrological 

processes study 

RQ1  Investigate the performances of the 

SWAT and MIKE SHE in simulation 

of different hydrologic components; 

 State the hydrological processes in 

the Yarkant River basin 

 Cross-validate the outputs and analyze 

the differences based on model structure 

and algorithm  

 Combine the simulations of multiple 

models 

 SWAT and MIKE SHE can agree 

with natural processes in some 

aspects but not in all 

 A general hydrological process was 

given with the quantized 

hydrological components 

Chapter 3: The responses 

of hydrological processes 

to the different input data 

RQ2 

and 

RQ3 

 Check the application of RSD in 

modeling 

 State the responses of hydrological 

processes to different input data 

 Accuracy checking and bias correction 

based on LOCI 

 ANOVA model to define the significant 

impact of input data to hydrologic 

outputs 

 Comparing the differences of the 

sensitive hydrological components 

 TRMM overestimated low intensity 

precipitation events 

 Corrected RSD had acceptable 

simulation but without improvement 

 Differences between SBD and RSD 

clearly reflected in the 

corresponding sensitive water 

components 

Chapter 4: The effects of 

climate change on 

hydrological processes 

RQ4  Understand future climate change in 

the Yarkant River basin 

 Describe the changes in the future 

hydrological processes 

 Extract the change signal of precipitation 

and temperature and obtained future data 

based on modified QPM and Delta 

 Compiling the MIKE SHE model and 

analyze the simulated outputs 

 Stronger extreme precipitation 

events caused a moderately 

increased volume 

 Great differences of warming 

between RCP4.5 and RCP8.5 

 Hydrological processes sharply 

change in future climate scenarios 

and trigger significant reforming of 

the water resource components. 
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For the calculation of snowmelt, the degree-day approach takes temperature as the 

dominant factor, essentially as a simple expression of energy transport and conservation 

on the snowpack surface (Braithwaite, 1995; Krenke et al, 1996). Because of the less 

input data and parameters, degree-day approach has been widely applied in snow and 

glaciers melt (Hock, 2003). It has achieved similar performance to the energy-balance 

approach in many catchments and even better results in some sparsely gauged regions 

(WMO, 1986; Hock, 2005). The degree-day approach was used in both the SWAT and 

MIKE SHE models. However, more impact factors, including the accumulated 

temperature on the snow surface (Zuzel et al, 1975; Koivusalo et al, 2001) and variation 

in the melt factor, were considered in the SWAT model. This kind of arrangement 

intends to have more concentrated temporal distribution of snowmelt, and proportion of 

snowmelt in June to September was 76.8%. This feature of the SWAT model matched 

the natural snowmelt process more flexibly than the current MIKE SHE model and 

explained the huge seasonal change of stream runoff in the Yarkant River (Chen et al, 

2006; 2010). But these kind of lumped parameters in each elevation band are hard to 

calibrate or validate. In practical, it might trigger the problem of overparameterization.  

For the output of snow storage, although the annual volume in different elevation zones 

was similar between the SWAT and MIKE SHE models, the semi-distributed structure 

of the SWAT model strongly decreased the spatially distributed information. The MIKE 

SHE model produces the complete grid output with significant spatial variation. By the 

MIKE SHE model, it was found that the snowpack at approximately 4500 m could melt 

from July to September, although the snow cover above 5500 m showed a continuously 

increasing trend throughout the entire year. The fully distributed model presents the 

advantages in spatial distribution of outputs.  

For all the spatial outputs of the hydrologic components, the MIKE SHE model showed 

clearer correlation in spatial distribution with the corresponding factor. For example, 

MIKE SHE produced more information regarding evapotranspiration being closely 

related to land use and water availability. Based on the spatial and temporal distribution, 

MIKE SHE suggested an obviously seasonal change in the region with good plant 

coverage around the outlet, but little or no variation in the glacial region around the 

western ridge. Additionally, because of the definite hydrodynamic relationship between 

the grids, the slope conflux was implemented and the depression could intercept and 

store some water in this process. In this case, the larger water area caused more water 

evaporation in the MIKE SHE model. Some terrain was correctly described as 

depressions but some descriptions as depressions resulted from mistakes in the digital 
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processing. Therefore, field investigations can be helpful in correctly judging 

depressions. The comparison in chapter 2 revealed the effect of the model structure on 

evaporation; the MIKE SHE model produced more water evaporation, with a proportion 

of 35.5% compared with SWAT. However, it was difficult to estimate which was better 

without actual field investigation of the terrain. Maybe the evapotranspiration on the 

HRU or finer scale can connect to the hydrological simulation in different scale, and 

help to seize the actual evapotranspiration.  

Evapotranspiration is the primary dissipation type in the mountain region, although it is 

also the least well known of the climatic elements (Axel, 2002). Direct measurements in 

the whole catchment are not possible and must be calculated by other measurement and 

estimated parameters. Therefore, the chosen algorithm would strongly affect simulated 

results. The Penman-Monteith method has been previously used in the SWAT model to 

satisfy the growth of plants, and soil evaporation has been subject to the difference 

between actual soil content and soil water content at field capacity and the wilting point. 

This limitation in calculation could be more appropriate in arid and semi-arid regions. 

However, the Kristensen-Jensen method used in evapotranspiration calculation in MIKE 

SHE did not include these parameters restrictions. Finally, in the Yarkant River basin, 

MIKE SHE produced more soil evaporation, with the ratio of 63.7% relative to SWAT. 

The SWAT and MIKE SHE models have had widely successful applications in many 

fields of hydrologic study and have also performed well for hydrography at the Kaqun 

station in the Yarkant River basin modeling. Their performances for the description of 

some hydrologic components which were not calibrated were quite distinct, For a single 

hydrological modelling, some aspects of hydrological processes can accord with the 

physical truth, but not the complete processes. Generally, the integrated application of 

two different types of hydrological models could achieve a good complementation and 

overcome the deficiency of model structure and algorithm. 

RQ2: How do remote sensing data perform in hydrological modeling? 

In addition to model structure and algorithm, input data is another primary uncertainty 

source in hydrological modeling (Fang et al, 2015). To reduce this uncertainty source, 

different new data sources were used in hydrological study, thereinto, RSD are the most 

important which have been widely applied in calibration and validation. In chapter 3, 

remotely sensed data, including precipitation, temperature and PET, were collected and 

applied in hydrological modeling. In conclusion, their application did not improve the 

accuracy of simulated results but achieved an acceptable output. 
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RSD have enriched the data sources of hydrological modeling, especially for 

understanding the hydrological processes of high-cold alpine catchments (Chen et al., 

2014). The PUB has strongly suggested developing remote sensing applications in 

ungauged catchments (Tan et al, 2004). Among the input data, precipitation surely is one 

of the complex and crucial variables among hydrometeorology factors. Currently, there 

are many remotely sensed precipitation datasets that can be chosen; however, their 

applications in hydrological modeling are hard to evaluate because of sparse validation 

data (Kan et al, 2013). Therefore, the precision of the chosen TRMM data in the study 

area was assessed based on observations. Through detecting of TRMM on actual rainy 

days, we found that TRMM overestimated many drizzle days when the daily volume of 

precipitation was lower than 0.3 mm. Based on this finding, LOCI can be chosen to 

correct the TRMM data from the precipitation frequency and volume.  

Normally, the bias corrections of precipitation are complex because of many interlaced 

issues such as volume, frequency, intensity, and probability distribution. Different 

correction methods have focused on the different issues (Claudia et al, 2012; Fang et al, 

2015). Therefore, determining the dominant problem of raw data is the precondition for 

effective bias correction. Based on the detection of TRMM in the Yarkant River basin, 

too many drizzle days are the dominant problem; after correction by LOCI, the 

correlation coefficients with the observations at a monthly scale were greatly improved.  

Alternatively, the remotely sensed temperature and PET can be used in hydrological 

modeling after simple processing. The processed RSD were used to drive the MIKE 

SHE model, and their simulated discharge hydrography at the Kaqun station was 

evaluated by statistical coefficients. Compared with the SBD model, no improvement 

was found; all the applications of RSD resulted in merely acceptable simulation. This 

finding strongly indicates that RSD has difficulty determining the physical truth of 

meteorological factors with respect to spatial and temporal distributions.  

It was difficult to use field investigation to clarify the actual situation of the hydrologic 

components in the untraversed region. The accuracy of RSD is still nebulous and direct 

applications may thus be in doubt. However, reference to field reality can also be 

achieved from RSD, which facilitates the understanding of hydrological processes.   

RQ3: What are the responses of hydrologic components to forcing data? 

Interpolated SBD for precipitation and temperature are too piecemeal in the Yarkant 

River basin because of the very steep terrain. Spatial RSD reveals more rational 
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distribution characteristics with obvious isolines. However, the differences in spatial 

distribution between SBD and RSD cannot be explained by the flow hydrography. In 

chapter 3, after the significant impacts of input data on outputs were defined, more 

attention was paid to the responses of hydrological processes to input data. The snow in 

covered areas and storage volume allowed the interpretation of differences between SBD 

and RSD (precipitation and temperature), and transpiration was used in the PET data. 

The hydrologic cycle is a quite complex and uncertain system in nature (Christiaens et al, 

2002; Gallart et al, 2007); moreover, the relationships between inputs and outputs are 

highly nonlinear in hydrologic simulations (Kang et al, 2013). Therefore, which 

hydrologic component reflected the differences in input data in the hydrological 

processes? To answer this prerequisite problem, ANOVA was applied to test the 

significant impact of input data to outputs. ANOVA is a collection of statistical models 

used to analyze the significance between an impact factor and experimental results 

(Michael et al, 2005). The significant impacts of three kinds of input data (precipitation, 

temperature and PET) to hydrologic components were defined by ANOVA with three 

factors with fixed effects.  

To study hydrological processes, chapter 2 focused on the effect of different input data. 

Compared with interpolated SBD, TRMM overestimated the precipitation in the high 

mountain region (above 6400 m), with a ratio of 12%, and caused more snow storage in 

this region, with a ratio of 12%. Similarly, the underestimation of TRMM in the 

5000-5700-m zone resulted in less snow storage. The volume changes of precipitation 

and snow storage corresponded well. However, this simple correspondence cannot be 

directly extended to temperature; the change in remotely sensed temperature caused 

re-judgements of parameters in auto-calibration. The smaller DDF and higher TMT 

resulted in less snowmelt at elevations under 4300 m and more snow-covered areas with 

very thin depths. At 5000-5700 m, the snowpack was hard to melt and snowfall became 

the dominant factor in the volume of snow storage; the higher TMT and higher remotely 

sensed temperature in this region resulted in much less snow storage. Additionally, the 

higher remotely sensed PET also caused smaller transpiration because of the changed 

parameters.  

When only one hydrologic component was studied in hydrologic simulations, very 

similar outcomes could be gained by different driving data after calibration. In the 

calibration processes, some biases may have been introduced in other hydrologic 

components that strongly affected the description of hydrological processes. To clarify 

https://en.wikipedia.org/wiki/Statistical_model
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the effect of input data on hydrological processes, when one kind of input data is 

changed, the responses of the corresponding hydrologic components that are 

significantly sensitive to this input data must be analyzed. Moreover, an optimized set of 

parameters for one hydrologic component may be non-optimal for others. 

RQ4: What are the effects of climate change on the hydrological processes? 

According to the report from the IPCC (IPCC, 2013), climate change has undoubtedly 

influenced water resources in most parts of the world. At a global scale, 7% of the 

population would be exposed to a 20% decrease in renewable water resources for each 

degree of warming. Moreover, climate change has strongly altered the seasonal 

distribution of stream flow in snow-recharged regions. The IPCC estimated the global 

change tendency; however, climate change and its influences are still not adequately 

known in some parts of the world such as Central Asia (IPCC, 2013). 

Hydrological processes variations under climate change in the 21th century in the 

Yarkant River basin were investigated in chapter 4 based on chapter 2 and chapter 3, 

which provided a good foundation for hydrological modeling study. The average 

ensemble change signals of precipitation and temperature were extracted from 21 GCMs; 

the moderate increase of precipitation was found to be from stronger extreme 

precipitation events, and temperature rose by 0.31-0.38℃/10a under RCP4.5 and 

0.34-0.58℃/10a under RCP8.5. These change signals were used to add historical 

observations to calculate the future meteorological data. Finally, the changes in 

hydrological processes were analyzed by coupling the MIKE SHE model. 

Most study of future climate change on a regional scale is based on GCM data. GCMs 

have provided change tendencies for future periods (Taylor et al, 2012), and GCMs from 

different institutes have shown huge deviations in future climate change; the average 

ensemble of several GCMs could be used to mitigate this uncertainty (Teng et al, 2012; 

Ghosh et al, 2012). Therefore, the scenario runs (in future periods) were compared with 

the equivalent control runs (in the history period) to extract the change signals and 

investigate future climate change at a regional scale. Additionally, the climate change 

focused on the variation tendency in long-term sequences, which means that each 

extracted change signal should include situations with different probabilities. In chapter 

4, this study attempted to incorporate climate change in the 21st century based on 

dividing the future period into four parts of 20 years; the change signal for each future 

period could include situations with a probability of 0.05. 
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For precipitation, the Delta method ignores the frequency and intensity change and only 

focuses on the volume change (Onyutha et al, 2016). The QPM method considers the 

overall frequency change and the intensity perturbation at quantiles; this method 

successfully catches extreme precipitation and has achieved good application (Liu et al, 

2011; Willems et al, 2011; Ntegeka et al, 2014). To decrease the uncertainties caused by 

randomly adding or subtracting precipitation events when a new data series is generated, 

this method was modified by assigning the frequency changes in the different 

precipitation intensity ranges. The average ensemble of 21 GCMs indicated that the 

precipitation would moderately increase, the increased part would be from the stronger 

extreme precipitation in winter, and the precipitation in summer would moderately 

decrease.  

Dissimilar with the precipitation, temperature warming under the different emissions 

pathways largely differs between RCP4.5 and RCP8.5. At the end of this century, the 

warming could stabilize at 0.31 C/10a for RCP4.5, whereas it could persistently increase 

to 0.59 C/10a for RCP8.5. These increasing speeds in the Karakoram region are 

considerably larger than the mean global values (IPCC, 2013).  

For hydrological process changes at the catchment scale under the future climate 

scenarios, note that each hydrologic component’s alteration is not independent in the 

hydrologic system. From the water balance point of view, which is the basic control 

equation of the hydrological model, the redistribution of different hydrologic 

components and their transformations can be understood. In the Yarkant River basin, the 

precipitation slightly increased in volume; nonetheless, warming greatly altered the 

forms and most snowfall could change to rainfall. Moreover, warming enhances the 

snowmelt and brings it forward in time. However, all the growing available water 

resources could not supply the downstream region because of the greater rising 

dissipation.  

The changes in hydrological processes in the Yarkant River basin under climate change 

were drastic; the transformation of different hydrologic components was strengthened, 

and the distribution could also reflect changes such as the retreat of the permanently 

snow covered area, stronger spring and early summer snowmelt, a reduced late summer 

snowmelt, and forward and stronger extreme discharges (with a probability lower than 

0.08). All these changes suggest the development of downstream oases to confront the 

changing water situation, and new plans to adapt to severer water utilization and security 

are needed.   
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5.2 Critical reflections on methodology 

The hydrological processes of high alpine catchments in arid regions are taken as the 

only theme in this dissertation. To clarify this topic, relative efforts were implemented 

from hydrological modeling, remote sensing applications and climate change. The 

methods used determined if the questions could be answered or not. Some critical 

aspects are presented in this section concerning the current methodologies in this 

dissertation to suggest potential improvements.  

In Chapter 2, the joint application of the SWAT and MIKE SHE models was used to 

investigate the hydrological processes and analyze the effects of model structures and 

algorithms. In most catchment hydrological models, there are still many nature 

processes that are not involved in hydrological modeling or are hard to quantify or 

validate, such as frozen soil and glaciers. It may be a significant drawback to use a no 

open-source model. In this dissertation, the results from SWAT and MIKE SHE 

modeling indicated that they were insufficient in simulation in some aspects of the 

hydrologic cycle. Consequently, combining models may improve the understanding of 

hydrological processes in high-cold mountain catchments. The Variable Infiltration 

Capacity (VIC) model (Liang et al, 1994) has been suggested. VIC is a macroscale 

hydrological model that computes full water and energy balances. As such, it shares 

several basic features with the other land surface models that are commonly coupled to 

GCMs. In VIC, some important hydrologic cycles are included, such as frozen soil 

(Cherkauer and Lettenmaier, 1999) and blowing snow (Bowling et al, 2004). Moreover, 

the Cold Regions Hydrological model (CRHM), which was developed as a modular 

object-oriented modeling framework to simulate the hydrologic cycle of cold regions by 

a multi-disciplinary research group from various institutes in Canada (Pomeroy et al, 

2007; Zhou et al, 2014), has also been suggested. CRHM focuses on the specific 

hydrologic cycle and can be effectively used to test snowdrift, glaciers and frozen soil 

simulations.  

Comparisons of snow storage and actual evapotranspiration (among SWAT, MIKE SHE 

and MODIS) were implemented at four time points. The comparisons could reveal the 

general seasonal variation tendency but missed fine-scale details such as at monthly 

scales. Therefore, comparisons at fine time scale could enrich the understanding in 

temporal distribution. 

RSD was the concern in chapter 3. Unfortunately, RSD applications have failed to make 

progress in discharge hydrography simulation at the Kaqun station; perhaps the bias 
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corrections are insufficient. On the one hand, the benchmarks of observations are too 

sparse and the heterogeneity of the Yarkant River basin is too strong. There is an 

assumption that the RSD remain stable when the corrected coefficient is interpolated 

into the entire catchment; however, the detected errors of TRMM at Tashkurgan station 

cannot well represent the truth in high mountain regions. On the other hand, LOCI 

scaling focused on volume and frequency correction but failed to correct the probability 

distribution, which may be a potential reason for the weak hydrography simulation at 

Kaqun station.  

When the responses of hydrologic components to input data were analyzed, only one 

element was chosen (snow storage to precipitation and temperature, and transpiration to 

PET). However, as shown in Table 3-6, each input data type has significant impact on 

multiple hydrologic components. How would the deviations between different levels 

affect other sensitive elements? This question was missed in the research objectives. The 

study of the different responses of hydrologic components to input data could possibly 

optimize our understanding of hydrologic cycle. 

In Chapter 4, the modified QPM and Delta were used to extract the variation signals of 

climate change. First, only the sustainable and high emission scenarios (RCP4.5 and 

RCP8.5) were selected to investigate the “average” and “high” levels in climate change. 

However, the other scenarios (RCP2.6 and RCP6) were ignored. Second, this research 

objective paid more attention to the average ensemble of 21 GCMs; their uncertainties 

were just briefly introduced. The huge uncertainties among GCMs and their effect in 

hydrological modeling would be much more notable in the 21st century. Third, because 

of fewer rainy days in arid regions, the frequency change was not very remarkable, the 

significance of advances of the modified QPM relative to initial QPM are hard to state, 

therefore, more applications and comparisons in the humid regions with more rainy days 

and frequency changes are also needed to clarify the advances. 

In the analysis of the permanently snow-covered area, the permanent snowpack was 

simply defined as the timing of the least snow storage in the year. Strictly speaking, 

there could be a few deviations relative to the nature truth determined by this judgement. 

Moreover, the resolution of grids in the MIKE SHE model is 2 km, this size is enough 

for such large scale catchment in hydrological modeling, but still too big for determining 

the location of the snow line; therefore, this kind of work was not included in the 

research objective.  
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5.3 Recommendations for future work 

5.3.1 Future work on model integration 

In Chapter 2, the integrated results from the SWAT and MIKE SHE model make a 

progress in understanding of hydrological processes. However, the two models were run 

independently, which means that more time was needed to execute each model. After we 

have determined the effects of model structure and algorithm on the different hydrologic 

components, a more appropriate integrated module can be developed. An integrated 

model can be implemented in a more effective way and given more available references 

to similar studies (Smith et al, 2012; 2013). In this way, an optimized integrated model 

can be used to study hydrological processes in the high-cold mountain region.  

5.3.2 Future work on diversified RSD 

Remote sensing data have constituted the major data resource for hydrologic studies in 

catchments with sparse gauges. With the diversified development of RSD, more and 

more data can be obtained. To check the precision and scale matching of hydrological 

models, comparisons and cross-verifications among more RSD need to be conducted. 

Based on the deviations of different RSD, suitable bias-correction methods need to be 

used to improve the accuracy of results with high confidence. The future work on RSD 

would not be confined to existing data sets but would also include more complex 

hydrologic components, such as soil moisture content, evaporation and snowpack depth, 

that need to be calculated based on newly achieved remotely sensed data. 

5.3.3 Future work on attribution analysis 

We have determined the sharp changes in hydrological processes under the climate 

changes discussed in chapter 4, and attribution analysis of the hydrologic component 

changes is strongly suggested because we have seen the significant impacts of input data 

on hydrologic components discussed in chapter 2. In the Yarkant River basin, the range 

of temperature was more dramatic than the variation of precipitation; however, the 

responses of hydrologic components to meteorological factors were different, with 

change in some factors having more impact on the hydrological processes. Moreover, 

human activities such as land use change must directly act on mountain regions in the 

future. The impact factors will be more complex, and it will be necessary to 

quantitatively distinguish their impacts. However, most present attribution analyses of 

climate change are historical (Jiang et al, 2011; Li et al, 2016) and rainfall-runoff is 

given statistically. 
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General conclusion 

The main findings of this dissertation on understanding hydrological processes are 

concluded in this chapter. According to the research objectives, they are given in a 

logical way to deepen understanding. The general conclusion is given in the last 

paragraph. 
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Because of the great importance of mountainous water resources in arid and semi-arid 

regions, the hydrological processes of the alpine catchment were inspired to take as the 

theme of this dissertation. In practical, the Yarkant River basin was chosen as study area. 

Four research objectives focus on the hydrological modelling work in mountainous 

region, and four methodologies were used to overcome the challenges of understanding 

mountainous hydrological processes. Based on research outcome, GCM was coupled to 

investigate the future changes of hydrological processes under the climate change 

scenarios. 

In order to overcome the restriction of model structure and algorithm by single 

hydrological model and the insufficient gauged observation for calibration, the joint 

application of the SWAT and MIKE SHE models in chapter 2 affirmed that either 

SWAT or MIKE SHE individually could solely deal with all aspects of the hydrological 

processes, even with the conventional well-calibrated results. Regarding to stream flow, 

MIKE SHE model fails to simulate the lateral flow, although the model better performed 

the base flow simulation. Through integration of the simulated results of the two models, 

we became aware of the constitution of stream runoff in the Yarkant River, to which 

surface runoff, soil lateral flow, and groundwater contributed approximately 40%, 40% 

and 20%, respectively. The SWAT model accounted for the temperature on the 

snowpack surface and the change of the snowmelt factor in snowmelt simulation, 

suggested the more feasible temporal pattern of snowmelt that 76.8% was concentrated 

on June to September. The fully distributed MIKE SHE model revealed the clearer snow 

storage in spatial distribution. It indicated that the snowpack began to gradually shrink 

from April and expanded to approximately 4500 m in July; the area above 5000 m was 

permanently covered by solid water. The simulated water body and soil evaporation in 

the MIKE SHE model was higher than in the SWAT model; however, MIKE SHE 

produced a clearer spatial evapotranspiration change basing on land use distribution 

pattern. When the SWAT and MIKE SHE models were combined, their deficiencies in 

structure and algorithm can be complemented by each other and a better understanding 

of hydrological processes in the Yarkant River basin was obtained from their integrated 

results. 

The work in reducing uncertainty of input data, RSD including modeling performance 

and effects on hydrological processes were studied in chapter 3. TRMM was revealed a 

low-precision detection of rainy days in the Yarkant River basin. The major error was 

caused by the overestimation of low intensity rainy days. After the problem was detected, 

LOCI was successfully used to correct the biases in TRMM data. However, its 
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application in modeling has little effect to improve the simulation results. The LST data 

produced similar results as TRMM.  

Furthermore, by defining the significant impact of input data on outputs in ANOVA, 

snow storage was chosen to analyze the influence of the differences between SBD and 

RSD. ANOVA demonstrated that the overestimation and underestimation of TRMM in 

some partial regions directly caused increased and decreased snow storage in the local 

region. In addition, when after the transformation of remotely sensed temperatures were 

used to replace interpolated gauging data in the MIKE SHE model, the main parameters 

of snowmelt were re-adjusted by auto-calibration, which resulted in a larger snow 

covered area in the low-middle mountain region and less snow storage volume in the 

high mountain region. Under the total water balance control in MIKE SHE, when the 

bigger PET was used to drive model, smaller actual evapotranspiration has been 

obtained because of re-adjusted parameters in auto-calibration. 

Current understanding mainly aims to good future predictions. Therefore, chapter 4 

focused on the changes of hydrological processes under future climate change. The 

investigation of climate change in the Yarkant River demonstrated that the growth in 

precipitation was moderate and mainly contributed by heavy rain in winter. The 

warming trend was much stronger than the average global level. It is suggested there are 

large deviations between RCP4.5 and RCP8.5 after 2060. The warming trend in 

mountainous regions was lower than in plain regions. After coupling with the 

hydrological model, results indicated that hydrological processes would be sharply 

altered by climate change. Increased evaporation dissipation would cause the shrinking 

of snow storage in high mountain regions and reducing of available water for 

downstream regions. The variations in permanent snow storage in different elevation 

bands are quite dissimilar. For the period 2060-2079, the permanent snow covered area 

below 5600 m could completely vanish and the snow covered area could lift by 600 m. 

The snow in the 5600-6400 m elevation range could be greatly reduced but little change 

would occur above 6400 m. Warming would also bring earlier and greater snowmelt, 

and the spring and early summer stream flow could also be increased following with 

these variation tendencies. Stronger and more frequent future flood events could occur. 

Hydrological processes in alpine catchment of arid and semi-arid region were 

studied in this dissertation. Chapter 2 and chapter 3 focused on the main challenges in 

hydrological modeling, and chapter 4 investigated the effects of climate change. It was 

concluded that the joint application of multiple models can overcome the uncertainties 

of model structures and algorithms from a single model, and their integrated results 
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could improve the understanding of entire hydrological processes. After calibration, the 

uncertainties of input data were hided and could not appear in the hydrography. But its 

influence on the other hydrological components is significant. The inter-relationships 

between “effected” and “caused” can be well determined by statistical ANOVA. 

Hydrological processes were strongly altered under climate change, and the 

transformation among different forms of water resources could be cause the 

redistributed of hydrological components in temporal and spatial. 
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Summary 

In arid and semi-arid regions, the water resources from mountains dominate the 

development of oases in downstream. An accurate understanding of the mountainous 

hydrologic cycle plays a positive role in sustainable water resources management. 

However, because of the steep topography, a more complex hydrologic cycle, and sparse 

gauging with low representativeness for mountain regions, hydrological modeling 

becomes more difficult to handle in high-altitude mountainous catchment. The Yarkant 

River basin originating from the North Slope of Karakoram was taken the study area in 

this research work. Based on joint application of multiple hydrological models, remote 

sensing data and statistical models, the hydrological processes were analyzed. 

Additionally, the alterations of the hydrologic cycle and the redistribution of hydrologic 

components were investigated under climate change. The main objectives of this 

dissertation included the following: 

(1) By the joint application of the SWAT and MIKE SHE models, the effects of model 

structure and algorithms on the hydrological processes were analyzed in terms of runoff, 

snow and evapotranspiration. The results showed that without multiple objectives 

calibrations, a single model only can successfully obtained some parts of the natural 

hydrologic cycle, but not the entire process. The complementarity of the SWAT and 

MIKE SHE models could overcome most model structural and algorithmic uncertainties 

and assist in understanding integrated hydrological processes. 

(2) Combining with remote sensing data and statistical model, the responses of different 

hydrological components to input data were analyzed. Taking observations as a 

benchmark, precision checking and bias corrections were implemented firstly. The 

corrected TRMM, land surface temperature (LST) of and global potential 

evapotranspiration (PET) have little efforts to improve the simulation performances at 

Kaqun station’s hydrography. However, on the premise of statistical hypothesis testing 

implemented by analysis of variables (ANOVA), their significant effects on different 

hydrological components were investigated Compared with model forcing by 

interpolated station data, the spatial deviations of snow storage in different elevation 

bands were more obvious in the TRMM driving model. In the LST driving model, there 

were larger snow coverage in the low-middle mountain region and less snow in the high 

mountain region. Additionally, remotely sensed PET driving model produced less 

transpiration because of the re-adjusted parameters in the auto-calibration. 
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(3) Coupling with the GCMs, the hydrological processes under future climate change 

scenarios were analyzed. The average ensemble change signals of 21 GCMs in 

precipitation and temperature were extracted, the modified quantile perturbation method 

(QPM) and the Delta method were applied to add these change signals into historical 

observations, then, the variations of hydrological processes under climate change were 

studied though coupling with the well-calibrated MIKE SHE model. The results 

suggested that the increased extreme precipitation in winter led to the moderate growth 

of annual precipitation volume. The warming in the mountain region was slower than in 

the plains region; moreover, large deviations were revealed between RCP4.5 and 

RCP8.5 scenarios after 2060. At the end of this century, warming values of 0.31°C/10a 

and 0.59°C/10a were predicted to occur under RCP4.5 and RCP8.5, respectively. Under 

the climate change, increasing evaporation dissipation would lead to decreasing snow 

storage in the higher altitude mountain region and likewise with regard to available 

water in the downstream region. The alterations of snow strong are quite different in 

elevation bands, the permanent snowpack area below 5600 m would completely 

vanished in 2060-2079, and the snow storage in 5600-6400 m would be reduced 

dramatically, however, there is little or no changes in the above 6400 m region. 

Warming could cause a stronger sping and early summer stream runoff and a reduced 

late summer flow due to the snowmelt change in temporal distribution. Furthermore, 

both the frequency and the intensity of the flood would be enhanced. In Karakoram 

region, more researches are needed about the transient water resources system and the 

worsening of flood threats in future. 

The entire hydrological processes on the catchment scale were concentrated in this paper, 

and some innovations were brought out to overcome the main challenges. The joint 

application of multiple models provided a good suggestion to multi-factors evaluation of 

hydrological model in scarce gauging catchment. ANOVA successfully defined the 

significant relationships between “effects” and “caused” in hydrological processes, and 

help to understand the intervallic influences of input data on different hydrological 

components. The QPM was effectively optimized by considering the frequency changes 

in the different precipitation intensity ranges. This study makes a progress and supports 

a reference in high-altitude mountainous hydrological processes and climate change’s 

influences study. 
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Samenvatting (Dutch Summary) 

In droge regio’s zijn waterbronnen in de bergen de voornaamste factor voor de 

ontwikkeling van stroomafwaartse oases. Een goed begrip van de hydrologische cyclus in de 

bergen is cruciaal voor een duurzaam management van de watervoorraden. De steile 

topografie, een complexe hydrologische cyclus en een onnauwkeurige schatting met een 

lage representativiteit voor bergstreken bemoeilijken echter de hydrologische modellering. 

Voor deze thesis werd het Yarkant rivierbassin afkomstig van de noordelijke helling van 

het Karakoramgebergte gekozen als case study. De hydrologische processen werden 

geanalyseerd door een gezamenlijke toepassing van meerdere hydrologische modellen, 

remote sensing data en statistische modellen. Bovendien werden de veranderingen in de 

hydrologische cyclus en de distributie van de hydrologische componenten onderzocht 

rekening houdend met de invloed van klimaatverandering. De hoofddoelstellingen van de 

thesis omvatten: 

(1) Door de gemeenschappelijke toepassing van de SWAT en MIKE SHE modellen werden 

de effecten van modelstructuur en algoritmes op hydrologische processen onderzocht op 

vlak van afstroming, sneeuw en verdamping. De resultaten toonden aan dat bij 

afwezigheid van meerdere kalibraties, het gebruik van enkelvoudige modellen slechts 

delen van de natuurlijke hydrologische cyclus op een correcte wijze kunnen modelleren, 

maar niet het volledige proces. Simultaan gebruik van de SWAT en MIKE SHE 

modellen kan de meeste modelstructurele en algoritmische onzekerheden opvangen en 

kan helpen om inzicht te krijgen in de geïntegreerde hydrologische processen. 

(2) Door het gebruik van waarnemingen als referentie werd de nauwkeurigheid van de 

modellen geverifieerd en indien nodig gecorrigeerd. Gebruik van de MIKE SHE 

modellering leidt tot aanvaardbare resultaten voor de verbeterde TRMM, de 

landoppervlakte-temperatuur (land surface temperature of LST) van MODIS en globale 

potentiële evapotranspiratie (potential evapotranspiration of PET), maar leidde niet tot 

een nauwkeurigere simulatie van de hydrografie in Kaqun. ANOVA werd aangewend 

om de significante impact van de inputvariabelen op de efficiëntie van hydrologische 

systemen te kennen. De resultaten tonen aan dat de verschillende neerslag- en 

temperatuurgegevens een belangrijk effect zouden hebben op het sneeuwbehoud; in 

vergelijking met een model gebaseerd op geïnterpoleerde stationsgegevens modelleert 

het TRMM-gebaseerd model de ruimtelijke afwijking van de sneeuwopslag in 

verschillende hoogtebanden correcter. Het LST-gebaseerde model modelleerde ruimere 

met sneeuw bedekte gebieden in de lage en midden-hoge berggebieden en minder 

sneeuw in de hoge berggebieden. Aanvullend hadden verschillende PET-waarden een 
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significante invloed op de verdamping en produceerden ze minder verdamping in het 

teledetectie PET-gebaseerde model. 

(3) De gemiddelde gecombineerde verandering van neerslag- en temperatuursignalen van 

21 GCM’s werden bepaald door de gewijzigde kwantiele verstoringsmethode (modified 

quantile perturbation method of QPM) en de Delta methode. Na het toevoegen van 

historische waarnemingen voor de periode 1986-2005 werden de variaties in 

hydrologische processen onder klimaatverandering bestudeerd en gelinkt met het correct 

gekalibreerde MIKE SHE model. De resultaten toonden aan dat de verhoogde extreme 

neerslag in de winter leidde tot een gematigde stijging van het jaarlijks neerslagvolume. 

De opwarming in het berggebied ging trager dan op de vlaktes; bovendien werden grote 

afwijkingen tussen de RCP4.5 en RCP8.5 scenario’s na 2060 aangetoond. Op het eind 

van deze eeuw worden de warmtewaarden van 0.31°C/10a en 0.59°C/10a voorspeld bij 

respectievelijk de RCP4.5 en RCP8.5 scenario’s. Bij de scenario’s van 

klimaatverandering worden de transformaties van verschillende vormen van 

waterbronnen verwacht de distributie van hydrologische componenten te veranderen. De 

toegenomen verdamping zou leiden tot een verminderd sneeuwbehoud in hoge 

bergstreken en minder beschikbaar water in de stroomafwaartse regio’s. De sterke 

veranderingen in sneeuw varieerden voor verschillende hoogteposities. 

Het gebied van permanente sneeuw onder de 5600 m zou volledig verdwijnen in de 

periode 2060-2079 en significante verminderingen kunnen voorkomen op hoogtes tussen 

5600 en 6400 m; echter weinig of geen wijzigingen zouden plaatsvinden boven de 6400 m. 

Met betrekking tot de rivierafvloeiing kan opwarming een sterkere lente, een vroege zomer 

en een verminderde late zomerstroming veroorzaken door de smeltverandering in de 

distributie in de tijd. Bovendien zou de frequentie en intensiteit van de overstromingen 

versterkt worden en de ontstane instabiele waterbronnen en gestegen onveiligheid door 

overstromingen zou meer aandacht moeten krijgen.   

De hydrologische processen in een bergverzamelbekken werden systematisch 

bestudeerde en enkele vernieuwingen werden benadrukt om de belangrijkste uitdagingen het 

hoofd te bieden. Eerst werd de gezamenlijke toepassing van meerdere modellen 

geïmplementeerd om bij te dragen aan het onderzoek naar hydrologische processen. Daarna 

werden de significante relaties tussen de input en output in het hydrologisch systeem 

bepaald met behulp van ANOVA. Uiteindelijk werd de QPM geoptimaliseerd door de 

frequentiewijzigingen in de verschillende bereiken van de neerslagintensiteit in overweging 

te nemen. 
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摘要 (Chinese Summary) 

在干旱区，山区流域水资源对下游绿洲区的发展具有支配作用，而准确理解山

区水循环过程对下游可持续地水资源管理具有十分积极的作用。然而由于极端地形

变化、复杂水文过程以及实测站点稀缺等因素，使得山区流域水文过程模拟的难度

加大。本文选取了发源于喀喇昆仑山北坡的叶尔羌河流域为例，通过多水文模型的

联合应用、遥感技术以及统计分析模型，对高海拔山区流域水文过程进行了分析。

进一步通过与 GCM 的耦合，对不同的未来气候变化情景下水循环过程的转变，水

文要素的再分布等进行了探讨。研究主要包括了以下几个方面的工作： 

（1）通过 SWAT 和 MIKE SHE 模型的联合应用，从径流、积融雪以及蒸散发

水文要素方面分析了模型结构和模型算法对水文过程的影响。结果表明，在缺少多

目标的率定情况下，单一模型只能在某些水文要素上取得可行的模型结果，而不能

对整体水文过程进行准确描述。整合多模型联合应用的模拟结果，可以减少模型结

构和算法的不确定影响，从而提高对流域水文过程的认识。结合遥感数据以及相关

研究的交叉验证，整体上明确了叶尔羌河流域的空间水循环过程。 

（2）借助遥感数据和统计模型，分析了输入数据不确定性对水文过程中不同

水文要素的影响。首先以站点实测数据为基础，对遥感数据进行了精度验证和偏差

校正。校正后的 TRMM，MODIS 以及潜在蒸散发数据在 MIKE SHE 的模拟中并没

有提高对卡群站日径流过程的模拟精度。但是，进一步通过统计的多因子方差分析

模型，确立了在复杂水文循坏系统中“输入”与“输出”之间的显著性影响关系。

借助这种显著性影响关系，分析得到了在 TRMM 驱动下，模型得到的积雪分布空

间差异更加明显；在 MODIS 温度数据驱动下的模型在中低山区存在更多的永久性

薄层积雪，高山区的储雪量减少；在模型的水量平衡控制下，遥感蒸散发驱动的模

型在自动率定中通过参数调整，减小了实际的植被蒸腾作用。 

（3）通过 GCM 与水文模型的耦合，探讨了未来气候对研究区水文过程的影

响。提取 21 个 GCM 中气候因子的变化信号，通过改进的百分位数波动法和 Delta

法，将变化信号与历史实测数据叠加后，得到未来的降水和温度数据，并用于驱动

MIKE SHE 模型，从流域水平衡角度分析了未来水文过程的变化情况。结果表明，

因冬季极端降水的增强，未来叶尔羌河流域的降水呈现小幅度的增长趋势。未来情
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景下，山区的增温小于平原区，而在 RCP4.5 和 RCP8.5 两种情况下，增温差异很

大。到本世纪末，RCP4.5 的增温速度稳定在 0.31°C/10 年，而 RCP8.5 将增加到

0.59°C/10 年。未来气候变化情景下，叶尔羌河流域的水文过程将发生明显的变化，

不同形式的水资源之间的转化改变了水文要素的分布。蒸发耗散的不断增加，使得

山区的固体储水量和下游的可用水资源量减少。流域不同高程带的积雪量变化差异

很大，5600m 以下的永久性积雪区将在 2060~2079 年消失，5600~6400m 区域积雪

显著减少，6400m 以上基本没有变化。同时，增温导致的前期融雪增加，后期融雪

量减少，在出山口卡群站也形成了前期径流增加，后期减少的年内径流过程。极端

洪峰流量出现的频率增加，时间提前。未来叶尔羌河流域将面临更加不稳定的水资

源情况以及更严峻的洪水安全问题。 

本研究关注于流域尺度上水循环过程。针对高海拔山区流域水文过程模拟中的

主要问题，开展的流域的模型联合应用，为缺资料地区，提供了有效的模型多要素

评价方法；借助于统计分析模型，明确了复杂系统中“输入”与“输出”之间的显

著性影响关系，以此确定了输入数据不确定性对不同水文要素的影响；在提取 GCM

降水变化中，通过明确不同分位数段的降水频率变化对百分位数波动法提出了有效

地改进，减小了未来降水数据的不确定性。在高海拔山区流域水文过程及其气候变

化影响研究方面取得了进展。 
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