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7.1 Introduction

Soil moisture (SM), the water content of the soil, is a vital element in the hydrological
cycle and vegetation growth. Quantification of SM and its spatiotemporal variability are
valuable for understanding water availability in agriculture, land�atmosphere interac-
tions, ecosystem states, river basin hydrology, and water resources management (Baldwin
et al., 2017; Deng et al., 2019; Manfreda et al., 2014; Peng et al., 2017; Petropoulos et al.,
2018; Seneviratne et al., 2004, 2010; Su et al., 2011). SM data can be obtained through multi-
ple sources, including in situ measurements and remote sensing, with different spatial-
temporal coverage and resolution. Monitoring SM from unmanned aerial system (UAS)
can complement information from ground-based and satellite-based sensors, with rela-
tively higher spatial-resolution and larger spatial coverage at almost any time.

Traditionally, SM can be directly obtained with in situ techniques such as simple gravimetric
sampling, various sensors (time-domain reflectometry, amplitude-domain reflectometry, and

179
Unmanned Aerial Systems for Monitoring Soil, Vegetation, and Riverine Environments

DOI: https://doi.org/10.1016/B978-0-323-85283-8.00003-5 © 2023 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/B978-0-323-85283-8.00003-5


frequency-domain reflectometry), which is accurate but usually at the point scale, and highly
burdensome. However, SM is a highly heterogeneous variable that may need continuous spatial
scale monitoring. To solve this problem, using relatively dense sensor networks is an effective
solution to detect the space-time variations of SM not only in the horizontal plane but also along
with the vertical profile. Nevertheless, remote sensing can serve as an alternative approach,
which provides SM data over various spatiotemporal coverage with high efficiency (Brocca
et al., 2017; Colliander et al., 2017; Kerr et al., 2012a,b; Su et al., 2020).

The remote sensing data are used to retrieve SM, including microwave (MW), thermal
infrared (TIR) and optical data, over various spatiotemporal coverages. The basic idea
behind surface SM data retrieval from remotely sensed information is that the variation of
SM can be reflected by the corresponding electromagnetic response of the land surface
(Schanda, 2012). For example, the methods to retrieve surface SM from MW remote sens-
ing data are based on the relationship between the dielectric property of soils and SM.
Methods utilizing information from optical or TIR remote sensing to retrieve surface SM
are based on the relationship between surface SM and surface reflectance (Gao et al., 2013;
Nocita et al., 2013). Also, the methods that combine the optical and TIR data (Taktikou
et al., 2016; Verstraeten et al., 2006) are based on the thermal characteristics of the soil.

First, passive-MW remote sensing shows a good penetration capability to satisfy various
weather and land surface conditions. Several well-established global surface SM products
are provided at a relatively coarse resolution (25�36 km) with varying durations, such as
the Soil Moisture Active Passive (Entekhabi et al., 2010), the Soil Moisture and Ocean
Salinity (Kerr et al., 2012a,b), the Advanced MW Scanning Radiometer for Earth Observing
System. Then, active-MW remote sensing can provide higher resolution (10�100 m) images
of backscatter signals, but the performance of active-MW remote sensing can be limited by
surface roughness or dense vegetation coverage. Several surface SM products based on
active-MW remote sensing are available, such as Sentinel-1 C-SAR surface SM product (1-
km resolution) over pan-Europe region (Bauer-Marschallinger et al., 2019) and the global
surface SM from the Advanced Scatterometer (25-km resolution) (Wagner et al., 2013). In
general, passive- and active-MW remote sensing of SM are promising techniques in terms of
continuous availability of large-scale data products. However, the available SM data from
MW remote sensing are at relatively coarse resolution, which is suitable for large-scale
(global or regional) SM study instead of field-scale high-resolution SM research.

However, remote sensing (RS) from satellite does resolve the problem spatial coverage,
while the passage of the satellite might generate spatial-temporal issues. Thus SM data
merging and climate reanalysis provide a possibility to comprehensively use SM data
from multiple sources (Zeng et al., 2016; Zhuang et al., 2020), for instance, the European
Space Agency Climate Change Initiative SM product of 25 km (Dorigo et al., 2015) and the
European Centre for Medium-Range Weather Forecasts reanalysis (ERA-Interim) data set
of 25 km (Balsamo et al., 2015). Nevertheless, one of the important prerequisites of data
merging and reanalysis is high-quality SM retrieved from remotely sensed signals.

Furthermore, thermal and optical remote sensing also provide a possibility to observe
land surface information at a wide range of resolutions because the thermal and optical
signals from the land surface are strong, and the sensors can be mounted not only on
satellites but also on crewed airplanes or UASs. For example, the products from the
Moderate Resolution Imaging Spectroradiometer (1 km) (Wan, 2014; Wan et al., 2015) and
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LANDSAT program (30�100 m optical and TIR data) (Irons et al., 2012; Jimenez-Munoz
et al., 2014). However, thermal and optical remote sensing is limited significantly by the
weather condition. Nevertheless, airborne remote sensing, especially the UAS, provides a
possibility to obtain submeter land surface information efficiently, flexibly, and economi-
cally. In various application cases, high-resolution continuous SM maps are necessary. The
study usually focuses on a field scale for agricultural applications and requires detailed
SM information up to plot/plant scales. Also, drought monitoring and fine-scale water
budget assessment are requiring high-resolution SM data.

Numerous studies proved the ability of SM retrieval from UAS-based optical and ther-
mal remote sensing, as SM is known to impact soil reflectance at all wavelengths of the
solar spectrum. For spectral-based methods, the Kubelka�Munk (KM) model provides a
possibility to derive surface SM directly from shortwave reflectance data (Sadeghi et al.,
2015; Yuan et al., 2019), and the physically based models, such as the multilayer radiative
transfer model of soil reflectance (MARMIT) (Bablet et al., 2018; Dupiau et al., 2022), are
recommended due to the simplicity and the reliability, as long as the prior calibration con-
dition is satisfied. For empirical methods, one of the well-established methods is the ther-
mal inertia method, which was a classical method of satellite-based remote sensing and is
currently also applied with UAS data. Paruta et al. (2020) presented an example of using
UAS-based thermal inertia method for surface SM estimation over bare soil and sparsely
vegetated area and showed a satisfactory result against in situ measured SM data.
Another recommended method is the temperature�vegetation triangle method, which
makes the evapotranspiration and SM estimation possible. Wang et al. (2018) gave an
example of root-zone SM estimation using a modified temperature�vegetation triangle
model with the help of land surface roughness data from UAS optical data. Petropoulos
et al. (2021) also gave examples of surface SM and evapotranspiration estimation using
simplified triangle models and presented high-accuracy results validated with in situ mea-
surements. Also, UAS-based land surface information can be used in the surface SM
downscaling procedure with machine learning (ML) (Su et al., 2020; Zhang et al., 2021).

As it is still a primary stage of research on UAS-based SM monitoring, the standardiza-
tion of operational procedures can be beneficial to understanding and guaranteeing the
quality of retrieved SM (Manfreda et al., 2018; Tmušić et al., 2020). For example, when dif-
ferent SM retrieval models are going to be used, the sensor type and the acquisition time
should be well-planned based on the theory and the follow-up processing methodology.
Thus this chapter aims at providing operational guidance on various approaches for UAS-
based SM monitoring to facilitate the follow-up applications.

7.2 Theoretical background of soil moisture retrieval and downscaling methods

This section introduces the theoretical background of five models [i.e., thermal inertia
model, two physically based models KM model and MRAMIT, temperature�vegetation
triangle model, random forest (RF) regression model]. The last model is an additional rec-
ommendation for downscale coarse resolution data, while others link remotely sensed sig-
nals with SM. The detailed processing procedures of each method will be introduced in
Section 7.4.
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7.2.1 Thermal inertia model

Thermal inertia is related to the capacity of heat storage and the thermal conductivity of
the soil layer and to the density of the object, which vary depending on SM (Maltese et al.,
2013; Pratt et al., 1980). The thermal inertia can influence the heat energy propagation and
storage process, thus, link the daily land surface temperature (LST) change to surface SM.
The first thermal inertia model was proposed by Watson et al. (1971) with the help of the
available TIR data. Then, Price (1977) proved the possibility to generate thermal inertia
using remotely sensed data with a generalized theory and proposed the apparent thermal
inertia (ATI) model-based on the diurnal surface temperature change over bare soil pixels
(Price, 1985; Scheidt et al., 2011). Furthermore, several advanced thermal inertia�based
methods were proposed, such as Xue and Cracknell (1995) introduced the real-time model
for the thermal inertia estimation. Zhang et al. (2003) considered sensible and latent heat
fluxes, and Liu and Zhao (2006) included a two-layer model into the thermal conductivity
equation. To map surface SM using remotely sensed optical and TIR data, Minacapilli
et al. (2012) evaluated the thermal inertia model with a laboratory experiment and proved
the great potential of the model. After several applications of the thermal inertia method
over bare soil areas (Kang et al., 2017; Maltese et al., 2010), Paruta et al. (2020) provided a
possibility to extend the application of the thermal inertia method over sparse vegetated
and shadowed areas, with the help of the high-resolution UAS data and geostatistical anal-
ysis. The assumption behind the spatial interpolation of the ATI values is that, given the
spatial variability of the SM, the interpolated thermal inertia mimics the value it should
assume in the absence of vegetation (and/or shadows) if caused only by SM. This assump-
tion was experimentally verified in the research (Paruta et al., 2020).

The soil thermal inertia of a specific material reveals the speed of characteristic thermal
change respond to the energy flux exchange, which can be expressed as the following
function (Maltese et al., 2010):

P5
ffiffiffiffiffiffiffiffiffi
λρC

p
(7.1)

where P is the thermal inertia (J/m2/K (s)1/2), λ is thermal conductivity (W/m/K), ρ is
the density of the material, C is the specific heat for unit mass. Suppose the specific mate-
rial is a layer of soil containing an amount of soil water content. In that case, the relation-
ship between thermal inertia P and SM can be linked by λ and C. In short, SM positively
correlates with λ and C. To derive P from remotely sensed optical and TIR data, the solv-
ing of thermal diffusion differential equations was executed under various hypotheses
(Maltese et al., 2010; Pratt and Ellyett, 1979). A simplified form of thermal inertia, ATI
(K21) was proved well and linearly correlated with SM (Minacapilli et al., 2012). The the-
ory of ATI accounts for the daily LST variation and the albedo, which can be easily deter-
mined using optical and TIR data of the two extreme temperature-time points. ATI can be
expressed as the following equation:

ATI5 12αð Þ=ΔT (7.2)

where ΔT is the maximum daily LST difference, α is the surface albedo. The ΔT can be
easily determined using the LST maps obtained from the highest and lowest temperature
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time point, and α can be determined using optical data [visible and near-infrared (VIS-
NIR) reflectance data, usually from the multispectral camera]. The simple of the linear
relationship between SM and ATI can be expressed as follows:

θ5 a � ATI1 b (7.3)

where a and b are empirical parameters, which can be determined with the help of ground
truth data (Chang et al., 2012; Minacapilli et al., 2012; Qin et al., 2013; Sobrino and El
Kharraz, 1999; Xue and Cracknell, 1995).

7.2.2 Kubelka�Munk model and multilayer radiative transfer model of soil
reflectance

The KM model is a simple model to retrieve surface SM from optical remotely sensed
data, which was developed based on the KM theory (Kubelka and Munk, 1931). The para-
meters in the KM model are physically definable. The basic idea of the KM theory can be
illustrated in Fig. 7.1. The gray rectangle space represents an absorbing and scattering layer,
and the KM theory can describe the radiative transfer in the layer; I and J are a downward
and an upward light propagation flux, which are perpendicular to the layer. The KM model
can be derived under several assumptions: (1) the layer is infinite; (2) uniformly distributed
light absorbing and scattering; (3) particle dimensions are much smaller when compared
with the depth of the layer; (4) an illumination homogeneous layer (Ciani et al., 2005). The
differential equations describing radiance I and J can be expressed as the following equation:

dI λ; zð Þ=dz52 k1 sð ÞI λ; zð Þ1 sJ λ; zð Þ (7.4)

dJ λ; zð Þ=dz52 k1 sð ÞJ λ; zð Þ2 sI λ; zð Þ (7.5)

where the units of I and J are (W/m2/sr), z (m) is the depth of the layer, λ is the wavelength.
k (m21) is the light absorption coefficient, and s (m21) is the light scattering coefficient.

Then, the reflectance (R) and transmittance can be derived by analytically solving the
equations (transmittance tends to zero when the depth of the layer keeps increasing).

R5 11 k=s2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k=s
� �2

1 2k=s

q
(7.6)

r5 k=s5 12Rð Þ2=2R (7.7)

FIGURE 7.1 Visualization of KM theory (Kubelka and Munk,
1931). KM, Kubelka�Munk.
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Then, apply the KM theory to a thick soil layer, k and s are functions of soil particle
characteristics and soil water content. Assuming that k and s can be treated as an additive
function of their constituents with a weight of their proportion (Barron and Torrent, 1986;
Ciani et al., 2005; Hu and Johnston, 2009). The k and s can be expressed as follows:

k5 ksolid 12 θsð Þ1 kwaterθ1 kair θs 2 θð Þ (7.8)

s5 ssolid 12 θsð Þ1 swaterθ1 sair θs 2 θð Þ (7.9)

where θ is the volumetric water content, and θs is the volumetric water content under the satu-
rated status. And when the coefficients of air are negligible, the functions can be simplified as:

k5 kd 1 kwaterθ (7.10)

s5 sd 1 swaterθ (7.11)

To sum up, the yield function is:

r5 12Rð Þ2=2R5 ðkd 1 kwaterθÞ=ðsd 1 swaterθÞ (7.12)

The absorption and scattering coefficients of dry or wet soil samples can be measured
in the lab. As the ratio of k/s related directly to the reflectance, the function can be rear-
ranged as follows:

r5 σrd 12 θ=θs
� �

1 rs θ=θs
� �� �

= σ 12 θ=θs
� �

1 θ=θs
� �� �

(7.13)

rd 5 kd=sd 5 12Rdð Þ2=2Rd (7.14)

rs 5 ks=ss 5 12Rsð Þ2=2Rs (7.15)

σ5 sd=ss 5 sd=ðsd 1 swaterθsÞ (7.16)

The parameter r of dry and saturated soil can be determined directly from remotely
sensed reflectance data. The parameter σ provides a metric in dry and saturated soils for
the relative strength of scattering. Thus, to derive surface SM from remote sensed optical
data, the function can be:

θ=θs 5σ r2 rdð Þ= rs 2 r1σ r2 rdð Þð Þ (7.17)

If the scattering of soil water is negligible compared to that of dry soil, the parameter σ
approaches unity. In some appropriate wavelengths such as short-wavelength infrared
(SWIR), model conditions may be met as they are strong water-absorbing bands (e.g., 2500,
1950, and 1450 nm wavelength). Then a simple function of surface SM retrieval is established:

θ=θs 5 r2 rdð Þ= rs 2 rdð Þ (7.18)

Therefore surface SM can be simply retrieved from remotely sensed reflectance data
using the abovementioned functions.

Another alternative physically based model is the MRAMIT, which is a radiative trans-
fer model which assume the wet soil as a water layer overlay on the dry soil layer
(Ångström, 1925; Lekner and Dorf, 1988). The MRAMIT 1 is improved from the Bach
model (Bach and Mauser, 1994), which account for light absorption in the water layer
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using the Beer�Lambert�Bouguer law, and the MRAMIT 2 is an improved version of the
MARMIT 1, both of them predicting the spectral reflectance of wet soils in the solar
domain (Bablet et al., 2018; Dupiau et al., 2022).

Compare with the KM model, MRAMIT models have a wider range of application
when refers to the spectrum range (the KM model is applicable in the water-absorbing
bands, while MRAMIT models is suitable over the entire solar spectrum).

7.2.3 Simplified temperature�vegetation triangle model

The temperature�vegetation triangle, which was first proposed by Price (1990), is based
on the inherent relationship between LST and evapotranspiration. Thus the remotely sensed
LST and vegetation fraction could be used to estimate SM from surface to root zone. The tri-
angle space can be created using the scatter plots of vegetation fraction and LST, including
various soil wet conditions (from dry end to wet end) and vegetation coverage conditions
(from bare soil to densely vegetated conditions). A simplified temperature�vegetation trian-
gle was proposed by Carlson and Petropoulos (2019) and recently validated using UAS data
(Petropoulos et al., 2021) and using sentinel-3 satellite data (Petropoulos et al., 2020). As pre-
sented in Fig. 7.2, the scaled LST (T*)—vegetation fraction (Fr) triangle feature space consists
of an upper decreasing boundary of dry edge, and two mutually perpendicular boundaries
indicate full ranges of soil water condition and vegetation coverage. It is a simple and effi-
cient method without the requirement of ground truth data.

Three assumptions were made to apply the temperature�vegetation model. First, the
atmospheric forcing should be homogeneous, which is easy to satisfy in the UAS application
case as the areas covered by UAS surveys are generally small. Second, over similar vegeta-
tion coverage, the surface roughness should be homogeneous. Third, the image used for

FIGURE 7.2 Conceptualization
of the main properties encapsulated
in a Ts/VI scatter plot (Petropoulos
et al., 2009).
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establishing the triangle space should be large enough to cover wet and dry edges of differ-
ent surface conditions, that is, needs a wide range of variability in vegetation cover present
in the area. The last two assumptions are somehow challenging to satisfy in the UAS-based
data due to the limited coverage of UAS mapping and the canopy height dynamic under
natural conditions. Wang et al. (2018) proposed to use the digital surface model based on
the structure-from-motion (SfM) technique to correct the roughness and introduce a theoreti-
cal dry and wet edge calculated from in situ measurements, if available.

7.2.4 Random forest regression model

A possible strategy to map high-resolution SM can also be the downscaling strategy
that links coarse SM with related high-resolution variables. Remarkably, SM heterogeneity
in time and space makes this task very challenging. As a function of input data and char-
acteristics of models, different downscaling methods have been proposed (for a recent
review, please see Peng et al. (2017)), such as physical model�based method, data assimi-
lation method, and statistical regression method.

Among them, empirical methods are known for the conciseness of theory and practicality,
as they provide a possibility to facilitate the understanding of the highly nonlinear relation-
ship between surface SM and land surface features (Atkinson, 2013; Camps-Valls et al., 2018).
In this context, ML methods train algorithms with enough data to get a comprehensive envi-
ronmental response function for surface SM estimation, regardless of the complex physical
characteristics (Cai et al., 2019; Cui et al., 2020; Holtgrave et al., 2018; Liu et al., 2017). ML algo-
rithms used for downscaling include artificial neural network (ANN), support vector
machines (SVM), RF, among others. ANN is widely used as a universal approximator that
performs well in pedotransfer function predictions (Zhang et al., 2018), while SVM has been
proved to have the ability to solve regression problems and used in high-resolution surface
SM estimation (Araya et al., 2020; Yan and Bai, 2020). Finally, most ML methods have been
used as a black box (Amoore, 2019), while RF regression models also provide the possibility
to evaluate the importance of each predictor. However, the limitation of the ML methods is
the high requirement of the amount of data for model training when compare with the other
SM retrieval methods. Thus, except for the data from the UAS survey, a large amount of
related information from different sources should be prepared beforehand.

The RF Method, proposed by Breiman (2001), is a popularly used ML method, which
can be applied in classification, regression, and other tasks. For regression tasks, some
decision trees are first built during the training time, and the mean prediction of the indi-
vidual trees is generated as the output of this method. In general, according to the adap-
tive nature of the decision rules involved in it, RF has the advantage in modeling the
complex nonlinear relationships between the predictors and the response variable instead
of detailed numerical expressions (Hutengs and Vohland, 2016). In detail, the input data
act as the training data in the RF method, and RF divides them into many regression trees,
making up the forest, where each tree is built from a bootstrap sample, which contains
about two-thirds of the input data. Each split is selected from a random subset of a given
number (m) of the p variables. During this process, the number of trees (ntree) is also a key
parameter in the forest. For each bootstrap sampling process, the left samples will not be
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included in the model construction, and they act as the out-of-bag samples or OOB, which
is an important feature of RF. The OOB can be used to validate the performance of the
constructed model, and the mean squared error based on OOB samples is a reliable test
error estimate, which is almost identical to that obtained by K-fold cross-validation.

7.3 Data acquisition and preprocessing

7.3.1 Unmanned aerial system flights and data acquisition

The general protocols for UAS-based observation can be referred to contents described in
Chapter 3. For SM monitoring the target is acquiring high-quality VIS (wavelength of
0.750�0.40 μm), NIR (wavelength of 2.5�0.75 μm), and TIR (wavelength of 25�2.5 μm) data,
which refers to the UAS surveys with an RGB (red, green and blue bands) camera, multispec-
tral camera, and thermometers. A fixed-flight survey with stable flight speed via double-
gridded routes is necessary to obtain good quality images, especially thermal images.

The UAS surveys with multispectral cameras aim to collect vegetation cover information
and albedo. Thus the acquisition time is usually at the mid-day for the minimum shadow
area with a clear clouds condition. The UAS surveys with a thermometer aim to obtain the
LST. The important information in the thermal inertia method is the maximum land surface
difference, indicating soil thermal characteristics. As such, two surveys, one at the time point
of sunrise and one at the mid-day, are planned to represent the highest and lowest LST. The
UAS survey with an RGB camera aims to produce a digital surface model to generate the
topographic information, which can be conducted at any time with a clear view of the field.

7.3.2 Data preprocessing

A comprehensive description of processing the USA data can be found in Chapter 12.
The contents in this chapter are focused on the preprocessing of data related to SM moni-
toring, which mainly refers to the radiometric calibration of TIR and optical sensors and
the resultant LST map and the multispectral reflectance maps. Other procedures like flight
mission planning, camera setting can be referred to in Chapter 3, and the orthomosaic pro-
cedure based on the SfM can be referred to in Chapter 4.

The radiometric calibration of sensors is necessary to obtain precise data, as the UAS
sensors usually have low signal-to-noise ratios (Berni et al., 2009; Laliberte et al., 2011).
The accuracy of thermal sensors could be influenced by the target temperature and the
temperature of the camera itself. A climate-controlled laboratory calibration with a black
body radiation source can be performed to obtain accurate thermal images and link the
digital number (DN) with the target temperature. Also, a simultaneously in situ measured
temperature of the targets, which appears in the remotely sensed thermal images, with
TIR cameras can serve as a radiometric calibration and atmospheric correction. The cor-
rected thermal image can well represent the LST of the acquisition time after a field cali-
bration using aluminum paper covered targets as references.

For the multispectral sensor, reflectance calibration and radiometric calibration are also
necessary. Similarly, the simultaneously in situ spectroradiometric measurements of black
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and white panels are required to construct the relationship between the calibrated reflec-
tance values of each wavelength and DN values in each band of the multispectral images.
Once the quality of the calibrated reflectance maps of red, green, and NIR bands is
guaranteed, normalized difference vegetation index (NDVI) and the shortwave albedo
map can be generated simply using band calculation. One point to be noted for albedo cal-
culation, the weights of summation can be determined considering the normalized relative
spectral response (RSR, the short-circuit current density generated by unit of irradiance at
a particular wavelength as a function of wavelength).

7.4 Soil moisture data retrieval and downscaling

7.4.1 Surface soil moisture retrieval using thermal inertia method

For surface SM retrieval using the thermal inertia method, LST maps and multispectral
reflectance maps from the data preprocessing can be used. If the spatial resolution and
coverage of LST maps and reflectance maps are different, an alignment is required for fur-
ther processing. The flowchart of the processing procedure can be found in Fig. 7.3.

First, albedo can be calculated using the reflectance of red, green, and NIR bands by
weighted summation. A convolution between the RSR of multispectral sensors and solar
irradiance can be used to determine the weights of the sensor of the UAS survey.
Furthermore, the multispectral reflectance maps can also be used to simply calculate the
NDVI map, which can be used to mask out shadowed and vegetated pixels of the LST
maps by empirical threshold values. However, other classification methods, such as the
RF classification, can also be an option to distinguish shadowed and vegetated pixels,
which is not satisfied by the application condition of the thermal inertia method.

Then, a series of simple calculations of masked maps should be executed, including the
LST difference (ΔT) map calculation from two LST maps and the ATI maps calculation
with the function mentioned above-using albedo and ΔT maps. To obtain the empirical
relationship (the regression model) between surface SM and ATI, several in situ measured
surface SM data can be used as a reference. With the empirical relationship and the pre-
pared ATI map, the surface SM map over bare soil pixels can be easily calculated. The
example map of ATI and SM can be found in Fig. 7.3. However, two points of the classical
procedure deserve to be discussed. First, the performance of the empirical relationship
model needs to be tested by comparing the estimated surface SM with the in situ mea-
sured data using statistical methods. Second, semivariogram and kriging interpolation
may extend the application from bare soil pixels to shadow and sparse vegetated pixels
(Paruta et al., 2020). The best spatial resolution can be evaluated by testing gradually chan-
ged diameters of buffers around the validation points of surface SM.

7.4.2 Surface soil moisture retrieval using the Kubelka�Munk model

The application of the KM model requires the remotely sensed reflectance data from
appropriate SWIR bands. From the preprocessing data phase, the optical band’s reflectance
maps (vegetated pixels are flagged out with help of the NDVI map) are ready to use. The
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processing procedure is presented in Fig. 7.4. The first step is calculating r using function
(7.12). Then, the reflectance of the dry and saturated conditions can also be found in the
reflectance maps, which can be further used to derive rd and rs. In the end, with the knowl-
edge of saturated surface SM, the surface SM map can be calculated directly based on the
function and the known parameters. The simplicity and the physical basis of the KM model
make it a reliable and efficient tool for optical remote sensing-based SM estimation.

1) Flowchart of thermal inertia method

2) Apparent Thermal Inertia 3) Soil moisture map

FIGURE 7.3 Methodology of thermal inertia method and example maps of apparent thermal inertia and SM
(Paruta et al., 2020). SM, Soil moisture.
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7.4.3 Soil moisture retrieval using the simplified temperature�vegetation
triangle model

The simplified temperature�vegetation triangle model inputs include the LST and
NDVI derived from the reflectance values measured by the UAS-borne multispectral cam-
era at red and NIR wavelengths (Fig. 7.5). It is worth noting that the LST for the case of
partial vegetative cover conditions means a mixture of bare soil surface temperature and
vegetation canopy temperature.

To guarantee the performance of the triangle model, the UAS survey should be exe-
cuted in a relatively flat area with heterogeneous vegetation coverage (a full range of vege-
tation fraction values to be present).

The first step to implement the triangle model is identifying some representative pix-
els, such as the full vegetation-covered pixel and the bare soil pixel. This step can be
easily operated by choosing the highest and lowest values of LST and NDVI on the
images.

FIGURE 7.4 Flowchart describing the KM model. KM,
Kubelka�Munk.

FIGURE 7.5 Methodology flowchart of
the simplified temperature�vegetation tri-
angle model.
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The second step is calculating vegetation fraction based on the NDVI values of each
pixel in the map and the NDVI values over full vegetated coverage and bare soil pixels.
The function of vegetation fraction calculation (Gillies et al., 1997) can be expressed as
follows:

Fr5 NDVI2NDVI0ð Þ= NDVIS 2NDVI0ð Þ (7.19)

where NDVIo is the NDVI value over the bare soil pixel, and NDVIs is the NDVI value
over the full vegetated pixel.

Then, the scaled LST (also called the temperature dryness index (Sandholt et al., 2002))
can be calculated using the following function:

T� 5 T2Tminð Þ= Tmax 2Tminð Þ (7.20)

where Tmin is the lowest LST value in the image, and Tmax is the highest LST value in the
image. Thus both the vegetation fraction (Fr) and the scaled LST (T*) range from 0 to 1.

The next step is constructing the two-dimensional triangle space by plotting Fr versus
T* values of each pixel. An example of a scatter plot can be found in Fig. 7.6. Several
essential features of the triangle space need to be explained. First, the warm edge (or the
dry edge) can be found as the hypotenuse of the triangle, from the vertex of highest Fr
and lowest T* to the vertex of lowest Fr and highest T*. The physical meaning of the warm
edge can be explained as where the maximum temperature occurs in different vegetation
coverage categories, and the high temperature refers to a dry condition. Second, the cold

FIGURE 7.6 Scatter plots
derived in a test in a cropland in
southern Italy, in June 2019.
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edge or wet edge is where the minimum T* appears in each vegetation coverage category,
which tends to be vertical in the plot. Wet edge refers to the values of soil water availabil-
ity, and evapotranspiration equals 1. Then the soil line is the bottom line in the plots,
which indicates the bare soil conditions with NDVI, or Fr equals 0. Furthermore, the trian-
gle vertex is possible to be a flattened top like in Fig. 7.6. It can be caused by various rea-
sons, like the highest NDVI values in this region are not representing the full vegetation
coverage.

After the construction of the triangle space, the evapotranspiration and soil water avail-
ability can be estimated with two hypotheses: first, the transpiration is equal to the poten-
tial transpiration when vegetation is at wilting point; second, the relationship between soil
water availability and evapotranspiration fraction is linear within the triangle domain.
Thus, as presented in Fig. 7.2, soil water availability and evapotranspiration can be defined
with the following function:

Mo 5 12T� pixel
� �

=T� dryedge
� �

(7.21)

EF5EFsoil 12 Frð Þ1 FrEFveg 5Mo 12 Frð Þ1 Fr (7.22)

where Mo is the soil water availability, EFsoil is the ratio between soil evaporation and net
radiation, and the EFveg equals 1.

7.5 Soil moisture downscaling using random forest regression model

The basic processing procedures are presented in Fig. 7.7.
The predictors used in the RF regression model include various land surface features

related to SM, such as rainfall, vegetation index, LST, elevation, topographic information,
and soil properties. In the SM downscaling study, the coarse resolution surface SM data
are used to train the RF regression model and validate the model results. The detailed pro-
cessing steps are the following:

1. Synchronize predictors and coarse resolution surface SM datasets in terms of temporal
and spatial coverage and resolution. Create as many pairs of predictors of surface SM
data as the input of the RF regression model.

2. A part of data pairs (70% were recommended) can be used to train the RF regression
model. Then the predictors’ data in the other part of the data pairs are used to estimate
surface SM using the well-tuned RF regression model. The estimated surface SM (also
coarse resolution) can be validated with the original coarse resolution surface SM data.

3. If the validation result (the left 30%) of the previous step is satisfactory, the trained RF
regression model can be used in the following steps. Otherwise, either the predictors’
combination or the spatial-temporal coverage of the data used for model training
should be adjusted to produce reliable results.

4. Using fine resolution predictors data as the input of the trained RF regression model,
the output result is the fine resolution surface SM data. Fig. 7.8 is an example located in
southern Italy. The RF regression model was established with a 5-year 30-m resolution
SM (Fig. 7.8 (1)) land surface features (i.e., surface temperature, vegetation index, and

192 7. Soil moisture monitoring using unmanned aerial system

3. Soil mapping



FIGURE 7.7 Methodology of the ran-
dom forest regression model downscaling
(Zhang et al., 2021).

FIGURE 7.8 Example of RF regression downscaling: (1) a 5-year average of downscaled 30-m resolution SM
map; and (2) estimated 16-cm resolution SM map on June 13, 2019. SM, Soil moisture.
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slope), and applied with UAS-based land surface information, the resolution of the
result SM is 16 cm (Fig. 7.8 (2)).

To achieve a reasonable and reliable modeling result, the selection of appropriate pre-
dictors is worth to be discussed. In the coarse resolution and large-scale case, some specific
variables play important roles, such as rainfall, geographic information, and LST. In the
fine resolution and small-scale case (e.g., UAS data, submeter resolution, field scale), the
vegetation, soil texture, and LST become the most important information. However, it is
not possible to isolate their individual effects (Crow et al., 2012), and the combinations of
variables can influence the accuracy of the downscaling results. It is important to perform
a comprehensive analysis before selecting downscaling predictors (Das et al., 2011; Im
et al., 2016; Kathuria et al., 2019; Panciera et al., 2008).

7.6 Discussion and conclusions

In this chapter the importance of SM and the necessity of the high-resolution SM map-
ping on field-scale studies are introduced. Then, a review on the applications of UAS-
based SM monitoring presents the potential of the suggested SM approaches. Providing
several alternative models for UAS-based data management, including optical data-based
KM model, TIR data�based thermal inertia method and the simplified temperature-
�vegetation triangle method, and RF regression model�based spatial downscaling strat-
egy, are introduced in detail with their theory and operation procedures, characteristics,
and constraining and a summary of each method can be found in Table 7.1.

In general, the thermal inertia method is suitable for bare soil areas and sparsely vege-
tated areas and very much convenient for UAS utilization as broadband thermal with
RGB cameras are usually the basic apparatus system for the most common UAS.
Numerous studies have been conducted to guarantee the reliability of this method, and
the studies using UAS-based data gave satisfactory results. But it is necessary to acquire
some in situ measured SM simultaneous with the UAS flight mission to calibrate
the model. In recent studies, Paruta et al. (2020) presented an application over an agricul-
ture area with relatively high accuracy of SM estimation results and a possibility to
extend the research to the vegetated and shaded pixels. The simplified temperature�vegeta-
tion triangle model is recommended over densely vegetated regions. The most important
advantage of this method is the absence of ancillary atmospheric and surface parameters
and land surface models. The results of the study by Petropoulos et al. (2021) showed an
acceptable error of 0.040 cm3/cm3 for surface SM, which implies that the proposed model
performs well under the semiarid conditions as in the study area of this research.

The KM model is recommended due to its simplicity and reliability if a hyperspectral
sensor is available in the UAS survey. Once well-acquired SWIR reflectance map is avail-
able, SM can be retrieved follow the simple methodology as in Fig. 7.4. Yuan et al. (2019)
provided a reliable example of SM retrieval using the KM model with the help of satellite-
based data and concluded that a high degree of heterogeneity, surface roughness, topo-
graphical features, shadow effects could be the challenges of the application of this
method. To extend the application of the KM model to UAS-based surveys, the most
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TABLE 7.1 Summary of UAS-based soil moisture (SM) monitoring methods.

Methods

Sensors;

acquisition time

Land surface

information Conditions; strength; limitation

Representative

studies

SM retrieval Apparent thermal
inertia method

�TIR; sunrise
and noon

�Optical (red,
green, NIR);
noon

�LST
�NDVI
�Albedo

�Surface SM over bare soil and sparsely vegetated
areas;�Reliable;�In situ measurements are required

Paruta et al. (2020)

Kubelka�Munk
method

�Optical (SWIR);
noon

�Reflectance �Surface SM;
�Simplicity;
�Hyperspectral sensor required

Yuan et al. (2019)

MARMIT �Optical; noon �Reflectance �Surface SM;
�Simplicity;
�Hyperspectral sensor required

Bablet et al. (2018),
Dupiau et al. (2022)

Simplified
temperature
�vegetation
triangle method

�TIR
�Optical (red,
NIR); noon

�LST
�NDVI

�Surface SM and evapotranspiration over densely and
heterogeneous vegetated areas;

�Not require any ancillary parameters and land surface
model;

�UAS-based applications can be developed more

Petropoulos et al.
(2021)

Downscaling Random Forest
Regression

�TIR
�Optical (red,
green, NIR);
noon

�LST
�NDVI
�DSM, etc.

�Surface SM;
�Fully use all available data;
�Difficult to validate

Zhang et al. (2021)

LST, Land surface temperature; NDVI, normalized difference vegetation index; NIR, near-infrared; TIR, thermal infrared.



challenging task is obtaining the SWIR reflectance map at field scale, which requires a
well calibrated hyperspectral camera. However, the UAS survey usually executed at the
field scale, which may provide a suitable condition for the model application with a rela-
tively low degree of heterogeneity, and a reliable surface roughness map, and movable
shadow effects.

Except for SM retrieval, UAS-based land surface information can also be used to per-
form surface SM downscaling with the help of ML models, which can take advantage of
available satellite-based SM and land surface data. The methodology has been well estab-
lished in the research of Zhang et al. (2021) in the global scale study and presented a pre-
liminary result using UAS-based data in the study of Su et al. (2020).

For future works the effort to develop the methods mentioned earlier can be focused
on: (1) investigating the special condition or assumption over the relatively small scales
(field scale, covered by UAS surveys), (2) investigating the possibility to take advantage of
hyperresolution data (submeter resolution, possible to distinguish an individual plant), (3)
validation of the results high-resolution SM maps, which indicates not only point scale
ground truth validation but also the spatial dynamics of SM.
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Seneviratne, S.I., Viterbo, P., Lüthi, D., Schär, C., 2004. Inferring changes in terrestrial water storage using ERA-40

reanalysis data: the Mississippi River Basin. J. Clim. 17, 2039�2057.
Seneviratne, S.I., Corti, T., Davin, E.L., Hirschi, M., Jaeger, E.B., Lehner, I., et al., 2010. Investigating soil moistur-

e�climate interactions in a changing climate: a review. Earth-Sci. Rev. 99, 125�161.
Sobrino, J.A., El Kharraz, M.H., 1999. Combining afternoon and morning NOAA satellites for thermal inertia esti-

mation: 2. Methodology and application. J. Geophys. Res. Atmos. 104, 9455�9465.
Su, Z., Wen, J., Dente, L., Velde, R.V.D., Wang, L., Ma, Y., et al., 2011. The Tibetan Plateau observatory of plateau

scale soil moisture and soil temperature (Tibet-Obs) for quantifying uncertainties in coarse resolution satellite
and model products. Hydrol. Earth Syst. Sci. 15, 2303�2316.

Su, Z., Zeng, Y., Romano, N., Manfreda, S., Francés, F., Ben Dor, E., et al., 2020. An integrative information aque-
duct to close the gaps between satellite observation of water cycle and local sustainable management of water
resources. Water 12, 1495.

Taktikou, E., Bourazanis, G., Papaioannou, G., Kerkides, P., 2016. Prediction of soil moisture from remote sensing
data. Procedia Eng. 162, 309�316.
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