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ABSTRACT 

Soil moisture (θ) is a fundamental variable controlling the exchange of water and 

energy at the land surface. As a result, the characterization of the statistical properties of 

θ across multiple scales is essential for many applications including flood prediction, 

drought monitoring, and weather forecasting. Empirical evidences have demonstrated the 

existence of emergent relationships and scale invariance properties in θ fields collected 

from the ground and airborne sensors during intensive field campaigns, mostly in natural 

landscapes. This dissertation advances the characterization of these relations and 

statistical properties of θ by (1) analyzing the role of irrigation, and (2) investigating how 

these properties change in time and across different landscape conditions through θ 

outputs of a distributed hydrologic model. First, θ observations from two field campaigns 

in Australia are used to explore how the presence of irrigated fields modifies the spatial 

distribution of θ and the associated scale invariance properties. Results reveal that the 

impact of irrigation is larger in drier regions or conditions, where irrigation creates a 

drastic contrast with the surrounding areas. Second, a physically-based distributed 

hydrologic model is applied in a regional basin in northern Mexico to generate 

hyperresolution θ fields, which are useful to conduct analyses in regions and times where 

θ has not been monitored. For this aim, strategies are proposed to address data, model 

validation, and computational challenges associated with hyperresolution hydrologic 

simulations. Third, analyses are carried out to investigate whether the hyperresolution 

simulated θ fields reproduce the statistical and scaling properties observed from the 

ground or remote sensors. Results confirm that (i) the relations between spatial mean and 
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standard deviation of θ derived from the model outputs are very similar to those observed 

in other areas, and (ii) simulated θ fields exhibit the scale invariance properties that are 

consistent with those analyzed from aircraft-derived estimates. The simulated θ fields are 

then used to explore the influence of physical controls on the statistical properties, 

finding that soil properties significantly affect spatial variability and multifractality. The 

knowledge acquired through this dissertation provides insights on θ statistical properties 

in regions and landscape conditions that were never investigated before; supports the 

refinement of the calibration of multifractal downscaling models; and contributes to the 

improvement of hyperresolution hydrologic modeling. 
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1. CHAPTER 1  

INTRODUCTION 

Background 

Soil moisture (θ) is a key state variable linking water, energy, and carbon fluxes at 

land surface (Lin et al., 1994; Entekhabi, 1995). It controls several hydrological processes 

such as infiltration, runoff, storage and drainage and determines the partitioning of the 

incoming radiation between latent and sensible heat fluxes (Vivoni et al., 2008a; 

Heathman et al., 2012; Vereecken et al., 2014; Martínez García et al., 2014; Bertoldi et 

al., 2014). Soil moisture is highly variable in space and time, due to the combined effects 

of soil texture (Cosh and Brutsaert, 1999; Vereecken et al., 2007), topography (Grayson 

et al., 1997; Western et al., 1999), vegetation (Mohanty et al., 2000; Teuling and Troch, 

2005), and climate (Grayson et al., 1997; Lawrence and Hornberger, 2007). As a result, 

characterizing the spatial variability of θ across multiple scales over a wide range of 

settings is essential for a several applications, including informing climate, hydrologic 

and atmospheric models (Entekhabi et al., 2010; Mascaro and Vivoni, 2012), monitoring 

drought (Svoboda et al., 2002), and supporting agricultural and irrigation management 

(Tao et al., 2003), among others.  

Soil moisture is mainly measured through ground sensors at different depths. 

While useful to characterize the temporal variability of this hydrologic variable, these 

observations are representative of a very limited area or support (a few meters) so that 

their utility for hydrologic applications at basin scale is limited. During the last two 

decades, spatially-distributed θ fields have become available globally from satellite 
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remote sensing products, including the Advanced Microwave Scanning Radiometer 

(AMSR-E; Njoku et al., 2003), the Soil Moisture Ocean Salinity (SMOS; Kerr et al., 

2001) mission, and the most recently-launched Soil Moisture Active and Passive (SMAP; 

Entekhabi et al., 2010) mission. While satellite products have been extremely useful for 

applications at global and continental scales (e.g., Rebel et al., 2012; Reichle et al., 2007), 

their resolution is still too coarse to provide information at watershed scales (Crow and 

Wood, 2002).  

The investigation of the spatial variability of θ across different scales requires the 

availability of high-resolution θ estimates. These have been provided at ~1 km resolution 

in a limited number of cases by airborne sensors flown during intensive field campaigns 

(e.g. Washita 1999 Experiments; Southern Great Plains (SGP) Hydrology Experiments of 

1997 and 1999; Soil Moisture Experiments (SMEX) of 2002, 2003, 2004 and 2005; and 

National Airborne Field Experiment 2005 and 2006). Data from these datasets have been 

crucial to advance the scientific knowledge on the statistical properties of soil moisture 

and their control by land surface properties. A large number of studies have analyzed the 

relation between the spatial mean soil moisture (<θ>) and the variability (σθ) in the θ 

fields using the datasets from the field campaigns (Crow and Wood, 2002; Brocca et al., 

2010, 2012; Lawrence and Hornberger, 2007; Vereecken et al., 2007; Vivoni et al., 

2008a; Famiglietti et al., 1999, 2008). These have shown contradictory patterns on the 

shape of the relation such as increasing variability with decreasing <θ> (Famiglietti et al., 

1999), decreasing variability with decreasing <θ> (Vivoni et al., 2008a) and an increase 

up to a certain value of <θ> followed by a decrease (Brocca et al., 2010, 2012), which 
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were ascribed to the effects of climate and landscape features (Mascaro et al., 2011). 

Further analyses are needed to better characterize the simple, but very useful σθ vs. <θ> 

relation across different climates and environmental settings. 

Another group of studies have used the aircraft-derived soil moisture products 

collected from the field campaigns to demonstrate that soil moisture exhibits scale 

invariance and multifractal properties. When a variable exhibits scale invariance, the 

statistical properties controlling its spatial distribution (e.g., the statistical moments) have 

clear relationships across different aggregation scales. The evidence of these properties 

has been then used to develop downscaling models that allow reproducing the variability 

of θ at fine scales (~1 km) starting from coarse (~50 km) estimates from satellite sensors 

(Hu et al., 1998; Kumar, 1999; Kim and Barros, 2002b; Perry and Niemann, 2008; Kaheil 

et al., 2008; Mascaro et al., 2010). Unfortunately, the evidence of scale invariance and 

multifractality has been only observed in a limited number of cases during intensive field 

campaigns. As for the σθ vs. <θ> relation, additional work is needed to evaluate whether 

soil moisture exhibits scale invariance and multifractality (i) across all climate regimes; 

(ii) beyond the scaling regime from ~1 km to ~50 km; and (iii) in landscapes where 

anthropogenic effects are significant, such are irrigated areas.  

An alternative approach to generate high-resolution θ estimates that could be used 

to support these analyses is the application of distributed hydrological models run at high 

spatial resolution. However, due to computational and data challenges, high-resolution 

(<100 m) hydrologic simulations have been conducted in a very limited number of cases 

and mostly in small basins (Mahmood and Vivoni, 2008; Xiang et al., 2014). As a result, 
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only a few studies have evaluated whether simulated θ fields are characterized by the 

same statistical properties of observed measurements (Peters-Lidard et al., 2001; Grayson 

et al., 2002; Vivoni et al., 2010; Mascaro et al., 2015). For example, Vivoni et al. (2010) 

applied a distributed hydrologic model in a small basin in northwest Mexico and showed 

that the σθ vs. <θ> relation is well reproduced. Based on this positive result, these authors 

used the model outputs to investigate the physical controls on the soil moisture 

spatiotemporal variability and its feedback with evapotranspiration fluxes. Studies like 

the one from Vivoni et al. (2010) demonstrate that simulated θ fields are useful to 

advance our knowledge on the statistical properties of soil moisture fields and the 

underlying physical controls, including land surface (terrain, soil, and vegetation) 

properties and climate. 

As summarized next, Chapters 2-5 of this thesis address research questions that 

have the overarching goal of advancing the knowledge of the statistical properties of soil 

moisture, with particular focus on scale invariance and multifractality. For this aim, soil 

moisture data obtained from remote sensors and hyper-resolution hydrologic simulations 

will be utilized. 
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Outline of Chapters 2-5 

Previous work of Mascaro et al. (2011) showed preliminary evidence that the 

presence of irrigated agricultural fields impacts significantly the scale invariance 

properties observed in natural landscapes. However, no study has quantified these 

impacts and included their effects on downscaling schemes. The analyses presented in 

Chapter 2 aim at answering two research questions:  

1. What is the effect of irrigated agricultural areas on the scale invariance and 

multifractal properties of soil moisture? 

2. Can we improve soil moisture downscaling models in areas with presence of 

irrigation?  

For this aim, the scale invariance and multifractal properties of aircraft-based θ fields are 

compared in two areas characterized by different climate and combinations of natural 

landscapes and croplands. The data are part of the National Airborne Field Experiments 

2005 (NAFE05) and 2006 (NAFE06) campaigns conducted in Australia. A 

methodological framework has been proposed to (1) identify the irrigated areas from 

remote sensing data, (2) quantify the impact of irrigation on the scale invariance 

properties, and (3) apply a multifractal downscaling model while accounting for the 

spatial heterogeneity due to irrigated croplands. 

As previously mentioned, the evidence of scale invariance in soil moisture fields 

has been only observed in a limited number of cases during intensive field campaigns, 

when soil moisture estimates at high spatial resolution were available from airborne 

sensors. An alternative way of obtaining soil moisture fields for this type of studies is 
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through the use of distributed hydrologic models run at high spatial resolution (hereafter, 

hyperresolution). However, hyperresolution simulations have been conducted in a very 

limited number of cases and mostly in small basins (Xiang et al., 2014). The work 

presented in Chapter 3 has the goal of addressing the research question:  

3. Can we generate reliable high-resolution θ fields over large areas and for a long-time 

period, using a physically-based distributed hydrologic model?  

In a recent opinion paper, Wood et al. (2011) identified several challenges that are still 

preventing hyperresolution hydrologic simulations, including high computational cost 

and lack of meteorological forcings and terrain characterization data at high spatial 

resolution. In Chapter 3, some of these challenges have been addressed by applying the 

parallel version of the Triangulated Irregular Network (TIN)-based Real-Time Integrated 

Basin Simulator (tRIBS) hydrologic model (Ivanov et al., 2004a) to the Rio Sonora basin 

(RSB) in northwest Mexico. Simulations have been conducted at an average spatial 

resolution of ~88 m over 10 years. A downscaling scheme accounting for terrain effects 

has been applied to generate meteorological forcings at a resolution of ~1 km starting 

from reanalysis products at ~12 km. In addition, spatial maps of soil parameters have 

been generated at ~250 m by combining global soil texture maps and a local soil map (~6 

km). The model was validated against independent observation of soil moisture, and with 

estimates of land surface temperature from the Moderate Imaging Spectroradiometer 

(MODIS) through a set of spatial analysis tools, including Taylor diagrams, connectivity 

analysis, and empirical orthogonal function analysis to quantify model performances and 

diagnose the potential causes of model deficiencies. 
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Given the limited number of hyperresolution hydrologic simulations, only a few 

studies have analyzed the scaling properties of model-derived θ (e.g., Gebremichael et 

al., 2009). The hyperresolution simulations obtained in Chapter 3 provide an extensive 

dataset of high-resolution θ fields spanning several years with different wetness states. 

Chapter 4 addresses the research question:  

4. Do soil moisture fields simulated by hyperresolution hydrologic simulations 

reproduce observed statistical properties including scale invariance? 

First, the spatial variability of 10-years simulated θ fields of the entire RSB and sixteen 

square domains of size 32 km by 32 km covering the entire RSB with different surface 

properties and conditions has been explored by comparing the relation between spatial 

standard deviation (σθ) and the coefficient of variation (CVθ) of the spatial mean of the 

field (<θ>). These relations have been compared to previous studies conducted in (i) 

SMEX04, Sonora (SON) (Mascaro and Vivoni, 2010) and (ii) two campaigns for 50-km 

scale; SMEX02 and SMEX03 (Famiglietti et al., 2008). Then, the presence of scale 

invariance properties in θ fields of the domains is investigated from 32 km to 1 km. In 

addition, the variability of the properties under different soil, vegetation, and terrain 

conditions is investigated and quantified, as well as the physical controls on the spatial 

variability of <θ> and scaling properties were investigated.   

Finally, Chapter 5 summarizes general conclusion of the preceding chapters and 

outlines insights to future research. The results presented in chapters 2-4 correspond to 

journal articles that have been either published, submitted, or in preparation: 

Chapter 2:  Ko, A., G. Mascaro, and E.R. Vivoni. 2016. Irrigation impacts on 

scaling properties of soil moisture and the calibration of a multifractal downscaling 
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algorithm. IEEE Transactions on Geoscience and Remote Sensing, 54(6): 3128-3142. 

Chapter 3: Ko, A., G. Mascaro, and E.R. Vivoni. 2018. Strategies to Improve 

Physics-Based Hyperresolution Hydrologic Simulations at Regional Basin Scales. (In 

review, Water Resources Research). 

Chapter 4: Ko, A., and G. Mascaro 2018. Statistical and Scaling Properties of 

Simulated Soil Moisture. (In Preparation). 
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2.CHAPTER 2 

IRRIGATION IMPACTS ON SCALING PROPERTIES OF SOIL MOISTURE AND 

THE CALIBRATION OF A MULTIFRACTAL DOWNSCALING ALGORITHM 

Introduction 

Soil moisture (θ) is a crucial variable controlling and linking the water and energy 

fluxes at the land surface (Entekhabi, 1995) . Knowledge of the spatiotemporal variability 

of θ is thus important to inform weather forecasting, climate and hydrologic models 

(Entekhabi et al., 2010; Mascaro and Vivoni, 2012); monitor drought (Svoboda et al., 

2002); and support agricultural and irrigation management (Tao et al., 2003). Spatial θ 

fields have become available globally from satellite remote sensing products, including 

the Advanced Microwave Scanning Radiometer (AMSR-E; Njoku et al., 2003), the Soil 

Moisture Ocean Salinity (SMOS; Kerr et al., 2001) mission, and the recently-launched 

Soil Moisture Active and Passive (SMAP; Entekhabi et al., 2010) mission. While satellite 

products have been extremely useful for applications at global and continental scales 

(e.g., Rebel et al., 2012; Reichle et al., 2007), their resolution is still too coarse to provide 

information at watershed scales (Crow and Wood, 2002). To increase the utility of 

satellite θ products, downscaling (or disaggregation) approaches have been proposed 

based on different methods, including: (i) application of hydrologic models (Pellenq et 

al., 2003; Merlin et al., 2006a), (ii) use of remotely-sensed products and ground 

meteorological data (Merlin et al., 2005, 2006b), (iii) use of high-resolution land surface 

properties (Shin and Mohanty, 2013), and (iv) approaches that reproduce the statistical 
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properties of θ (Hu et al., 1998; Kumar, 1999; Kim and Barros, 2002b; Perry and 

Niemann, 2008; Kaheil et al., 2008; Mascaro et al., 2010).  

A class of statistical downscaling algorithms is based on the evidence that θ fields 

exhibit scale invariance and fractal or multifractal properties across a range of settings 

(Rodriguez‐Iturbe et al., 1995; Hu et al., 1997; Kim and Barros, 2002a; Oldak et al., 

2002; Das and Mohanty, 2008; Mascaro and Vivoni, 2010). For example, Kumar (1999) 

proposed a model that reproduces these statistical properties through a Kalman filtering 

algorithm, while Hu et al. (1998) and Das and Mohanty (2008) adopted techniques based 

on wavelet transforms. Kim and Barros (2002b) developed a technique that uses fractal 

interpolation informed by ancillary data to produce a unique disaggregated field. An 

alternative downscaling approach based on a stochastic generator of multifractal, 

homogeneous cascades has been adopted by Mascaro et al. (2011, 2010) to disaggregate 

θ from 25.6 km (~AMSR-E footprint) to 800 m (~an aircraft footprint), using θ data from 

the Southern Great Plains experiment in 1997 (SGP97) in Oklahoma, the Soil Moisture 

Experiment of 2002 (SMEX02) held in Iowa, and of 2004 (SMEX04) conducted in 

Arizona and Sonora, Mexico. This model depends only on two parameters that were 

calibrated as a function of coarse-scale predictors including the soil moisture mean and 

ancillary factors accounting for terrain, soil texture and land cover features in the satellite 

footprint. The applications of Mascaro et al. (2011, 2010)  demonstrated the model 

robustness across different climate regimes and land surface characteristics. However, the 

model exhibited lower performances in agricultural areas where irrigated fields introduce 

spatial heterogeneity in the θ distribution.  
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In agricultural areas with irrigation systems, additional water input modifies the 

spatial and temporal variability that θ fields would typically have in natural landscapes, 

including their scale invariance and multifractal properties. As a result, if the presence of 

irrigation is not taken into account, the applicability of any type of downscaling algorithm 

used to increase the utility of satellite products (e.g., SMOS, SMAP) may be limited. 

Despite this, the effect of irrigated crops on θ spatial variability and downscaling 

algorithms has received very little attention. Mascaro et al. (2011) provided preliminary 

evidence that scale invariance properties of θ may be impacted differently by the 

presence of agricultural fields that have likely been irrigated, depending on climate of the 

region and the extent of the agricultural districts. Specifically, these authors showed that, 

in a large agricultural region in Iowa with homogenous land cover and a humid climate, θ 

fields are scale invariant in a single range from 25.6 km to 800 m with similar properties 

across the area. In contrast, in an arid climatic setting in Arizona, the presence of 

agricultural districts of limited extent modified the scale invariance properties introducing 

an additional scale regime. Hence, results from Mascaro et al. (2011) indicate that 

agricultural fields have a greater impact on the θ distribution in arid and semiarid areas 

surrounded by drier land. In that study, the authors identified the occurrence of irrigation 

based on reports of field visits and inspection of land cover maps (e.g., center-pivot 

irrigation systems were clearly visible in the map for Arizona), without proposing a 

technique to objectively identify the irrigated fields.  

This study aims at further investigating the irrigation impacts on the scale 

invariance properties of θ fields and the application of a multifractal downscaling 
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algorithm. I use ground and aircraft-based (1-km) θ measurements from the National 

Airborne Field Experiments (NAFE) 2005 (NAFE05) and 2006 (NAFE06) field 

campaigns, undertaken in two regional sites in Australia to support the SMOS mission 

(Panciera et al., 2008; Merlin et al., 2008b). The two study sites have different 

characteristics in terms of climate (temperate in NAFE05 and semiarid in NAFE06), 

extent of agricultural districts, and crop types that require different irrigation schedules 

and amounts. First, I develop a simple method based on Landsat 5 Thematic Mapper 

(hereafter Landsat TM5) at 30-m resolution to detect irrigated areas in the two study 

regions. This information is then used to create three scenarios for the scale invariance 

analysis from the coarse scale of 32 km (~satellite footprint) to the fine scale of 1 km 

(aircraft footprint). In the first scenario (SC1), the analysis is conducted on the original θ 

data, thus considering potential spatial heterogeneity induced by irrigation activities. The 

other two scenarios aim at removing the source of spatial heterogeneity in θ distribution 

by replacing the soil moisture values in irrigated pixels with missing data (SC2) or with 

values interpolated from neighboring non-irrigated pixels (SC3). SC2 and SC3 represent 

then two possible strategies to simulate conditions where irrigation was not applied, thus 

mimicking natural settings. Metrics testing the presence of scale invariance are used in 

the three scenarios to evaluate how irrigated pixels affect these statistical properties in the 

two study regions.  

Results of the scale invariance analysis are then used to apply the multifractal 

downscaling model of Mascaro et al. (2011) under SC3, where the effect of irrigation has 

been attenuated. After calibrating the model as a function of coarse-scale predictors, I 
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evaluate its performance by comparing an ensemble of disaggregated fields with (i) the 

observed small-scale θ distribution from the aircraft products and (ii) ground θ 

measurements. This is the first time that ground data are used to verify the skill of this 

type of downscaling model. Results from the model verification are discussed to identify 

the skills and limitations of the procedure to remove the effect of irrigated croplands. 

Note that, by using SC3, the disaggregated fields are generated in a spatially 

homogeneous framework and, in future work, methods should be developed to include 

the effect of the spatial heterogeneity due to irrigated croplands. Given the increasing 

extent of irrigated lands globally (Siebert et al., 2015), the findings of this study are 

useful to advance the general knowledge of soil moisture spatiotemporal variability, with 

focus on anthropogenic settings, and to support the development of a broad range of 

downscaling routines enhancing the utility of satellite products, including the SMOS and 

SMAP missions. 

 

Study Sites and Datasets  

NAFE05 and NAFE06 Campaigns 

NAFE05 and NAFE06 are two intensive field campaigns conducted in 

southeastern Australia [see Figure 2.1(a)] during November 2005 and 2006, respectively, 

with the goal of supporting the development of the SMOS θ retrieval algorithm, as well 

as the design of downscaling and data assimilation techniques for future SMOS products 

(Panciera et al., 2008, 2009; Panciera, 2009; Merlin et al., 2008b, 2008a, 2009). For this 

aim, ground θ measurements were collected across a range of soil, vegetation and terrain 
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conditions during overpasses of the Polarimetric L-band Multi-beam Radiometer 

(PLMR) mounted on an aircraft. During NAFE05, the aircraft flights covered a region of 

40 km x 40 km in the Golburn River catchment in the Australian state of New South 

Wales [see Figure 2.1(b)]. In this area with temperate climate (mean annual rainfall of 

650 mm), elevation ranges from 174 to 802 m (average of 364 m) and the mean slope is 

4.25˚ [Figure 2.1(b)]. The dominant soil types are clay (55.0% of the total area) and sand 

(35.5%), while the main land cover class is woodland (49.2%) followed by forest 

(19.4%), rainfed pasture (18.5%) and rainfed crop (12.8%). The predominant crop types 

are wheat, barley and lucerne with small amounts of sorghum and oat (Walker et al., 

2008). Table 2.1 summarizes the terrain, soil texture and land cover features of the 

region, along with the source of each dataset.  

NAFE06 was carried out in three separate sites with semiarid climate (mean 

annual rainfall of 300 mm) of the Murrumbidgee catchment in New South Wales (Merlin 

et al., 2008b). Here, I focused on the Yanco site, where aircraft measurements were 

collected on a region of 41 km x 59 km that includes the Coleambally Irrigation Area 

(CIA), an intensive agricultural district with more than 500 farms [Figure 2.1(c)]. Terrain 

is gently rolling, with elevation ranging from 114 to 164 m (average of 126 m) and a 

mean slope of 0.35˚ (see Figure 2.1(c) and Table 2.1). The soil type is mostly sandy loam 

(~99.0% of the area), while rainfed crop is the major land cover class (45.2%), followed 

by rainfed pasture (22.5%) and woodland (18.5%). This land cover classification, derived 

from Lymburner et al. (2011) and based on Moderate Resolution Imaging 

Spectroradiometer (MODIS) imagery at 250-m resolution, does not include irrigated 
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crops. However, in a description of the NAFE06 experiment, Walker et al. (2006) 

reported that, in the CIA district, flood irrigation is applied in November on rice fields 

that represent the dominant crop type. To address this, here I refined the classification of 

Lymburner et al. (2011) by developing a method to identify irrigated fields in the two 

study sites. 

 
Figure 2.1. (a) Geographic location of the NAFE05 and NAFE06 study sites in Australia. 
Topography of (b) NAFE05 and (c) NAFE06 study areas derived from a 90-m DEM of 
SRTM, along with the boundaries of the aircraft acquisition shown with black lines and 
with examples of ground sampling points on Nov. 7 for NAFE05 and farm areas for 
NAFE06 shown with black dots or lines. In (c), the white dashed line indicates the 
boundary of the CIA area (see text for details). 
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Table 2.1. Summary of terrain, soil texture and land cover features for the NAFE05 and 
NAFE06 study regions with the source of each dataset. For topography, minimum, 
maximum and mean elevation (Hmin, Hmax, and Hmean), and mean slope (SLmean) are listed. 
For soil texture and land cover, the main classes and their percentage at each site are 
reported. 

 
  

Feature and Source NAFE05 NAFE06 

Topography from the 
90-m Digital 

Elevation Model 
(DEM) of the Shuttle 
Radar Topography 
Mission (SRTM) 

Hmin = 174 m,  
Hmax = 802 m,  
Hmean = 364 m, 
SLmean = 4.5°.  

Hmin = 114 m,  
Hmax = 164 m,  
Hmean = 126 m, 
SLmean = 0.35°. 

Soil Texture from 
McKenzie et al.  

(2000) 

Loamy Clay (9.5%),  
Clay (55.0 %), 
Sand (35.5 %). 

Sandy Loam (99.0%), 
Loamy Clay (1.0%). 

Land Cover from 
Lymburner et al., 

(2011) 

Rainfed Crop (12.8%), 
Rainfed Pasture (18.5%), 

Forest (19.4%), 
Woodland (49.2%). 

Water Body (0.1%), 
Rainfed Crop (45.2%), 

Rainfed Pasture (22.5%), 
Tussock Grass (6.7%), 

Forest (7.0%), 
Woodland (18.5%) 
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Aircraft- and Ground-based Soil Moisture Data 

 During NAFE05, the PLMR sensor measured brightness temperature (TB) on four 

days within a 22-day period (October 31, November 7, 14 and 21, 2005) over the region 

of 40 km x 40 km depicted in Figure 2.1(b). TB was converted into maps of near-surface 

(top 3 cm) soil moisture at 1-km resolution according to the retrieval algorithm of 

Panciera (2009) and Panciera et al. (2009). In concomitance with the flights, ground θ 

data were collected over a regional network with a variable number of locations (45 to 

152 depending on the day) and a mean spacing of 1 km (Panciera et al., 2008). An 

example of the regional sampling on November 7 is shown in Figure 2.1(b). For 

NAFE06, maps of θ at 1-km resolution were derived from PLMR TB observations using 

the retrieval algorithm described by Merlin et al. (2008b). Maps were produced for 

eleven days (October 31, November 2-5, 7, 9, 13, 14, 16 and 18, 2006) over a 41 km x 59 

km area and, during each day, ground measurements were taken at three farms with a 

spacing of 250 m in a variable number of locations ranging from 305 to 428 [Figure 

2.2(c)] (Merlin et al., 2008b, 2009). Since, on some days, the values of θ retrieved in 

pixels in the CIA agricultural area were higher (>70%) than typical soil porosity, I 

replaced these values with the maximum of 58% adopted in NAFE05. Despite a slight 

discrepancy between the sampling depth of ground θ measurements (6 cm) and aircraft 

sensor (3 cm), the validation of the retrieval algorithms was adequate except for a slightly 

negative bias in irrigated pixels of NAFE06 (Merlin et al., 2009).  

Time series of the soil moisture spatial mean (<θ>) and standard deviation (𝜎𝜎θ) 

computed from aircraft and ground data in each region are shown in Figure 2.2. In both 
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campaigns, ground and aircraft products are in good agreement in the estimation of <θ>. 

In contrast, the values of 𝜎𝜎θ from the two sources differ, with ground data observing 

lower (negative bias of ~2%) and higher (positive bias of ~4%) spatial variability as 

compared to the aircraft data in NAFE05 and NAFE06, respectively. This discrepancy 

can be attributed to the different extent (regional vs. farm) and land cover type of the 

ground sampling areas, including data collection within farms during NAFE06. As 

indicated by the arrows in Figure 2.2(a), two heavy storms were observed on the first two 

days of NAFE05 that led to wet conditions, while in the other two days the region was 

considerably drier. During NAFE06, two rainfall events occurred on November 3 and 13 

that caused two peaks of <θ> followed by dry down periods [see Figure 2.2(c)]. Overall, 

NAFE05 was characterized by wetter conditions than NAFE06 (average values of <θ> 

from aircraft of 28.2% and 11.2%, respectively). In both sites, 𝜎𝜎θ is linked with <θ> 

according to the bell-shaped relation found in other studies (e.g., Brocca et al., 2007; 

Lawrence and Hornberger, 2007; Mascaro and Vivoni, 2010).  
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Figure 2.2. (a)-(b) Time series of aircraft- and ground-based (a) spatial mean soil 
moisture <θ> and (b) standard deviation σθ collected during NAFE05. (c)-(d) Same as 
(a)-(b) but for NAFE6. The arrows in (a) and (c) indicate rainy days.     
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Methods 

Identification of Irrigated Areas  

I designed a semiautomatic method to identify irrigated areas using Landsat TM5 

images at 30-m resolution taken ~10 days before the beginning of each experiment 

(October 21, 2005 and October 22, 2006, respectively). True color maps in the two study 

regions are shown in Figure 2.3(a) and (d), where it is possible to visually detect the 

agricultural fields, forested areas in NAFE05 and a river floodplain in NAFE06. To 

support the analyses, boundaries of forested area and river floodplain were identified 

through visual analysis and the land cover maps of Table 2.1. The irrigated cropland 

detection method is based on two indices computed from the different bands of Landsat 

TM5. The first index is the Soil Adjusted Vegetation Index (SAVI), defined as: 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =
𝑁𝑁𝑆𝑆𝑁𝑁 − 𝑁𝑁

𝑁𝑁𝑆𝑆𝑁𝑁 + 𝑁𝑁 +  𝑀𝑀
 (1 + 𝑀𝑀)                                            (2.1) 

where NIR and R are the Near Infrared (band 4; wavelength range of 0.76-0.90 

µm) and Red (band 3; 0.63-0.69 µm) bands and M is a factor accounting for vegetation 

density varying from 0 to 1. Huete (1988) suggested the adoption for M of an 

intermediate value of 0.5 to account for first-order soil background variations. SAVI is a 

modification of the Normalized Difference Vegetation Index (NDVI) that isolates 

vegetation from soil and water bodies, while minimizing the influence of soil brightness 

when vegetative cover is low. SAVI ranges from -1 to 1, with lower values associated 

with smaller amount and cover of green vegetation. Following Kaplan and Myint (2012), 

I assumed that areas with SAVI larger than a threshold SAVI* can be classified as an 

irrigated cropland. Specifically, Kaplan and Myint (2012) identified irrigated agricultural 
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areas in a semiarid region of Arizona by adopting SAVI*= 0.4. Given the similarity in 

climate, this value of SAVI* was used for NAFE06. For the more vegetated NAFE05 

area, I increased the threshold to SAVI* = 0.8 to separate agricultural fields from other 

vegetation types. The identification of this threshold was aided by visual comparison with 

the true color images.  

The pixels where the condition SAVI > SAVI* is verified are depicted in Figure 

2.3(b) and (e). Comparison with the true color maps of Figure 2.3(a) and (d) revealed that 

this single condition is not sufficient to identify all irrigated fields. Thus, I computed a 

second index defined as the ratio between bands 5 (1.55-1.75 µm) and 7 (2.08-2.35 µm) 

or band ratio (hereafter BR) that is able to separate water bodies from land and enhance 

the detection of saturated areas, an indication of irrigation (Quinn, 2001). Since lower 

values of BR are associated with higher moisture, I adopted the condition BR < BR*, with 

BR* being a threshold, to detect irrigated fields. To identify BR* in the study regions, I 

initially determined a range of possible values based on Richards (Richards and Richards, 

1999), who suggested the interval from 0.3 to 0.7. For NAFE06 where saturated 

conditions can occur due to flood irrigation, I adopted the middle value of the range (BR* 

= 0.5). For NAFE05 where saturated croplands are more difficult to observe, I increased 

BR* to 0.7. Figure 2.3(b) and (c) show the images with pixels where the condition BR < 

BR* is verified as well as with pixels where both conditions occur, that is SAVI > SAVI* 

and BR < BR*. 

The binary images at 30-m resolution produced by applying the two conditions 

were subsequently resampled at the same resolution (1 km) of the θ fields using a 
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majority algorithm. Based on visual comparisons, I found that this procedure identified 

pixels within cropland regions, as well as forested areas in NAFE05 and river floodplains 

in NAFE06 [see boundaries highlighted in Figure 2.3(a) and (d)]. Note that these are all 

cases of vegetated areas with high water content. The final images with irrigated 

croplands were then obtained by eliminating pixels meeting the conditions but located 

within forests and river floodplains, as shown in Figure 2.3(c) and (f) (labeled as 

discarded). A total of 104 (6.5% of total area) and 208 (8.6%) pixels at 1-km resolution 

were classified as irrigated cropland in NAFE05 and NAFE06. In the NAFE06 site, they 

are distributed in large connected areas within CIA district, while in NAFE05 they are 

more scattered across the region. 

The accuracy of the detection method was tested using the soil moisture images 

available at each site. For each day, I sorted the θ values in decreasing order and 

computed the rank in each pixel (i.e., wetter pixels will have lower ranks than drier ones). 

This was repeated for all available days and the mean rank at each pixel was calculated. 

Irrigated pixels that are artificially wetter should have smaller ranks than other pixels. In 

NAFE05, I found that the mean rank of irrigated pixels is 816 out of a total of 1600. This 

outcome is influenced by the limited sample of the aircraft images (four) and by the fact 

that two of them are affected by large rainfall events (Figure 2.2), during which the fields 

may have not been irrigated. As such, in this study site I expect a lower impact of 

irrigation on the scale invariance properties of θ. In contrast, for NAFE06 the mean rank 

in irrigated pixels is 679 out of a total of 2419, an indication that pixels identified as 

irrigated were effectively wetter than the surrounding areas. 
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Figure 2.3. True color Landsat TM5 image at 30-m resolution of NAFE05; (b) map at 
30-m resolution with pixels verifying one or both conditions SAVI > SAVI* and BR < 
BR*, with SAVI* = 0.8 and BR* = 0.7; and (c) map at 1-km resolution with pixels 
verifying the conditions, including irrigated and discarded pixels. (d)-(e)-(f) Same as (a)-
(b)-(c) but for NAFE06, with SAVI* = 0.4 and BR* = 0.5. 
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Scale Invariance and Multifractal Analyses 

The scale invariance and multifractal analysis was conducted following the 

approach of Mascaro et al. (Mascaro et al., 2010), which is based on Deidda (2000). In 

the following, I briefly summarize the theoretical framework. Scale invariance is tested 

between a fine (l) and coarse (L) scale linked by the binary rule  𝐿𝐿 = 𝑙𝑙 ∙ 2𝑁𝑁lev, where Nlev 

is the number of the downscaling levels. In our case, the fine scale was fixed by the 

aircraft footprint, i.e. l = 1 km, while the coarse scale was selected as L = 32 km to 

approximate the resolution of most satellite products (Nlev = 5). As in Mascaro et al., 

2011, I identified four and eight coarse-scale domains L x L within the NAFE05 and 

NAFE06 regions, respectively, by moving the square L x L on a grid with regular spacing 

of 8 km, as shown in Figure 2.4(a) and (d). Table 2.2 reports the terrain, land cover and 

soil texture characteristics for each domain, as well as the percentage of pixels identified 

as irrigated croplands.  

In each domain, the analysis requires the computation of the structure function 

Sq(λ) at a given scale λ included between l and L and for the moments q, defined as: 

𝑆𝑆𝑞𝑞(𝜆𝜆) =
1

𝑁𝑁(𝜆𝜆)2 � ��𝜃𝜃𝑖𝑖,𝑗𝑗(𝜆𝜆)�
𝑞𝑞

                                         (2.2)
𝑁𝑁(𝜆𝜆)

𝑖𝑖=1

𝑁𝑁(𝜆𝜆)

𝑖𝑖=1

 

where θi,j(λ) is the mean value of θ on a grid cell λ x λ in the location (i, j) within the 

domain and N(λ)2 = (L/ λ)2 is the number of λ x λ cells embedded in the coarse domain. 

The presence of scale invariance is then assessed by verifying the existence of the power 

law: 

𝑆𝑆𝑞𝑞(𝜆𝜆)~𝜆𝜆−𝐾𝐾(𝑞𝑞)                                                                 (2.3) 
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where K(q) is the multifractal exponent. More simply, scale invariance is investigated by 

testing the linearity of the log-log transformation of (3): 

log𝑆𝑆𝑞𝑞(𝜆𝜆)~𝐾𝐾(𝑞𝑞) ∙ log𝜆𝜆                                                      (2.4) 

If (4) holds, the statistical information of the field can be transferred from the coarse scale 

L to any smaller scale λ ≥ l through the knowledge of K(q). The type of relation linking 

K(q) with q determines whether the spatial field is fractal (linear) or multifractal (non-

linear). 
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Table 2.2. Terrain characteristics (mean elevation, Hmean, and mean slope, SLmean), percentage of the main land cover and 
soil texture classes, and percentage of irrigated pixels for the coarse domains L x L identified in the NAFE05 and NAFE06 
study regions. 

NAFE05 
Domain Hmean SLmean Rainfed 

crop 
Rainfed 
pasture Forest Woodland Loamy 

clay Clay Sand Irrigated 
pixels 

 (m) (°) (%) 
1 394.5 4.2 15.7 19.8 20.2 44.3 

 
0.1 53.7 46.2 7.6 

2 395.3 4.5 14.0 19.4 20.5 46.0 
 

0.1 58.8 41.1 6.0 
3 498.5 4.3 17.1 21.8 8.1 52.9 

 
12.4 66.3 21.2 9.7 

4 496.6 4.4 15.6 21.5 7.3 55.4 
 

11.6 72.3 16.1 8.3 
NAFE06 

Domain Hmean SLmean Rainfed 
crop 

Rainfed 
pasture 

Tussock 
grass Woodland Sandy 

loam   Irrigated 
pixels 

 (m) (°) (%) 
1 122.8 0.4 50.3 21.7 7.7 13.5 100.0   8.4 
2 124.3 0.4 49.4 21.2 9.2 13.8 98.9   5.0 
3 124.5 0.3 49.2 25.3 7.6 13.1 100.0   11.8 
4 126.6 0.4 49.1 23.0 8.8 14.1 98.9   6.5 
5 126.0 0.3 44.5 27.0 8.1 16.6 100.0   14.0 
6 128.7 0.4 45.3 24.2 8.8 17.1 98.9   8.4 
7 127.2 0.3 43.2 25.6 6.9 19.6 100.0   13.1 
8 130.4 0.4 44.5 23.4 7.2 19.5 98.9   8.8 
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Scenarios for Testing the Effect of Irrigation on Scaling Properties 

Irrigation activities may impact the spatial distribution of θ by introducing areas 

that tend to be consistently wetter than the surrounding regions. This effect is less evident 

when the entire region is wet (e.g., after rainfall events) and becomes more significant in 

dry conditions. From the statistical perspective, the presence of permanently wet areas 

creates spatial heterogeneity in the θ distribution that can affect its scale invariance and 

multifractal properties and limit the application of downscaling models based on the 

hypothesis of spatial homogeneity (i.e., the statistical distribution of θ is the same at each 

pixel). Here, I investigated the impact of irrigation through the three scenarios previously 

defined and labeled as SC1, SC2 and SC3. As an example, Figure 2.4 shows the θ fields 

created for the three scenarios for one day. In each panel, the spatial mean soil moisture 

(<θ>) and the irrigated cropland pixels are shown: note that <θ> is highest in SC1 and 

lowest in SC2 (computed from non-missing values). 

The effectiveness of SC2 and SC3 in removing the source of spatial heterogeneity 

in θ was tested by introducing two tests, labeled as SC2-R and SC3-R, where the same 

strategies were applied on the same number of irrigated pixels (Nirr), but distributed in 

random locations (-R is for random). These tests allow evaluating if the change in 

statistical properties caused by replacing θ in pixels identified as irrigated croplands is 

more significant than the change due to substituting θ in the same number of pixels 

randomly located in the region. For each soil moisture image, an ensemble of 100 fields 

was created by randomly selecting Nirr pixels (Nirr = 104 and 208 for NAFE05 and 

NAFE06, respectively) and θ values were replaced in each field with missing values in 

SC2-R or with interpolated values from neighboring pixels in SC3-R. 
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The scale invariance analysis was carried out for each scenario for the moments q 

= 1.5, 2, 2.5, 3, 3.5, and 4 and evaluated by calculating two metrics that test the linearity 

of (4), including the Correlation Coefficient (CC) and Root Mean Square Error (RMSE) 

of the linear regression for q = 4. I focused on the highest moment because it is more 

sensitive to the presence of high wetness associated with irrigated croplands: when q is 

high, wet areas lead to extremely high values of Sq(λ) for smaller λ, and this may break 

the linear behavior of (2.4). As a result, I expect lower performances in SC1 where 

irrigated pixels are present. To compare SC2 with SC2-R and SC3 with SC3-R, I 

calculated the percent difference of CC (𝛼𝛼cc) and RMSE (𝛼𝛼RMSE) with the metrics 

obtained in SC1. For example, for SC3, 𝛼𝛼cc and 𝛼𝛼RMSE were calculated as: 

=
CCsc3 − CCsc1

CCsc1
 ∙ 100                                                     (2.5a) 

𝛼𝛼RMSE =
−(RMSEsc3 − RMSEsc1)

RMSEsc1
 ∙ 100,                                           (2.5b) 

where CCSC1, CCSC3, RMSESC1 and RMSESC3 are the metrics computed in SC1 and SC3. 

In both cases, positive values of αcc and αRMSE indicate an improvement in the linearity of 

(2.4) as compared to SC1. Similar expressions of 𝛼𝛼cc and 𝛼𝛼RMSE were used for the other 

scenarios.  

The Multifractal Downscaling Model 

SC3 was designed to attenuate the spatial heterogeneity of θ due to irrigation, a 

required condition for applying downscaling models based on the hypothesis of spatial 

homogeneity. Here, I used the soil moisture fields generated for SC3 to apply the 

multifractal downscaling model that Mascaro et al. (Mascaro et al., 2011, 2010) applied 

in diverse climate and landscape settings to disaggregate θ in space from 25.6 km to 800 
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m. The multifractal model is based on a log-Poisson stochastic generator of 

homogeneous, random binary cascades that reproduce the observed scale-invariance and 

multifractal properties. The generator depends on two parameters, c and β, that control 

the theoretical expectation for the multifractal exponents (Deidda et al., 1999; Deidda, 

2000): 

𝐾𝐾(𝑞𝑞) = 𝑐𝑐 ∙
𝑞𝑞(1 − 𝛽𝛽) −  (1 − 𝛽𝛽𝑞𝑞)

In2
                                           (2.6) 

To estimate c and β, scale invariance is first verified through (2.4) and the 

observed multifractal exponents K(q) are computed for different values of q as the slope 

of the regression lines. Next, (2.6) is fitted to the observed K(q) and used to derive c and 

β. A pair of c and β is estimated for each aircraft-based θ field in a coarse domain.  

As a next step, empirical calibration relations are identified between c and β and 

coarse-scale predictors. Previously, Mascaro et al. (Mascaro et al., 2011, 2010) found β to 

be fairly constant, with values changing from region to region. In contrast, c was linked 

to the coarse-scale mean soil moisture <θ>. In previous applications, an exponentially 

decreasing relation: 

𝑐𝑐 = 𝑐𝑐∞ + 𝛼𝛼 ∙ 𝑒𝑒−𝛾𝛾∙<𝜃𝜃>                                           (2.7) 

with parameters 𝑐𝑐∞, a and 𝛾𝛾 was used in sub-humid and semiarid regions, while an 

increasing linear relation was used in a humid site. The regression parameters were linked 

to the principal components of ancillary factors, including soil texture, land cover, and 

topography. Here, I calibrated the downscaling model using (2.7) to interpret the relation 

between c and <θ>. 
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Given its stochastic nature, the algorithm generates an ensemble of equally 

probable small-scale fields that are consistent with the same coarse-scale condition. Thus, 

to test its performances, I compared the Empirical Cumulative Density Function (ECDF) 

of the small-scale (1-km) observed θ fields with the 90% confidence intervals derived 

from an ensemble of 100 disaggregated fields generated by the calibrated model, as done 

in previous applications (Mascaro et al., 2011, 2010). In addition, I designed a new 

verification method based on ground θ data. For this aim, I hypothesized that the scaling 

regime (2.3), tested up to the aircraft footprint (l = 1 km; Nlev = 5), extends up to a scale 

representative of the ground measurements (l = 31.25 m; Nlev = 10). The calibrated model 

was then used to create an ensemble of 50 disaggregated fields at resolution l = 31.25 m. 

For each field, I extracted θ in pixels overlying the locations of ground measurements 

collected in non-irrigated areas. In such a way, the sizes of observed and synthetic 

samples are the same, but their mean values are different. Finally, the synthetic samples 

were utilized to build the 90% confidence intervals that were compared against the ECDF 

of the ground θ observations. 
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Figure 2.4. (a) SC1: original θ fields of NAFE05, with identification of four and eight 
coarse domains L x L (L = 32 km). (b) SC2: θ in irrigated pixels replaced with missing 
data. (c) SC3: θ in irrigated pixels replaced through interpolation from neighboring non-
irrigated pixels. (d)-(f) Same as (a)-(c) but for NAFE06. The spatial mean soil moisture 
<θ> is also reported in each panel. 
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Results  

Effect of Irrigation on Scale Invariance Properties  

I investigated the presence of scale invariance in the scale range from 1 to 32 km 

for four (eight) coarse-scale domains of NAFE05 (NAFE06). For NAFE05, I analyzed all 

four images to cope with the limited number of available days, while, for NAFE06, I 

excluded two days with rainfall (November 3 and 13) to better capture the effect of 

irrigation, thus retaining a total of nine images. Figure 2.5 shows examples of the scale 

invariance analysis for the SC1, SC2 and SC3 scenarios in domain 3 for each experiment. 

Similar findings were obtained for other days and domains. The presence of scale 

invariance was tested by verifying the linearity of (2.4) through the computation of 

RMSE and CC for q=4. As an example, Figure 2.6 summarizes results for domain 3 by 

showing the relations between these two metrics and <θ> in all available days. Table 2.3 

reports the mean RMSE and CC across all days for each domain and scenario. Overall, 

the metrics indicate that: (i) performances of the regression quantified by CC are 

acceptable in all scenarios, with values larger than 0.9 as found in past studies [e.g., Hu et 

al., 1997; Mascaro et al., 2010, 2011)]; (ii) performances of the regression in SC1 are 

better in NAFE05 than NAFE06, especially in terms of RMSE, an indication that 

irrigation has a larger impact on the scale invariance analysis in the NAFE06 region; and 

(iii) performances tend to improve with increasing <θ>, especially when focusing on 

RMSE (shown in Figure 2.6).  

When comparing the three scenarios in NAFE06 [Figure 2.6(b) and (d) and Table 

2.3], it is apparent that SC1 is characterized by degraded performances for the linear 

regression as compared to SC2 and SC3. This suggests that the presence of irrigated 
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pixels in this site impacts the scale invariance properties and can erroneously indicate the 

potential existence of two scaling regimes [e.g., on November 9 and 18 in domain 3 

where a breaking point appears at λ = 4 km, arrows in Figure 2.5(d)]. If the irrigation 

pixels are removed as in SC2 and SC3, the linearity of (2.4) is more apparent and a single 

scaling regime emerges, as found in natural landscapes of other regions (Hu et al., 1997; 

Oldak et al., 2002; Mascaro et al., 2011, 2010). In contrast, in NAFE05 the metrics are 

quite similar across the three scenarios [see Figure 2.6(a) and (b) and Table 2.3]. This can 

be explained by: (i) sparseness of irrigated pixels; and (ii) overall wet conditions 

throughout the region that mask the effect of irrigated pixels, especially during rainy 

days. This is consistent with the preliminary analyses of Mascaro et al. (2011), who 

found that irrigation impacts more significantly the scale invariance of θ in semiarid areas 

with drier background (e.g., Arizona) as compared to more humid sites that are wetter 

throughout the region (e.g., Iowa). 
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Figure 2.5. Scale invariance analysis for q = 4 in the three scenarios for domain 3 of 
NAFE05 (4 days; a-c) and NAFE06 (9 days; d-f). S4(λ) estimated on the θ fields are 
shown with circles, while regression lines are plotted in black. Arbitrary values in the y 
axis were used to display the lines of all days in a single plot. The arrows in (d) highlight 
the breaking points emerging in SC1 of NAFE06 on November 9 and 18. Dates are 
represented as MM-DD.  
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Table 2.3. Mean across all days of CC and RMSE computed from the scale invariance 
analysis in the three scenarios (SC1, SC2, SC3) for each domain of NAFE05 and 
NAFE06. 

 CC (-) RMSE (%) 

 SC1 SC2 SC3 SC1 SC2 SC3 

Domain NAFE05 
1 0.96 0.95 0.96 0.14 0.15 0.14 
2 0.94 0.94 0.94 0.16 0.17 0.15 
3 0.98 0.98 0.98 0.06 0.06 0.06 
4 0.97 0.98 0.98 0.06 0.06 0.06 

Domain NAFE06 

1 0.93 0.96 0.97 0.32 0.04 0.03 
2 0.95 0.97 0.98 0.30 0.04 0.02 
3 0.93 0.97 0.97 0.30 0.04 0.02 
4 0.96 0.98 0.99 0.24 0.03 0.04 
5 0.94 0.95 0.97 0.37 0.07 0.03 
6 0.95 0.96 0.97 0.35 0.07 0.06 
7 0.94 0.96 0.97 0.39 0.06 0.04 
8 0.95 0.97 0.98 0.35 0.06 0.03 

 
 

 
Figure 2.6. Relations CC versus <θ> and RMSE versus <θ> for domain 3 of (a) and (c) 
NAFE05 and (b) and (d) NAFE06. <θ> computed for SC2 is plotted in the x-axis for all 
scenarios. 



 

36 

Next, I tested the ability of SC2 and SC3 to reduce the spatial heterogeneity in θ 

as compared to the random removal of pixels performed in SC2-R and SC3-R. Figure 2.7 

presents the relations between αRMSE and <θ> for these cases, with the 90% confidence 

intervals of αRMSE displayed for SC2-R and SC3-R. In NAFE06, αRMSE for SC2 and SC3 

lies always outside the 90% confidence intervals of SC2-R and SC3-R. This is a clear 

indication that replacement of θ in irrigated pixels, either via substitution with missing 

data (SC2) or interpolation (SC3), leads to a statistically significant improvement in the 

linear regression as compared to removals in random locations. In contrast, the 

improvement in NAFE05 is not statistically distinguishable. Similar results were found 

for αcc (not shown). These findings demonstrate the utility of a quantitative framework 

based on statistical metrics and tests for evaluating the effect of irrigation on θ spatial 

variability. This approach can also be applied to evaluate the impact of other sources of 

spatial heterogeneity. 
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Figure 2.7. (a) and (b) Relations αRMSE vs. <θ> for RMSE in (a) SC2 and SC2-R and (b) 
SC3 and SC3-R of NAFE05. (c) and (d) Same as (a) and (b) but for NAFE06. In all 
panels, bars are the 90% CIs of the ensemble values of α RMSE computed for SC2-R and 
SC3-R. <θ> computed for SC2 is plotted in the x-axis for all scenarios. 
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Downscaling Soil Moisture Fields with Removal of Irrigated Croplands 

1) Model Calibration: For each day and domain, parameters c and β of the 

downscaling model were estimated by fitting the theoretical expectation for K(q) to the 

observed values. Figure 2.8 presents results for all days in two representative domains 

with contrasting behavior in each experiment. In all cases, the relations between K(q) and 

q are non-linear, thus indicating the presence of multifractality. In addition, Figure 2.8 

shows that θ fields with lower <θ> have higher K(q), both when comparing: (i) different 

domains within each experiment, and (ii) the wetter conditions of NAFE05 with the drier 

states of NAFE06. Based on (2.4), one can notice that larger K(q) are obtained when Sq(λ) 

increases faster as λ decreases, a circumstance that occurs when the field sampled at 

smaller scales is characterized by uneven and sudden variations (i.e., more intermittent). 

As a result, our findings reveal that the θ spatial distribution in drier (wetter) domains 

tends to be more intermittent (smoother), consistent with previous studies by Hu et al. 

(1997), Oldak et al. (2002), Das and Mohanty (2008), and Mascaro and Vivoni (2010). 
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Figure 2.8. Relation between multifractal exponents K(q) and moments q in SC3 for two 
representative domains of NAFE05 [domains 1 and 3; panels (a)-(d)] and NAFE06 
[domains 3 and 6; panels (e)-(m)] for all available days. <θ> is also reported in each 
panel. 
 

For each experiment, the values of β estimated in all domains and days were 

found to be similar, while the c estimates were more variable. In NAFE06, β averages 

0.96 with a standard deviation of 0.07, while in NAFE05 the mean β is 0.68 with higher 

standard deviation of 0.16, likely due to the marked differences in wetness conditions of 

the four images. To reduce the dispersion of the c estimates, I assumed a single value of β 

in each experiment, equal to the corresponding mean, and re-estimated c. The resulting 

values of c ranged from 0.09 to 0.56 in NAFE05 and from 7.00 to 72.57 for NAFE06. 

These findings are similar to other study areas (Mascaro et al., 2011, 2010), with values 

of c and β varying with the region. Specifically, β was close to 0.85 in a sub-humid 

climate in Oklahoma, 0.71 in the semiarid sites in Arizona and Sonora, and 0.89 in the 

humid region in Iowa. The range of c in NAFE05 is comparable with the sub-humid and 

semiarid sites, whereas the c values in NAFE06 vary in a larger range. This can be due 
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to: (i) the specific land use and soil properties that affect the soil moisture distribution 

and retrieval algorithm, and (ii) the numerical effect of assuming a relatively large β 

(0.96) in (2.4) to estimate c. 

The downscaling model was calibrated by assuming a constant, regional value of 

β and using (2.7) to interpret the relation between c and <θ>. In NAFE05, a single 

relation is able to represent the variability of the c estimates for all domains and days (see 

Figure 2.9) and was then labeled as the regional (REG) calibration approach. The single 

set of parameters, 𝑐𝑐∞, a and 𝛾𝛾, estimated through non-linear fitting, is reported in Table 

2.4. In NAFE06, a single calibration relation is not able to fully capture the dispersion of 

the c values of all domains (i.e., different values of 𝑐𝑐∞, a and 𝛾𝛾). Following Mascaro et 

al. (2011), I used another calibration strategy based on ancillary data and labeled as ANC. 

Based on empirical evidence regarding the variation of 𝑐𝑐∞, I also assumed a fixed 𝑐𝑐∞ = 

2.5 and re-estimated a and 𝛾𝛾. Table 2.2 summarizes results of the estimation of 𝑐𝑐∞, a and 

𝛾𝛾 in NAFE06 with free and fixed 𝑐𝑐∞. As a next step, I applied principle component 

analysis (PCA) to a total of six ancillary factors computed for each domain (Table 2.2), 

including two topographic variables (mean elevation and slope) and four vegetation 

classes (percentage of rainfed crops, rainfed pasture, tussock grass, and woodland). Soil 

properties were not used since a single soil type occupies almost the entire region. By an 

orthogonal rotation of the analyzed dataset, the PCA identifies a minimal number of 

principal components (PCs) that explain the largest variability. I found that the first 3 PCs 

are able to explain 98% of the variability. The scores of the PCs (PCSj, j = 1, 2, 3) were 

linked to a and 𝛾𝛾 with a multilinear regression as: 
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� 𝛼𝛼 = 𝑡𝑡0 + 𝑡𝑡1PCS1 + 𝑡𝑡2PCS2 + 𝑡𝑡3PCS3 
𝛾𝛾 = 𝑣𝑣0 + 𝑣𝑣1PCS1 + 𝑣𝑣2PCS2 + 𝑣𝑣3PCS3

                                         (2.8) 

with parameters tj and vj that were estimated by substituting (2.8) in (2.7). Estimates of 

the regional parameters tj and vj are reported in Table 2.5, while results of the ANC 

calibration are reported in Figure 2.10, along with the regression lines estimated locally 

(LOC) at each domain using parameters of Table 2.5 with 𝑐𝑐∞ = 2.5. Even if ANC has 

lower performances than LOC, the results show the ANC calibration method captures the 

local behavior at all domains well, with lower skills in domains 2, 4 and 5 (see RMSE 

reported in each panel). 

 
Figure 2.9. Regional (REG) calibration relation for NAFE05, with the RMSE between 
REG line and points. 
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Table 2.4. Estimates of c∞, a, and γ. For NAFE05, the values are reported for the case 
with all domains pooled together. For NAFE06, the values are reported for each domain 
with free c∞ and fixed c∞. 

 Free c∞ Fixed c∞ 
Domain c∞ γ a c∞ γ a 

NAFE05 
All  0.1097 0.1079 1.717 - - - 

NAFE06 
1 5.10 0.28 137.9 2.5 0.24 125.0 
2 6.34 0.31 133.3 2.5 0.26 118.1 
3 2.56 0.23 132.5 2.5 0.23 132.3 
4 3.26 0.26 133.4 2.5 0.25 130.6 
5 3.75 0.18 165.4 2.5 0.21 183.9 
6 -3.80 0.19 174.1 2.5 0.23 188.7 
7 -2.85 0.19 161.4 2.5 0.22 178.2 
8 -2.64 0.21 173.6 2.5 0.24 187.6 

 

 
Figure 2.10. Ancillary (ANC) and local (LOC) calibration relations for NAFE06, with 
RMSEs between LOC and ANC lines and points (RMSELOC and RMSEANC respectively). 
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Table 2.5. Parameters of the ANC calibration relation. 

Parameter  Value 
t0 123.633 
t1 4.600 
t2 0.925 
t3 8.241 
v0 0.198 
v1 0.002 
v2 -0.003 
v3 -0.003 

 
 

2) Model Validation Against Aircraft Data: Model performances were assessed by 

comparing the observed ECDF of the small-scale aircraft-based θ fields in SC3 with the 

90% confident intervals estimated from an ensemble of 100 synthetic fields. To help 

interpreting this verification approach, Figure 2.11 shows four examples where the model 

exhibits different performances. Given the statistical nature of the downscaling scheme, 

the test evaluates the hypothesis that observed and disaggregated fields are equally 

probable realizations of the same statistical distribution. Such hypothesis cannot be 

discarded if the exceedance probability S(θ) = 1 - F(θ) of the observed distribution, Sobs, 

is included between the minimum and maximum exceedance probabilities of the 90% 

confidence intervals, Smin and Smax, at least 90% of the time. This statistical test is 

described in detail in Mascaro et al. (2008). Figure 2.11(a) shows two cases where the 

condition Smin ≤ Sobs ≤ Smax is verified in about 95% of the cases, indicating high model 

performances. In case B, note that: (i) ~3% of the observed θ values are equal to the 

maximum of 58%, and (ii) the observed soil moisture value is smaller than the maximum 

value of the left confidence interval, so that Smin = 0. In contrast, Figure 2.11(b) and (c) 

present two cases with low performances. In Figure 2.11(b), while Smin ≤ Sobs ≤ Smax in 
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about 60% of the cases, the model fails to capture the right, heavy tail of the observed 

distribution, where Sobs > Smin = Smax = 0. The presence of a heavy tail is indicative of a 

heterogeneous observed field with wet irrigated areas. Finally, Figure 2.11(c) shows a 

case where the observed and disaggregated fields do not have the same mean soil 

moisture value at the coarse scale and the model is positively biased, so that Sobs > Smin = 

Smax = 0. 

 

 
Figure 2.11. Examples of comparison between the ECDF of observed small-scale θ 
against the 90% CIs derived from the downscaling model in cases with (a) high and (b) 
and (c) low performances. In each case, an example of the derivation of the exceedance 
probabilities for the observed distribution, Sobs, and the 90% CIs, Smin and Smax is also 
reported. 
 
 

For NAFE05, the synthetic fields were generated using the REG calibration 

relation: for each domain, the coarse-scale mean soil moisture <θ> was used to derive c 

from (2.7) with parameters of Table 2.4 and 100 disaggregated fields were produced 

through the Log-Poisson stochastic generator. Figure 2.12(a)-(h) show examples of the 

ECDF comparison of observed and disaggregated θ fields for all four days in domain 1 

and 3, selected because of contrasting land cover conditions. In wet days (October 31 and 

November 7), the downscaling model captures very well the shape of the observed ECDF 

that contains several values equal to the maximum threshold of 58%. Model performance 

degrades in drier conditions (November 15 and 21), especially in domain 3. For NAFE06, 
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the synthetic disaggregated fields were generated with the ANC calibration relation. For 

each domain, the coarse predictors <θ> and PCSj derived from the ancillary data were 

utilized to estimate c from (2.7) and (2.8) and produce an ensemble of 100 disaggregated 

fields. Figure 2.12(i)-(p) present examples for four days with different wetness conditions 

in domain 2 and 5. Overall, the model is able to capture the observed ECDFs adequately 

in most cases, with a slightly better performance in drier days [e.g., Figure 2.12(i), (k), 

and (m)].  

A more in-depth comparison between observed and downscaled ECDFs reveals 

that model performances tend to be lower in domains with a larger percentage of irrigated 

pixels. This is true for NAFE06 independently of the mean wetness, while it occurs in 

drier conditions for NAFE05. In these cases, the model is not able to capture the right tail 

of the observed distribution that is characterized by anomalously larger θ, as in the 

illustrative case of Figure 2.11(b). For example, this occurs for domain 3 of NAFE05 

(9.7% of irrigated pixels and low <θ>) on November 14 and 21 and for domain 5 of 

NAFE06 (14.0% of irrigated pixels) on November 4 and 9. Most likely, lower 

performances in these cases are due to the fact that the method proposed to detect 

irrigated croplands may have not been fully effective, so that pixels affected by irrigation 

are still present in SC3. Possible reasons limiting the skill of this approach are: (i) 

deficiencies of SAVI and BR indices and selected thresholds; (ii) scale mismatch 

between Landsat TM5 (30 m) and soil moisture (1 km) images, and (iii) difference of 

more than 10 days between Landsat TM5 and soil moisture images. 
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Figure 2.12. Comparison of the ECDFs of observed small-scale θ against the 90% CIs 
derived from the calibrated downscaling model in NAFE05 (REG calibration) and 
NAFE06 (ANC calibration) for selected domains and dates.  

 

3) Model Validation Against Ground Data: An additional verification was 

conducted by comparing the ECDF of ground θ measurements with the 90% confidence 

intervals estimated from an ensemble of 50 synthetic fields generated under the 

assumption that the scaling regime extends up to l = 31.25 m, a scale representative of the 

ground samples. Figure 2.13(a)-(d) show results for NAFE05 in domain 4 that 

encompasses the largest number of ground samples. In the wet days of October 31 and 

November 7, the model captures about 50% of the data in the left tail of the distribution, 

while it overestimates the larger θ values. On November 14, the model fails in capturing 
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the shape of the observed ECDF, while on November 21 it overestimates the θ 

observations, as in the example of Figure 2.11(c). The poor performances revealed by this 

test indicate that extending the presence of scale invariance up to l = 31.25 m is not a 

valid assumption in this area. Here, the downscaling model is able to adequately 

reproduce the θ variability only up to l = 1 km [Figure 2.12(a)-(h)]. In contrast, in 

NAFE06 the model exhibits a very good ability to capture the observed ECDFs across 

different wetness conditions, as reported in the examples of Figure 2.13(e)-(h) for domain 

1. These findings sustain the hypothesis that the scaling regime can be extended in this 

region and confirm the high performances of the downscaling model across a wide range 

of scales from the satellite to the ground measurement footprints. 

 
Figure 2.13. Comparison of the ECDFs of observed ground θ against the 90% CIs 
derived from the calibrated downscaling model in NAFE05 (REG calibration) and 
NAFE06 (ANC calibration) for selected domains and dates. In each panel, the number of 
ground samples NGS is also reported. 
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Discussion  

 The analyses conducted in this study provide three main novel contributions. 

First, I proposed a simple method for the time-varying detection of irrigated croplands 

from remote sensing imagery, a necessary requirement to account for the presence of 

irrigation in any type of downscaling schemes. Second, I developed a quantitative 

framework based on statistical metrics for evaluating the impact of irrigated areas on the 

statistical properties of soil moisture and attenuating their effect on the calibration of a 

downscaling model. This framework can be applied or easily adapted to investigate the 

effect of different sources of spatial heterogeneity, such as the presence of built areas. By 

applying this framework, I found that the climate of the region and the extent and spatial 

distribution of the irrigated areas control the impact of irrigation on the scale invariance 

properties of θ. In the NAFE06 region, climate is semiarid and irrigated pixels tend to be 

distributed in large, connected areas. Under these conditions, larger θ values in irrigated 

croplands contrast with a drier background, thus affecting the scale invariance analysis. 

In contrast, in the more humid NAFE05 site, conditions are wetter throughout the region 

and irrigated pixels are more scattered, leading to negligible impacts on the scale 

invariance analysis. These analyses confirm preliminary results of Mascaro et al. (2011). 

Third, I found that incorporating the presence of irrigation in downscaling schemes of 

satellite products is more important in semiarid regions, where irrigation creates a drastic 

soil moisture contrast with the surrounding areas.  

Previous studies of Mascaro et al. (2010, 2011) and findings of this work suggest 

that scale invariance and multifractality are statistical properties exhibited by the spatial 

distribution of θ in a wide variety of natural landscapes and wetness conditions, over the 
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scale range that goes from the satellite (~30 km) to the aircraft (~1 km) footprints. As 

such, downscaling approaches that reproduce these properties can be potentially applied 

at all locations and times. For example, the multifractal downscaling model used here has 

been successfully applied in areas with markedly different climatic and environmental 

settings, where high-resolution, aircraft-based θ data were available (2010, 2011), If one 

wants to apply the downscaling model at a new site, the calibration relations published 

for a region with similar conditions could be adopted as a first level of approximation. 

Clearly, as for any type of downscaling method, additional high-resolution θ data would 

be highly desirable to improve the calibration relations at the new location. A strategy to 

generate these datasets could be the use of distributed hydrologic models applied at high 

resolution over large basins (e.g., Mascaro et al., 2015). In addition, in regions with the 

presence of irrigation, it is necessary to account for this source of spatial heterogeneity. 

The framework proposed in this chapter for detecting the irrigated croplands via remote 

sensed imagery and attenuating their effect can be used for this goal. 

 

Conclusion  

I investigated the impact of irrigated cropland on the scaling properties of θ and the 

application of a multifractal downscaling model using aircraft- and ground-based data from 

the NAFE05 and NAFE06 campaigns. To our knowledge, this is the first study to focus on 

the effects of irrigation on soil moisture variability and disaggregation. I proposed a 

relatively simple approach to detect irrigated areas based on a single Landsat TM5 scene 

taken a few days before the beginning of each experiment. Through this information, I 

attenuated the source of spatial heterogeneity in the θ distribution. I found that irrigation 
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has a larger impact on the scale invariance properties of θ in the semiarid NAFE06 region, 

where irrigated pixels are distributed in a large high-density district, while it is negligible 

in the more humid NAFE05 site, where irrigated pixels are more scattered. Subsequently, 

the θ fields that were modified to attenuate the impact of irrigated croplands were utilized 

to calibrate a multifractal downscaling model based on the hypothesis of spatial 

homogeneity. The model was calibrated as a function of readily available coarse-scale 

predictors using regional and ancillary factor approaches. A verification test based on 

aircraft θ data revealed satisfactory performances in most cases in both experiments, except 

in conditions where the method to identify irrigated croplands may have not been fully 

effective. In these cases, anomalously larger θ values due to irrigation are still present in 

the observed distribution and cannot be reproduced by the homogeneous multifractal 

cascades of the disaggregation scheme. The model was further verified against ground θ 

observations according to a new method based on the hypothesis that the scaling regime 

extends up to a scale representative of these measurements. Performances were very good 

in the NAFE06 region, implying that the downscaling model is potentially capable to 

reproduce the θ variability from the satellite to the ground measurement footprints. In 

contrast, the model fails in simulating the ground θ variability in the NAFE05 area, thus 

suggesting its applicability only up to the aircraft footprint.  
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3.CHAPTER 3 

STRATEGIES TO IMPROVE PHYSICS-BASED HYPERRESOLUTION 

HYDROLOGIC SIMULATIONS AT REGIONAL BASIN SCALES 

Introduction 

During the last decade, the increasing availability, coverage and resolution of 

hydrometeorological data (Mitchell et al., 2004; Dee et al., 2011; Harris et al., 2014; 

Maidment, 2016; Do et al., 2018), geospatial datasets characterizing land surface 

properties (Lehner et al., 2008; Hengl et al., 2014), and remotely-sensed products from 

numerous satellite missions have stimulated the feasibility of numerical simulations of 

the water cycle at hyperresolutions, defined by (Wood et al., 2011) as <100 m for 

regional scales and <1 km for continental and global scales. Achieving these high spatial 

resolutions in hydrologic simulations is expected to support a large range of water-related 

applications, including weather forecasting (Senatore et al., 2015), climate prediction 

(Baker et al., 2017), irrigation scheduling (Gibson et al., 2017), quantification of 

greenhouse gas fluxes (Franz et al., 2017), flood prediction (Maidment, 2017), and 

estimation of water scarcity (Zhou et al., 2016). Moreover, hyperresolution simulations 

have the potential to improve our understanding of hydrologic processes, by identifying 

the physical controls on the spatiotemporal dynamics of fluxes and state variables of the 

water and energy balances (Bierkens et al., 2015; Mascaro et al., 2015). 

Despite the expected benefits, a number of challenges still limit the ability to 

carry out accurate hydrologic simulations at hyperresolutions, as described by Wood et 

al. (2011) and Bierkens et al. (2015). Three critical challenges are here summarized. First, 

it is necessary to evaluate whether the representation of physical processes in current land 
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surface and hydrologic models, designed to operate at coarser scales, are appropriate at 

hyperresolutions. Second, as pointed out by Beven and Cloke (2012), increasing the 

resolution of hydrologic simulations leads to higher epistemic uncertainties, because the 

available information on hydrometeorological forcings and land surface properties 

decreases as I transition to smaller scales. Strategies are needed to (i) generate reliable 

high-resolution fields of hydrometeorological variables, as well as of terrain, soil and 

vegetation properties; and (ii) thoroughly test the large datasets of simulated time series 

and spatial patterns against independent observations. Third, increasing the domain 

resolution (i.e., the number of cells) rapidly increases the demand of computational 

resources. An effort should be placed to (i) take advantage of high performance 

computing clusters; and (ii) optimize storage of and access to the large datasets generated 

by these simulations.  

During the last few years, a significant effort to address these challenges and 

achieve hyperresolutions has been devoted to the development of new or adaptation of 

existing land surface and global hydrologic models, which have been applied at 

continental and global scales often as part of climate and numerical weather predictions 

models (e.g., Singh et al., 2015; Maidment, 2016; Cai et al., 2017). Physics-based 

distributed hydrologic models (DHMs), which were originally designed to represent 

hydrologic processes at high spatial and temporal resolutions (e.g., Ivanov et al., 2004a; 

Kollet and Maxwell, 2006; Camporese et al., 2010), have been mainly applied at field, 

hillslope and small catchment scales (e.g., Mahmood and Vivoni, 2011; Pierini et al., 

2014; Paniconi and Putti, 2015; Fatichi et al., 2016). The recent adoption of parallel 

computing in hydrology has opened the door to the use of DHMs at hyperresolutions over 
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regional watersheds (O(103) km2 and higher). For example, Kollet et al. (2010) 

demonstrated on synthetic domains the feasibility of hyperresolution simulations at 

regional scales with a parallel, three‐dimensional, variably saturated groundwater flow 

model with integrated overland flow. Despite these promising results, most simulations 

conducted with DHMs in real-world regional basins have been at resolutions of ~500 m 

(e.g., Shen and Anagnostou, 2017; Koch et al., 2017), thus not reaching the target of 100 

m defined by Wood et al. (2011). To our knowledge, only Mascaro et al. (2015) have 

applied a DHM to a real-world regional basin of 3796 km2 in northwest Mexico–the Río 

San Miguel basin–at the hyperresolution of ~78 m over a period of 7 years. 

The main objective of this study is to improve the accuracy of hyperresolution 

simulations of physics-based DHMs over regional watersheds. For this aim, I build upon 

results of Mascaro et al. (2015) (MA15, hereafter) and expand their work to design 

strategies that address some of the challenges mentioned above. I significantly increase 

the size of the study basin of MA15 by simulating the hydrologic response of the Río 

Sonora basin (RSB), a regional watershed of 21,237 km2 that includes the Río San 

Miguel basin as one of its sub-watersheds. The RSB represents a compelling test case for 

hyperresolution simulations due to the significant climate seasonality dominated by the 

North American monsoon, its complex topography, the high spatiotemporal variability of 

vegetation properties, and the limited and sparse datasets available to setup and apply 

DHMs. I conduct simulations over 10 years at a nominal resolution of ~88 m on a 

domain of more than 2.6 million nodes, using the physics-based DHM known as TIN-

based Real-time Integrated Basin Simulator (tRIBS, Ivanov et al., 2004a, 2004b). MA15 

showed that the tRIBS model is a computational efficient physics-based model suitable 
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for hyperresolution simulations, since (i) it is based on an irregular domain, which allows 

capturing the details of complex topography with minimal loss of information as 

compared to grid-based models (Vivoni et al., 2005); (ii) it uses approximate solutions in 

the infiltration and routing schemes (Cabral et al., 1992); and (iii) its code has been 

parallelized to be run in high performance computing clusters (Vivoni et al., 2011).  

I pursue three specific tasks to address our main objective. First, I generate 

reliable high-resolution meteorological forcings by (i) integrating reanalysis products at 

12-km resolution with ground observations, and (ii) applying downscaling techniques 

that account for terrain properties to increase the resolution to 1 km. Second, I develop 

soil parameter grids through a strategy that involves model calibration against soil 

moisture data at distributed locations, use of pedotransfer functions, and the integration of 

coarse (~6 km) local and high-resolution (250 m) global soil datasets. Third, I extensively 

test the model performance by comparing simulated outputs against independent 

observations, including time series of soil moisture recorded at a network of stations and 

spatial patterns of land surface temperature (LST) estimated by remote sensors. This is a 

crucial step to assess the ability of DHMs to accurately represent physical processes (e.g., 

Melsen et al., 2016) and to implicitly evaluate our effort to increase quality and resolution 

of forcings and parameters. I place particular emphasis on the systematic validation of the 

simulated spatial patterns of LST, which so far has been done in a limited number of 

cases, often focusing on small basins (e.g., Xiang et al., 2014; Koch et al., 2015) or using 

only a few images (e.g., MA15; Xiang et al., 2017), but that has been receiving 

increasing attention (Zink et al., 2018). In doing so, I apply a set of tools, which have 

been recently adopted to validate and interpret spatial outputs of DHMs (MA15; Koch et 
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al., 2016a), to quantify model skill and diagnose the potential causes of model 

deficiencies. While our analyses are based on a specific DHM, the strategies proposed 

here can be adopted for the application of other hydrologic models in different settings 

and, thus, they provide valuable support for the scientific community focused on 

hyperresolution hydrologic modeling. 

 
Study Area and Datasets 

Climate and Physiographic Properties of the Río Sonora Basin 

The hyperresolution simulations were conducted in the Río Sonora basin (RSB) 

located in northwest Mexico [Figure 3.1(a)]. The RSB drains an area of 21,237 km2 

within a rural region in the state of Sonora characterized by complex terrain with 

mountain ranges and ephemeral rivers (Vivoni et al., 2007b; Méndez-Barroso et al., 

2009). As shown in Figure 3.1(b), the main river, Río Sonora, flows from northeast to 

southwest up to the city of Hermosillo, after receiving the contribution of the two major 

tributaries, Río San Miguel and Río Zanjón. The basin includes areas with climate 

classified as arid and semiarid, with mean annual temperature (precipitation) varying 

from 11 to 29 ºC (350 to 750 mm) depending on the location. The precipitation regime is 

characterized by: (i) large interannual variability, which is partially explained by 

teleconnections (Gochis et al., 2006); (ii) high spatiotemporal variability within each 

season due to the interactions of different weather systems and complex orography 

(Gebremichael et al., 2007; Johnson et al., 2007; Rowe et al., 2008); and (iii) marked 

seasonality, with a wet summer season from July to September dominated by the North 

American Monsoon (NAM), when approximately 40-80% of the total annual 
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precipitation falls mainly in form localized convective thunderstorms (Vivoni et al., 

2010; Mascaro et al., 2014), and a relatively dry winter period characterized by the 

occurrence of a few widespread precipitation events caused by frontal systems of 

subtropical or polar origin (Brito‐Castillo et al., 2003). 

As shown in the digital elevation model (DEM) of Figure 3.1(b) derived from the 

Shuttle Radar Topography Mission (SRTM), elevation varies significantly between a 

minimum of 200 m and a maximum of 2618 m (mean of 858 m). Topography is rugged, 

as indicated by the slope ranging from 0° to 77° (mean of 8°) and the presence of incised 

stream channels. Due to the complex terrain properties and the effect of the NAM, 

ecosystems in the RSB exhibit significant spatial variability and strong seasonality. The 

high spatial heterogeneity of the vegetation characteristics is shown in Figure 3.1(c), 

which presents the land cover map provided by the Instituto Nacional de Estadística y 

Geografía (INEGI). As reported in Table 3.1, the dominant classes are shrubland 

(22.1%), desert scrub (20.7%), mesquite (18.4%), and pasture (14.0%). The majority of 

the ecosystems are characterized by leaf greening in mid-July and senescence in late 

September following the onset and decay of the NAM, as documented in detail by Vivoni 

et al. (2007b, 2008b) and Méndez-Barroso and Vivoni (2010). 

Figure 3.1(d) shows the soil map provided by the Comisión Nacional para el 

Conocimiento y Uso de la Biodiversidad (CONABIO) that follows the Food and 

Agriculture Organization (FAO) soil classification. The major soil types are Regosol, 

Lithosol, and Xerosols accounting for ~76% of the basin area. The CONABIO soil map 

has been used in previous studies in the region to parameterize the tRIBS (e.g., Robles-

Morua et al., 2015; MA15) and WRF (Weather Research and Forecasting)-Hydro (Xiang 
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et al., 2017) models. Since this map has an equivalent spatial resolution of ~6 km, which 

is rather coarse for hyperresolution simulations, in this work I integrated the information 

of the CONABIO soil map with the high-resolution soil dataset recently released by the 

International Soil Reference Information Centre (ISRIC)-World Soil Information. This 

dataset, named SoilGrids250m (Hengl et al., 2017), consists of global maps of soil 

physical properties, including bulk density and content mass fractions of clay, silt and 

sand at multiple depths, which were generated by merging soil profiles and remote 

sensing imagery (see Hengl et al., 2014, 2017 for details). 

 
 
Figure 3.1. (a) Location of the RSB in the state of Sonora, Mexico. (b) Elevation map 
with the channel network represented in the model along with the main rivers and 
location of the state capital, Hermosillo. (c) Land cover map from INEGI. (d) Soil map 
from CONABIO with location of the stations used for model testing (see Table 3.2). 
Acronyms of the soil and land cover classes are described in Table 3.1. 
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Table 3.1.  Percentage of area (Af) of the RSB covered by each soil and land cover class along with the IDs used in Figure 3.1 
and Table 3.2. 

Land cover class ID Af [%] Soil class ID Af [%] 
Bare soil BS <0.01 Cambisol B 0.02 

Human Settlement HS 0.07 Rendzina E 0.1 
Forest FS 9.1 Fluvisol-Coarse JC 1.4 

Sparse Vegetation SV 0.3 Fluvisol-Medium JM 1.3 

Water WT 0.3 Lithosol-Coarse, 
Low Elevation IC-LE 12.5 

Desert Scrub DS 20.7 Lithosol-Coarse, 
High Elevation IC-HE 10.4 

Mesquite MS 18.4 Lithosol-Medium IM 9.0 
Shrubland SL 22.1 Luvisol L 1.4 

Pasture PS 14.0 Phaeozem-Medium HM 9.2 
Agricultural area with irrigation AGirr 3.3 Regosol-Coarse RC 17.0 

Deciduous Forest DF 0.01 Regosol-Medium RM 15.0 
Agricultural area without irrigation AG 0.1 Vertisol-Coarse VC 1.5 

Vegetation VG 11.4 Planosol WE 2.9 
Urban Area UB 0.2 Xerosol-Medium XM 12.0 

   Yermosol-Coarse YC 6.5 
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Table 3.2. Summary of the datasets used in the hyperresolution simulations. Sources are described in the text. The type of 
dataset can be model outputs (MO); remote sensing products (RS); or ground observations (GO). The variables are: 
elevation; FAO soil classes; land cover classes; percentage (%) of sand, silt, and clay; bulk density; precipitation (P); surface 
pressure (SP); incoming solar radiation (IS); relative humidity (RH); air temperature (T); wind speed (US), soil moisture 
(SM); land surface temperature (LST); normalized difference vegetation index (NDVI); leaf area index (LAI); and albedo 
(AL). For each dataset, a short description of the usage in the hyperresolution simulations is also provided. 

Source Type Variables Spatial, Temporal 
Resolution Usage 

SRTM RS elevation 30 m 
TIN creation 

NLDAS downscaling 
Bedrock depth calculation 

CONABIO RS, MO FAO soil classes ~6 km Derivation of soil parameters 
INEGI RS Land cover classes ~4 km Derivation of vegetation parameters 

SoilGrids250m RS, MO % sand, % silt, % clay, 
 bulk density 250 m Derivation of soil parameters (Ks, θr, θs) 

NLDAS-2 MO P, SP, IS, RH, T, US 12 km, 1 h Meteorological forcings 
CEA GO P, SP, RH, T, US Point, daily NLDAS bias correction 

CONAGUA GO P Point, daily NLDAS bias correction 

ASU-UNISON GO P, SM, LST, IS  
(ST-147) Point, hourly NLDAS bias correction, 

model calibration and validation 

MODIS RS 

NDVI 250 m, 16-day 
composite 

Derivation of 
vegetation parameters LAI 1000 m, 8-day 

composite 

AL 500 m, 16-day 
composite 

LST 1000 m, daily Model validation 
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Ground Observations, Model Forcings, and Remotely-sensed Datasets 

To capture the spatiotemporal variability of hydrometeorological forcings and 

vegetation properties, I combined ground observations and remotely-sensed datasets from 

multiple sources. Table 3.2 provides a summary of all datasets used in this study, 

including variables and their abbreviations, spatial and temporal resolutions, and usage 

within the hyperresolution simulations. In the RSB, two government agencies, including 

Comisión Nacional del Agua (CONAGUA) and Comisión Estatal del Agua (CEA), 

collect meteorological data (listed in Table 3.2) at daily resolution at a few locations. In 

addition, a regional network of stations measuring hourly P and surface (5-cm) SM and 

temperature (used as a proxy of LST, variables described in Table 3.2) has been installed 

and managed by Arizona State University and Universidad de Sonora (ASU-UNISON), 

with the aim of investigating the impacts of the NAM on regional ecosystems and 

hydrology (Vivoni et al., 2007b). Here, I used P data from a total of fifty-eight stations, 

including six gauges from CEA, nineteen from CONAGUA, and thirty-three from ASU-

UNISON. Meteorological data were obtained from seven weather stations from CEA and 

an eddy covariance tower installed by ASU (Méndez-Barroso et al., 2014). In addition, 

SM (LST) data recorded by twenty (nine) stations of the ASU-UNISON network were 

used to parameterize and validate the model. The location of these stations is reported in 

Figure 3.1(d), while their characteristics including elevation, soil and land cover classes 

are presented in Table 3.3.  
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Table 3.3. Locations (latitude, longitude and elevation) and characteristics (vegetation 
and soil classes) of the hydrometeorological stations of the ASU-UNISON network, 
including the years used to calibrate and validate the tRIBS hydrologic model against SM 
observations. Stations marked with an asterisk were used by MA15 to parameterize the 
tRIBS model. 

Station 
ID 

Lat. 
[deg.] 

Lon. 
[deg.] 

Elev. 
[m] 

Soil 
Class 

Land 
Cover 
Class 

Calibration 
Year 

Validation 
Years 

ST-130* 30.04 -110.67 718 RC VG 2004 2007 
ST-131 29.99 -110.67 728 LC-LE VG - 2013 
ST-132* 29.96 -110.52 897 LC-LE SL - 2004, 2007, 2013 
ST-133* 29.88 -110.59 622 RM PS 2005 2007 
ST-134 30.22 -110.46 1183 RM FS 2004  
ST-137 29.94 -110.26 660 RC MS 2004  
ST-138 30.05 -110.27 724 FC MS 2004  
ST-139 30.16 -110.29 747 YC MS 2004  
ST-140 30.3 -110.26 1014 LC-HE PS 2004  
ST-143* 30.34 -110.56 962 FC AGirr 2004 2005 
ST-144* 30.2 -110.69 794 FM AGirr - 2005, 2007 
ST-146* 29.97 -110.47 1373 LC-HE SL 2004 2007, 2013 
ST-147* 29.74 -110.54 634 YC VG 2004 2006 
ST-150 30.53 -110.44 1508 XM VG - 2013 
ST-151* 30.62 -110.55 1427 XM VG - 2007, 2009, 2013 
ST-154* 29.51 -110.69 413 PM AGirr - 2007, 2008 
ST-156 29.92 -110.69 912 RC VG - 2013 
ST-158 30.12 -110.6 1218 LC-HE VG - 2013 
ST-161 29.53 -110.12 522 LC-LE UB - 2013 
ST-165 29.98 -110.42 880 LC-LE SL - 2013 

 
In addition to ground data, which suffer from sparse areal and time coverage, 

hydrometeorological forcings for the model were obtained from reanalysis dataset of the 

North American Land Data Assimilation System (NLDAS-2), which provides a long-

term and consistent set of spatially-distributed variables (Mitchell et al., 2004). As 

explained in Methods section, NLDAS data were bias corrected with ground observations 

and downscaled in space. Time-varying maps of vegetation parameters were derived 

from the composite products of remotely-sensed imagery of the Moderate Resolution 
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Imaging Spectroradiometer (MODIS) sensor, as described in Xiang et al. (2014). To 

assess the accuracy of the simulated spatial outputs, daytime daily LST imagery from 

MODIS aboard the Aqua satellite were obtained for scenes with less than 10% of missing 

data, which are mostly due to cloud cover during the NAM. The Aqua satellite 

(overpassing at 1:30 pm) was preferred over Terra (overpassing at 10:30 am), because its 

LST estimates were found to compare more closely with ground observations of the 

ASU-UNISON network (not shown), consistent with Xiang et al. (2014).  

  

Methods 

Model Overview and Setup 

tRIBS is a physically-based, distributed hydrological model capable of 

reproducing the coupled water-energy balance in a continuous fashion (Ivanov et al., 

2004b, 2004a, Vivoni et al., 2007a, 2011). This model provides a spatially explicit 

representation of terrain, soil and vegetation properties through a TIN containing 

elevation, channel, and basin boundary nodes (Vivoni et al., 2004, 2005). The Voronoi 

polygons associated to the TIN serve as individual computational domains where the 

model solves the mass and energy balances. The model accounts for the spatial variability 

of meteorological forcings and vegetation parameters, which are provided as time-

varying grids. A range of hydrologic processes are simulated by tRIBS. Infiltration, 

lateral movement of water, and soil moisture redistributions are modeled through a 

modified Green-Ampt scheme (Cabral et al., 1992). A simplified groundwater model is 

used to model saturated flow in the aquifer. The Penman–Monteith approach (Penmen, 
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1948; Monteith, 1965) is applied to estimate potential evapotranspiration when solving 

the energy balance. The actual evapotranspiration is then computed based on the 

available soil moisture and partitioned into plant transpiration and evaporation from bare 

soil and wet canopy. A hydrologic routing scheme is used to simulate overland flow in 

the hillslope, while the kinematic wave approximation is adopted to route water in the 

channel network. Details on each process are provided by Ivanov et al. (2004a). In the 

RSB, a TIN of 2,612,662 Voronoi polygons or 11.4 % of the original DEM pixels was 

created, corresponding to an average cell size of ~88 m. This represents the largest 

domain that has been modeled to date with tRIBS. In addition, the domain resolution is 

well within the definition of hyperresolution provided by Wood et al. (2011) for 

applications in regional watersheds. A spatially-variable soil depth was calculated 

following the method of Saulnier et al. (1997) based on the assumption of a linear 

decreasing function between soil thickness and elevation (see Méndez-Barroso et al., 

2016 for details). 

Hydrometeorological Forcings and Vegetation Parameters  

A challenge of hyperresolution simulations is the availability of reliable high-

resolution hydrometeorological forcings. To address this, I combine the sparse ground-

based observations with hourly NLDAS products. Since these gridded datasets are 

provided at a relatively coarse spatial resolution of ~12 km, the meteorological variables 

were downscaled at 1-km resolution. Specifically, as done in previous applications in the 

region (e.g., Robles-Morua et al., 2012; Xiang et al., 2014, 2017; Mascaro et al., 2015), 

the NLDAS data were first bias corrected using ground data. A minimum of seventeen 
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rain gauges from the various networks were used to correct the bias of P by computing a 

daily factor based on the mean areal precipitation. Observations from seven weather 

stations of the CEA and ASU-UNISON networks were used to remove the bias of IS, 

RH, and US through linear regression equations. Subsequently, the methods proposed by 

Liston and Elder (2006) were used to downscale T, PA, RH, US, and IS at 1-km 

resolution. These techniques combine the Barnes objective analysis scheme (Barnes, 

1994; Koch et al., 1983) with terrain information to spatially interpolate meteorological 

variables into a high-resolution grid. Terrain, slope, and curvature grids were generated at 

1-km resolution and used to apply the downscaling method: elevation was used for T, 

PA, RH; slope for IS; and slope and curvature for US. As an example, Figure 3.2 shows 

results of the bias correction of the mean annual P and of the downscaling procedure for 

the mean annual T across the simulation period 2004-2013. 

In regions with strong seasonality, the ability to account for spatiotemporal 

variations of vegetation in hyperresolution simulations is key to model evapotranspiration 

and canopy interception. The tRIBS model has this ability by allowing the ingestion of 

time-varying maps of vegetation properties. As in MA15, the vegetation parameters were 

derived from MODIS imagery (see Table 3.2) by applying the empirical relationships 

proposed by Méndez-Barroso et al. (2014) and Xiang et al. (2014). MODIS-derived 

vegetation products have been shown to represent vegetation conditions well in semiarid 

regions against ground observations (Fensholt et al., 2004; Ryu et al., 2012). The 16-day 

composites of NDVI and AL, and the 8-day composites of LAI (variables described in 
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Table 3.2) were used to obtain the model vegetation parameters, which were then 

linearly interpolated in time to create the daily fields. 

 
Figure 3.2. (a) NLDAS and (b) bias corrected mean annual P across the period 2004-
2013. (c) NLDAS and (d) downscaled mean annual T across the period 2004-2013. 
Boxes show details of the same area of the original and downscaled T maps to visualize 
difference in spatial variability. 
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Model Parameterization and Generation of Soil Maps 

The model parameters for the hyperresolution simulations were identified through 

a two-step strategy. First, soil parameters were derived for the CONABIO soil classes 

(Figure 3.2(d) and Table 3.1) by adjusting values published in previous studies (MA15; 

Xiang et al., 2014; Vivoni et al., 2009) through calibration against SM observations at the 

ASU-UNISON stations. MA15 calibrated the soil parameters of nine classes of the 

CONABIO map that cover most (85%) of the basin area, using SM observations of nine 

co-located stations (marked with an asterisk in Table 3.3). Here, I updated the calibrated 

parameters of these nine classes by including new observations of additional eleven 

stations and different time periods (see Table 3.3). For this aim, the tRIBS model was 

setup at each station, creating a domain with a single Voronoi polygon (area of 100 m2) 

as in MA15. Individual station simulations were conducted from 1 June to 30 September 

of different years, including a dry month used as spinup and the wet summer season. The 

model was initialized assuming a 25% saturation of the total soil depth. Forcings for the 

simulations included precipitation observed at the stations, downscaled meteorological 

data from NLADS, and vegetation parameters from MODIS in the co-located pixels. I 

initially adopted the soil parameters obtained by MA15 and, then, performed minimal 

adjustments to saturated hydraulic conductivity (Ks) and/or stress thresholds for 

transpiration (θ*
t) with the aim of improving model performance based on new available 

observations. For the six soil classes where no station was present, I (i) used the 

ROSETTA pedotransfer function (Schaap et al., 2001) to estimate the dominant soil 

texture, and (ii) adopted the parameter values reported by Xiang et al. (2014) and Vivoni 
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et al. (2009) for the same soil texture class. The calibrated soil parameters are presented 

in Table 3.4. For the soil heat conductivity (ks) and soil heat capacity (Cs), I used dry and 

wet values (ks of 1.2 and 1.3 J/ms K; Cs of 6 x 105 and 1.47 x 106 J/m3 K), depending on 

a soil moisture threshold of 0.021 m3/m3 as in Xiang et al. (2014). 

In the second step of the strategy, I increased the spatial variability of Ks, residual 

moisture content (θr), saturated moisture content (θs) and porosity (n) by incorporating 

the SoilGrids250m maps. I first applied the ROSETTA pedotransfer functions to the 

datasets to generate maps of Ks, θr, θs and n at 250-m resolution. Since the parameter 

values provided by the pedotransfer functions were affected by significant bias compared 

to those calibrated at the stations, I applied a bias correction procedure that is illustrated 

using Ks as example. For the jth soil class of CONABIO, I computed the mean value of 

Ks returned by the pedotransfer functions in all 250-m pixels of that class. This is defined 

as 𝐾𝐾�𝑠𝑠,𝑗𝑗
𝑝𝑝 = 1

𝑁𝑁𝑗𝑗
∑ 𝐾𝐾𝑠𝑠,𝑗𝑗𝑖𝑖

𝑝𝑝𝑁𝑁𝑗𝑗
𝑖𝑖=1 , where 𝐾𝐾𝑠𝑠,𝑗𝑗𝑖𝑖

𝑝𝑝  is the value of Ks returned by the pedotransfer function 

in pixel i of the map at 250-m resolution located in class j, and Nj is the total number of 

pixels located in class j. Next, I estimated a single value of the bias for the class j as 

𝑏𝑏𝑗𝑗 = (𝐾𝐾𝑠𝑠,𝑗𝑗
𝑐𝑐 − 𝐾𝐾�𝑠𝑠,𝑗𝑗

𝑝𝑝 ), where 𝐾𝐾𝑠𝑠,𝑗𝑗
𝑐𝑐   is the value of Ks calibrated for class j (Table 3.4). Finally, 

I computed the bias corrected value in pixel i as 𝐾𝐾𝑠𝑠,𝑗𝑗𝑖𝑖
𝑏𝑏𝑐𝑐 = (𝐾𝐾𝑠𝑠,𝑗𝑗𝑖𝑖

𝑝𝑝 + 𝑏𝑏𝑗𝑗). The procedure is 

illustrated in Figure 3.3 for Ks and θs, where values in the CONABIO map derived 

through calibration at the stations, those returned by pedotransfer functions, and the bias 

corrected values are shown. Summarizing, the basin simulations consisted of: (i) bias-

corrected values of Ks, θr, θs and n at 250-m resolution; and (ii) values reported in Table 

3.4 for other parameters with the spatial distribution of CONABIO classes.  
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Figure 3.3. Generation of high-resolution (250-m) maps of Ks and θs. (a, d) Parameter 
values calibrated for the CONABIO soil classes. (b, e) Parameter values estimated 
through the ROSETTA pedotransfer functions applied to SoilGrids250m. (c, f) Bias 
corrected values. Boxes show zooms on the same area of the CONABIO and bias 
corrected maps to better visualize the difference in spatial variability. 
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Table 3.4. Calibrated values of model parameters for the CONABIO soil classes. 
Parameters are porosity (n), saturated hydraulic conductivity (Ks), saturated soil moisture 
content (θs), residual soil moisture content (θr), pore size distribution index (m), 
conductivity decay parameter (f), air entry bubbling pressure (Ψb), conductivity 
anisotropy ratio (A), and stress thresholds for evaporation (θ*

e) and transpiration (θ*
t). NA 

is not available. 

 Station Ks 
[mm/hr] 

θs 
[] 

θr 
[] 

m 
[] 

ΨB 
[mm] 

f 
[mm-1] 

A 
[] 

n 
[] 

θ*e 
[] 

θ*t 
[] 

B NA 24.2 0.41 0.025 1.5 0 0.001 1 0.417 0.298 0.298 
E NA 0.5 0.39 0.077 0.2 0 0.007 1 0.417 0.297 0.297 

FC 138, 143 33.6 0.4 0.05 1.5 0 0.05 1 0.42 0.28 0.13 
FM 144 5 0.51 0.06 2 0 0.0009 1 0.53 0.2 0.13 

LC-LE 131, 132, 161, 165 32.4 0.4 0.01 2 0 0.0009 1 0.42 0.07 0.06 
LC-HE 140, 146, 158 32.4 0.4 0.01 0.6 0 0.008 1 0.42 0.08 0.04 

LM1 NA 6.3 0.4 0.063 1.5 0 0.001 1 0.419 0.299 0.299 
LU2 NA 9.8 0.33 0.068 0.3 0 0.001 1 0.418 0.299 0.299 
PM 154 15 0.49 0.01 1.5 0 0.0009 1 0.51 0.19 0.19 
RC 130, 137, 156 49.1 0.38 0.002 0.8 0 0.0003 1 0.4 0.04 0.02 
RM 133, 134 15.3 0.47 0.002 2 0 0.0009 1 0.49 0.24 0.3 
VC NA 0.5 0.39 0.077 0.2 0 0.007 1 0.417 0.297 0.297 
WE NA 24.2 0.41 0.025 1.5 0 0.001 1 0.417 0.298 0.298 
XM 150, 151 3.9 0.47 0.01 2 0 0.0006 1 0.49 0.28 0.28 
YC 139, 147 49.1 0.38 0.002 1.5 0 0.0009 1 0.4 0.19 0.13 

 

Hyperresolution Basin Simulations on High-performance Computing Clusters  

Basin simulations were conducted from 1 January 2004 to 31 December 2013 

using the parallel version of tRIBS (Vivoni et al., 2011). A spinup period of 60 months 

was used, chosen after verifying the numerical stability of the model outputs. Combining 

domain size and modeling period, these are the most computationally intensive 

simulations that have been conducted to date with the tRIBS model. To satisfy these 

computational needs, high-performance computing clusters available at ASU were used. 

The model domain was partitioned among different processors using a criterion that 

optimizes size of the sub-domains and message passing across processors (Karypis and 

Kumar, 1998). Since each processor simulates a portion of the domain and returns its 
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associated spatial outputs, spatial maps for the entire basin were created by merging the 

outputs generated by all processors. A total of 3653 spatial outputs were obtained at the 

overpass times of MODIS during the simulation period. LST outputs were interpolated 

from the irregular mesh to MODIS grid to allow the application of techniques to compare 

spatial patterns. Additionally, time series of hydrologic variables were outputted by the 

model at the Voronoi polygons containing the stations of the ASU-UNISON network and 

at their neighbors, for a total of 162 nodes. Overall, the size of the generated output files 

was 0.5 TB.  

Evaluation of Simulated Spatial Patterns  

I compared the LST simulated spatial patterns with those estimated by MODIS at 

1-km resolution using three tools, including Taylor diagram, connectivity analysis, and 

empirical orthogonal function (EOF) analysis. These tools test different properties of 

spatial patterns and have proven to be effective for the analysis of large and high-

dimensional datasets. 

1) Taylor diagram 

The Taylor diagram (Taylor, 2001) has been widely used in the intercomparison 

of spatial outputs of climate models (e.g., Gautam and Mascaro, 2018; Ahmadalipour et 

al., 2018) and recently for hydrologic models (Orth et al., 2015; Koch et al., 2016a). 

Taylor diagrams provide a concise overview of the pixel-to-pixel correspondence 

between two spatial patterns, by plotting in the same space three metrics measuring linear 

correlation, mean error, and spatial variability. The metrics include the coefficient of 

correlation (CC) between the patterns; the centered root mean square error (RMSE), 
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defined as the RMSE of the anomalies (i.e., the variables of interest minus the 

corresponding mean); and the spatial standard deviations (STDs) of the two maps. To 

compare several pairs of LST patterns, I used the normalized Taylor diagram, which is 

obtained by dividing the standard deviation and centered RMSE by the reference STD. 

The corresponding normalized metrics are indicated with nRMSE and nSTD.  

2) Connectivity analysis 

Connectivity analysis was developed in groundwater hydrology to characterize 

aquifer heterogeneity (e.g., Renard and Allard, 2013; dell’ Arciprete et al., 2012). A few 

studies have applied this tool to analyze spatial patterns of land surface variables such as 

SM (Western et al., 2001; Grayson et al., 2002; Koch et al., 2016a), LST (Koch et al., 

2016b, 2017; Koch and Stisen, 2017) and evapotranspiration (Koch et al., 2017; Koch 

and Stisen, 2017). Here, the method proposed by Renard and Allard (2013) for 

continuous variables was used, as in Koch et al. (2016b). Let X be the matrix of a spatial 

pattern for the analyzed variable, and xF the quantile calculated for the non-exceedance 

(for the high-phase analysis) or exceedance (for the low-phase analysis) probability F 

from the empirical cumulative distribution function of all values in X. The method 

involves: the generation of the binary map XF = (X ≥ xF) (high-phase) or XF = (X ≤ xF) 

(low-phase); the identification of the clusters of connected pixels in XF; and the 

computation of the metric Γ(F) defined as: 

𝛤𝛤(𝐹𝐹) = 1
𝑛𝑛𝐹𝐹
2 ∑ 𝑛𝑛𝑘𝑘2

𝑁𝑁(𝐗𝐗𝑭𝑭)
𝑘𝑘=1 ,      (1) 

where nF is the total number of pixels in the binary map XF above xF, nk is the number of 

pixels in the kth cluster in XF, and N(XF) is the number of clusters. This metric quantifies 
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the degree of connectivity of the field: when F = 0, all pixels are connected, N(XF) = 1, nk 

= nF, and Γ(F) = 1; if most pixels are disconnected, N(XF) is large, the values of nk are 

similar across all clusters, and Γ(F) becomes small. Γ(F) can be calculated for a range of 

F from 0 to 1 to study the transition from a large cluster to smaller disconnected clusters. 

For simplicity, the relation Γ(F) versus F is named here the connectivity function. When 

comparing spatial patterns of two variables, the use of frequencies makes Γ(F) insensitive 

to the presence of bias. Thus, Γ(F) is suitable for comparing variables that are expected to 

be correlated, such as temperature and elevation.  

Here, I calculated the connectivity function of LST through the high-phase 

analysis. To assess the degree of similarity between the patterns of observed and 

simulated LST, I used the root-mean-squared error (RMSE) between the two connectivity 

functions, as in (Koch et al., 2016b), as well as the correlation coefficient (CC). In 

addition, to study he physical controls on the discrepancies between simulated and 

remotely-sensed LST patterns, I computed the connectivity function of elevation and 

vegetation fraction (VF), a time-varying parameter. Since these variables are inversely 

related to LST (i.e., LST tends to be lower at higher elevation or for higher VF), the low-

phase analysis was applied for these two variables. 

 
3) EOF analysis 

The EOF analysis is a multivariate statistical method used to analyze large 

spatiotemporal datasets (Hannachi et al., 2007). It has been mainly applied to interpret 

climate and atmospheric variables and, more recently, for the outputs of land surface 

models (Koch et al., 2016b) and hyperresolution hydrologic simulations (MA15; Fang et 
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al., 2015; Koch et al., 2017). This analysis identifies a set of orthogonal spatial patterns 

(EOFs), which are time-invariant, and a set of coefficients (principal components, PCs), 

which control the contribution of each EOF in time. Here, the EOF analysis was applied 

to the spatial anomalies of LST and VF. Details on the methodology adopted to compute 

EOFs and PCs are provided in Appendix A of MA15.  

 

Results and Discussion 

Performance of Model Simulations of SM at the Stations  

Model performances were first evaluated for the simulations of surface (0-5 cm) 

SM conducted individually at each of the twenty stations listed in Table 3.3. Figure 3.4 

shows results for two and four representative stations in the calibration and validation 

periods, respectively. The quantitative assessment of the model performance is presented 

in Table 3.5 (individual simulations), which reports bias (B), mean absolute error (MAE), 

and correlation coefficient (CC) for all stations. During the calibration periods, the model 

is able to simulate quite well the observed soil moisture response to precipitation and the 

subsequent recession phases during dry periods [Figure 3.4(a) and (b)]. This is quantified 

by the low B (-0.004 ± 0.041 m3/m3), relatively low MAE (0.040 ± 0.023 m3/m3) and 

high CC (0.81 ± 0.08). During the validation period, model performance is fairly good at 

most stations [Figure 3.4(c)-(e)] and degrades at a limited number of sites [see Figure 

3.4(f)]. This is reflected in a slightly larger magnitude of B (-0.027 ± 0.036 m3/m3) and 

similar MAE (0.039 ± 0.031 m3/m3) and CC (0.83 ± 0.07). When considering the 

simulations at the basin scale, the metrics reported in Table 3.5 (basin simulations) show 
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that performances are comparable to those of the individual simulations, in terms of B 

and MAE, but are characterized by lower CC, whose mean decreases to 0.65 and 0.74 in 

the calibration and validation periods, respectively. These discrepancies can be explained 

by the fact that, in basin simulations, precipitation forcings from NLDAS are used instead 

of local observations, and the effect of lateral transport of moisture in the vadose zone is 

taken into account. Overall, the metrics listed in Table 3.5 indicate similar or better 

performances than those reported by MA15 for tRIBS and Xiang et al. (2017) for WRF-

Hydro in a subset of stations and time periods. 
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Table 3.5. Metrics quantifying model performances in the simulation of SM at the 
stations for individual and basin simulations in calibration and validation years. For each 
metric, italic font is used to indicate the worst performing station. Stations marked by an 
asterisk were used in MA15 for the corresponding years. Metrics are bias, B = 𝑆𝑆̅ − 𝑂𝑂� , 
mean absolute error, MAE = 1

𝑁𝑁
∑ �𝑆𝑆𝑗𝑗 − 𝑂𝑂𝑗𝑗�𝑁𝑁
𝑗𝑗=1 , and correlation coefficient, CC = 

�∑ (𝑁𝑁
𝑗𝑗=1 𝑂𝑂𝑗𝑗 − 𝑂𝑂�)(𝑆𝑆𝑗𝑗 − 𝑆𝑆̅)�/ ��∑ �𝑂𝑂𝑗𝑗 − 𝑂𝑂��

2𝑁𝑁
𝑗𝑗=1 �

0.5
�∑ �𝑆𝑆𝑗𝑗 − 𝑆𝑆̅�

2𝑁𝑁
𝑗𝑗=1 �

0.5
�, where 𝑆𝑆𝑗𝑗and 𝑂𝑂𝑗𝑗are 

the simulated and observed variables for j = 1, …, N time steps, and 𝑆𝑆̅ and 𝑂𝑂� are their 
temporal means. 
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Calibration Individual simulations Basin simulations 
Station Year B MAE CC B MAE CC 

  [m3/m3] [m3/m3] [-] [m3/m3] [m3/m3] [-] 
130* 2004 -0.001 0.013 0.87 0.012 0.021 0.74 
133* 2005 0.015 0.028 0.75 0.044 0.049 0.70 
134 2004 0.042 0.046 0.89 -0.057 0.060 0.81 
137 2004 -0.022 0.049 0.62 -0.002 0.050 0.42 
138 2004 -0.038 0.040 0.90 0.006 0.060 0.46 
139 2004 0.047 0.048 0.82 -0.020 0.032 0.56 
140 2004 -0.100 0.100 0.83 -0.100 0.100 0.73 
143* 2004 -0.004 0.029 0.82 0.004 0.048 0.52 
146* 2004 0.025 0.032 0.84 0.027 0.037 0.75 
147* 2004 -0.003 0.018 0.78 0.007 0.019 0.81 

 Mean -0.004 0.040 0.81 -0.008 0.048 0.65 
 STD 0.041 0.023 0.08 0.040 0.022 0.14 
Validation Individual simulations Basin simulations 

Station Year B MAE CC B MAE CC 
  [m3/m3] [m3/m3] [-] [m3/m3] [m3/m3] [-] 

130* 2007 -0.007 0.020 0.82 0.008 0.023 0.74 
130 2013 -0.003 0.011 0.95 0.012 0.015 0.80 
131 2013 0.004 0.016 0.88 0.011 0.015 0.80 
132* 2004 0.003 0.020 0.86 0.016 0.025 0.76 
132* 2007 -0.013 0.019 0.88 0.043 0.049 0.70 
132 2013 -0.020 0.021 0.89 -0.023 0.026 0.75 
133* 2007 -0.008 0.019 0.89 0.039 0.042 0.89 
143* 2005 -0.029 0.029 0.82 0.032 0.042 0.78 
144* 2005 -0.013 0.031 0.80 -0.007 0.031 0.82 
144* 2007 0.006 0.023 0.88 0.032 0.042 0.78 
146* 2007 -0.017 0.021 0.93 0.008 0.029 0.84 
146 2013 -0.073 0.074 0.78 -0.087 0.091 0.54 
147* 2006 0.016 0.018 0.76 0.001 0.035 0.48 
150 2004 -0.044 0.055 0.82 -0.042 0.060 0.78 
151* 2007 -0.022 0.038 0.81 0.017 0.042 0.81 
151* 2009 -0.016 0.029 0.78 0.003 0.034 0.79 
151 2013 -0.096 0.096 0.89 -0.063 0.069 0.81 
154* 2007 0.003 0.024 0.83 0.004 0.029 0.81 
154* 2008 0.003 0.028 0.82 0.005 0.029 0.83 
156 2013 -0.136 0.146 0.68 -0.121 0.122 0.52 
158 2013 -0.068 0.068 0.66 0.018 0.040 0.57 
161 2013 -0.040 0.040 0.89 -0.013 0.030 0.71 
165 2013 -0.046 0.046 0.82 -0.021 0.029 0.80 

 Mean -0.027 0.039 0.83 -0.006 0.041 0.74 
 STD 0.036 0.031 0.07 0.039 0.024 0.11 
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Figure 3.4. Comparison of observed and simulated surface (5-cm depth) SM at 
representative stations for (a-b) calibration and (c-f) validation periods. Insets show 
scatterplots of observed and simulated surface SM along with the 1:1 line. Data gaps are 
due to missing observations or poor data quality. 
 
 
Performance of Model Simulations of LST at the Stations 

Prior to verifying the model ability to simulate the spatial patterns of LST, it is 

crucial to assess whether the model accurately reproduces LST that is (i) observed at the 

ground and (ii) estimated from the MODIS remote sensors. I selected nine stations with 

more than two years of consecutive observations, apart from some short gaps. For each 

station, the observed and simulated LST values were extracted at MODIS overpass times, 

while the LST values estimated by MODIS were obtained in the co-located 1-km pixel. 

Figure 3.5 shows time series and scatterplots for four representative stations, while Table 

3.6 presents the metrics for all stations. The discrepancies between ground and remotely-

sensed LST are larger than those computed between ground and simulated LST, thus 

indicating higher skills of hyperresolution simulations to capture the local variability of 

LST measured by ground sensors. For example, the mean B and MAE between ground 

and remotely-sensed (ground and simulated) LST are +2.5 ºC and 5.9 ºC (-1.4 ºC and 
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4.9ºC), respectively. The simulated signal is always highly correlated with both ground 

and MODIS LST (mean CC ≥ 0.85) and is consistently negatively biased with the 

MODIS estimates (mean B of -4.0 ºC), especially in winter (mean B of -5.6 ºC; not 

shown in Table 3.6). Xiang et al. (2017) also found the basin-averaged LST simulated in 

the RSB by WRF-Hydro to be negatively biased with MODIS products. These findings 

reveal that the model is (i) able to simulate quite well the LST measured by ground 

sensors, and (ii) exhibits high correlation and negative bias with LST estimated by 

MODIS at distributed locations. As a result, since the connectivity and EOF analyses are 

not affected by the presence of bias, these tools can be used to effectively assess the 

model ability to simulate the spatial patterns of LST. 
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Figure 3.5. Comparison of LST simulated by tRIBS (SIM), observed at the ground (OBS), and estimated by MODIS at four 
representative stations. Right panels show the corresponding scatterplots. The availability of observed LST data differs at 
each station. 
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Table 3.6. Metrics quantifying the comparison between LST simulated by tRIBS (SIM), observed at the ground (OBS), and 
estimated by MODIS. When comparing SIM with MODIS, negative B means that SIM underestimate MODIS.  

Station B [ºC]  MAE [ºC]  CC [-] 

 
SIM  
vs.  

OBS 
SIM 

vs. MODIS 
MODIS  

vs.  
OBS 

 SIM  
vs.  

OBS 

SIM 
vs.  

MODIS 

MODIS  
vs.  

OBS 

 SIM  
vs.  

OBS 

SIM 
vs.  

MODIS 

MODIS  
vs.  

OBS 
130 -3.4 -2.3 -1.5  5.1 4.7 4.1  0.89 0.88 0.88 
132 -5.1 -2.0 -3.5  6.0 4.4 5.4  0.87 0.88 0.85 
133 2.7 -3.2 6.3  4.7 4.7 7.4  0.88 0.89 0.86 
143 2.0 -5.3 7.6  6.6 6.6 9.8  0.79 0.85 0.75 
144 -1.2 -5.4 4.3  4.3 6.0 6.1  0.88 0.91 0.82 
146 -2.5 -4.4 1.5  5.1 5.4 4.3  0.80 0.86 0.81 
147 -2.8 -2.2 -1.5  4.4 4.3 3.3  0.92 0.89 0.90 
151 1.6 -8.3 9.7  3.5 8.8 9.9  0.92 0.88 0.88 
154 -3.5 -2.7 -1.0  4.5 4.6 3.3  0.92 0.89 0.90 

Mean -1.4 -4.0 2.5  4.9 5.5 5.9  0.87 0.88 0.85 
STD 2.6 2.0 4.4  0.9 1.4 2.4  0.04 0.02 0.05 
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Comparison of Simulated and Remotely-sensed Spatial Patterns of LST 

1) Taylor diagram 

The standardized Taylor diagram was first used to provide a concise overview of 

the correspondence between spatial patterns of LST simulated by tRIBS and estimated by 

MODIS. Figure 3.6(a) shows results considering all available days (total of 1763 where 

MODIS had <10% of missing data). In most cases, the simulated spatial maps (i) are well 

correlated with MODIS, with CC mainly included between 0.5 and 0.8; (ii) overestimate 

the spatial variability of MODIS up to two times; (iii) and are characterized by RMSE 

ranging from 0.5 to 1.5 times the MODIS spatial STD. Different colors are used to 

indicate days in the wet summer (July-September) and dry winter (November-March) 

seasons. There are no marked differences between the two seasons, except for a slightly 

larger scatter of the points in the summer as compared to winter, especially in terms of 

CC and nSTD. No clear impact due to the occurrence of precipitation could be detected 

in either season. Figure 3.6(b) presents a subset of days selected as the best and worst 

performing cases based on the connectivity analysis (discussed in the result section). 

Figure 3.6(c) shows the Taylor diagram for the maps of the mean annual, winter and 

summer LST for each of the 10 simulated years. When aggregation in time is performed, 

the agreement between simulated and MODIS patterns increases significantly, with 0.8 < 

CC < 0.9, 1 < nSTD < 1.5, and 0.5 < nRMSE < 1. Clustering of points indicates that the 

model performances are similar across the years. 
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Figure 3.6. Taylor diagrams of LST spatial patterns in (a) all days (total of 1763), (b) 
days with best and worst performance selected through the connectivity analysis (see 
Section 4.3.4 for details), and (c) annual, winter, and summer means in each of the 10 
years. 
 
 

2) Connectivity analysis 

Since the connectivity analysis is a relatively new tool, I first present an example 

that helps interpreting the connectivity function, Γ(F). Figure 3.7(a) shows Γ(F) 

calculated on simulated and MODIS spatial maps of LST averaged over winter and 

summer months of all years. Γ(F) is calculated for the high-phase analysis, implying that 

the binary image identifies areas where LST is larger than the threshold xF. For F = 0, the 

binary image includes the entire basin and Γ(F) = 1. As F increases, there are less areas in 

the basin that have LST larger than the associated threshold and Γ(F) is lower than 1. 

Depending on the distinct features of the variables that affect LST, the size and number 

of connected clusters vary and Γ(F) can decrease or increase with F. For F = 1, no area of 

the basin is part of the binary image and Γ(F) is again equal to 1.  

As reported in Figure 3.7(a), in winter, the model captures the connectivity 

structure of MODIS LST very well, with CC between the two functions of 0.96 and 

RMSE of 0.07. Performances slightly degrade in summer (CC of 0.73 and RMSE of 
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0.16), especially for higher F. To investigate the reasons of these discrepancies and 

provide further insights on this function, Figure 3.7(b)-(g) report the binary images, XF, 

of observed and MODIS patterns for F = 0.8, 0.85 and 0.9. In all cases, the clusters are 

located in the southwestern part of the basin where elevation is lower and LST is higher. 

The simulated patterns are always characterized by a larger number of small clusters, 

N(XF). This suggests that hyperresolution simulations are able to capture the small-scale 

effect of land surface properties that are not represented in MODIS products at 1-km 

resolution. Despite differences in N(XF), the values of Γ(F) for F = 0.8 for the two 

products are not markedly different [Figure 3.7 (b) and (e)]. For F = 0.85 and 0.9, the 

values of Γ(F) differ because the simulations always include a single large cluster, while, 

in MODIS, this cluster separates into two and three main parts, respectively, leading to a 

lower Γ(F). Overall, Figure 3.7(b)-(g) indicate that the size of the largest cluster 

significantly controls the value of Γ(F). 

Model performance of the connectivity function is evaluated in Figure 3.8, which 

shows CC and RMSE between simulated and MODIS Γ(F) at the daily scale along with 

monthly means to help visualize the overall trend. CC is high in most cases, with a mean 

of 0.77 (STD of 0.14), while the average RMSE is 0.20 (STD of 0.08). Koch et al. 

(2016b) reported smaller RMSE of ~0.08, but compared coarser (12-km) LST 

simulations at a monthly scale. Overall, I conclude that model and remotely-sensed 

estimates of LST have very similar connectivity functions. 

  



 

84 
 

 
Figure 3.7. (a) Connectivity functions Γ(F) of MODIS and simulated (SIM) LST 
averaged over winter and summer months of all years. (b-g) Binary images XF of (b-d) 
MODIS and (e-g) simulated patterns for F = 0.8, 0.85 and 0.9 (Γ(F) identified in panel 
(a) with dashed lines), with indication of the connected clusters.  
  



 

85 
 

 

Figure 3.8. (a) CC and (b) RMSE between the connectivity functions of simulated and 

MODIS LST at daily (markers) and monthly (line) scales. The mean (Mean), maximum 

(Max), minimum (Min) and standard deviation (STD) of CC and RMSE across the 

simulation period are also reported.  

 

3) EOF analysis 

The EOF analysis was applied to the combined dataset of simulated and MODIS 

LST patterns of all days, as in Koch et al. (Koch et al., 2017). In such a way: (i) the EOFs 

are the same for both datasets; and (ii) in a given day, if the maps of simulated and 

MODIS LST are exactly the same, the associated PCs will be equal, otherwise they will 

vary. Figure 3.9 (a) and (b) show the first two EOFs, which together explain almost 82% 

of the total variance of both datasets. To provide a physical interpretation of the EOFs of 

LST, I also applied the EOF analysis to VF. The first EOF (EOF1) of LST is largely 

controlled by elevation (CC of -0.94) and, to a smaller extent, by vegetation properties 

(CC of -0.62 with EOF1 of VF). The second EOF (EOF2) of LST is instead mainly 

affected by vegetation (CC of -0.56 with EOF1 of VF). Figure 3.9(c) and (d) report the 

PCs of the observed and simulated LST of each day along with the time series of the 

monthly means (left panels), as well as the monthly averages over the simulation (right 
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panels). The contribution of EOF1, quantified through PC1, is constant during the 

simulation and tends to be, on average, slightly larger for the simulated LST, especially 

from August to October. Differences between the two products emerge when comparing 

PC2. MODIS LST leads to a PC2 that is always positive and exhibits a bell-shaped 

pattern with a peak in July. In contrast, PC2 of simulated LST is negative in all months 

except the summer monsoon, when it shows a steep bell-shaped pattern with a peak in 

August. These findings reveal that the vegetation control on simulated LST (via EOF2) is 

significantly different in summer as compared to the other months, because of the change 

of sign of PC2. In contrast, the seasonality of vegetation impacts MODIS LST less 

significantly. Despite these differences, since EOF2 controls only 8.1% of the variability, 

I can conclude that the hyperresolution simulations of LST are quite similar to the 

MODIS products. 
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Figure 3.9. (a-b) First two EOFs of simulated and MODIS LST daily spatial patterns 
with the percentage of the explained variance. (c-d) Left panels: time series of daily and 
monthly PCs of the two products. Right panels: monthly PCs of the two products 
averaged across the simulation period. 

 

  



 

88 
 

Physical Controls on Discrepancies between Simulated and MODIS LST Patterns 

As a final step, I investigated the physical factors that affect the differences 

between simulated and MODIS LST patterns. For this goal, I selected 10% of the days 

with lowest and highest RMSE between the connectivity functions, each including 176 

days. The first subset of best performing days mostly occurs in winter months, while the 

second ones of worst performance are concentrated from April to June, when the basin is 

very dry. Figure 3.7(b) reports the Taylor diagram for these days, which shows that the 

worst performing cases have higher nRMSE, lower CC and similar nSTD as compared to 

the best performing ones. To identify the factors explaining these differences, I compared 

Γ(F) of LST with Γ(F) of elevation and VF. Note that VF varies in time and so does its 

connectivity function. Figures 3.10 and 3.11 show results for one of the best and worst 

performing days, respectively. For this specific basin, the low-phase Γ(F) of elevation is 

always close to 1. When the model performs well, Γ(F) of simulated and MODIS LST 

are very similar and included between Γ(F) of elevation and VF, reflecting the mixed 

control of these two basin properties on LST. In the worst performing cases, Γ(F) of 

MODIS LST resembles closely that of VF, while Γ(F) of simulated LST is always quite 

close to Γ(F) of elevation. Results presented in these two representative days have been 

found throughout all best and worst performing cases, as quantified by the mean metrics 

reported in Table 3.7.  

To complement and support these findings, I compared the PCs of the best and 

worst performing cases. PC1 of both LST products and PC2 of simulated LST do not 

vary significantly across the two subsets of days (not shown). In contrast, PC2 of MODIS 
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LST increases from a mean of 0.006 across the best performing cases to an average of 

0.016 in the worst performing days, implying that the discrepancies between model-

derived and remotely-sensed LST emerge when MODIS products are mainly controlled 

by vegetation properties, as found with the connectivity analysis. A major reason 

explaining these discrepancies is the fact that the downscaling algorithm used to generate 

air temperature forcings for tRIBS is based on lapse rates that vary each month (values 

reported in Liston & Elder, 2006). During days of worst performance, mainly occurring 

from April to June, the lapse rates are higher (~8 ºC/km) and the effect elevation on 

simulated LST significantly exceeds that of vegetation. In contrast, during the best 

performing days, which are concentrated in winter, the lapse rates are lower (~5 ºC/km) 

and both elevation and vegetation properties affect the simulated LST. To improve 

hyperresolution hydrologic simulations, the adoption of regionally calibrated monthly 

lapse rates is then recommended. Overall, these analyses indicate that Taylor diagram, 

connectivity analysis and EOF analysis should be used in conjunction to quantify 

complementary aspects of model performances and diagnose potential causes of model 

errors. 
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Figure 3.10. (a) Comparison between the connectivity functions of simulated and 
MODIS LST (high-phase) with those of VF and elevation (low-phase) for 12/5/2005, 
which is one of the best performing days (CC and RMSE between simulated and MODIS 
LST of 0.97 and 0.05, respectively). (b-e) Binary images XF of all analyzed variables for 
F = 0.5, with indication of the connected clusters. 
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Figure 3.11. Same as Figure 3.10, but for 6/10/2013, which is part of the worst 
performing days (CC and RMSE between simulated and MODIS LST of 0.54 and 0.49, 
respectively).  
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Table 3.7. Mean RMSE and CC across all, worst, and best performing days (see text for 
details) between the connectivity functions of simulated (SIM) LST, MODIS LST, 
elevation, and VF.  

 
 
Conclusions 

Despite recent progress, a number of critical challenges still prevents the 

achievement of hyperresolution hydrologic simulations. This is especially true for 

distributed hydrologic models whose application in regional watersheds has been limited 

by computational, data, and validation challenges. In this study, I proposed strategies to 

improve the accuracy of hyperresolution hydrologic simulations with a physics-based 

DHM, by focusing on a regional basin of 21,237 km2 in northwest Mexico. Since in this 

study region, like many areas of the world, observations of hydrometeorological variables 

are sparse and limited, I applied techniques to integrate ground and reanalysis products 

for the generation of accurate high-resolution (1-km) datasets. These involve bias 

correcting reanalysis products with ground observations and applying downscaling 

routines that use terrain information at high resolution, which is available globally. Next, 

I presented a procedure to generate high-resolution grids of soil parameters that integrates 

model calibrations conducted at distributed locations, a coarse-resolution soil map based 

on the FAO dataset, and grids of soil properties at 250-m resolution recently released by 

ISRIC-WISE at global scale. Finally, I showed that long-term (10 years) hyperresolution 

  RMSE (CC)  
  All Worst Best 

MODIS LST-Elevation 0.33 (0.07) 0.45 (0.22) 0.25 (0.03) 
MODIS LST-VF 0.27 (0.79) 0.21 (0.85) 0.36 (0.74) 

SIM LST- Elevation 0.26 (0.02) 0.25 (0.00) 0.25 (0.02) 
SIM LST-VF 0.33 (0.74) 0.36 (0.69) 0.36 (0.74) 
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hydrologic simulations obtained with the downscaled hydrometeorological variables and 

soil parameters were fairly accurate, as they compared well with time series of SM and 

LST observed at the ground and spatial maps of LST estimated by remote sensors. In 

particular, I demonstrated the utility of the combined use of Taylor diagram, connectivity 

analysis, and EOF analysis to quantify complementary aspects of the correspondence 

between simulated and remotely-sensed spatial patterns, as well as to identify the 

physical factors that are responsible for the differences between the two products. This is 

a crucial capability to diagnose model deficiencies and strategize improvement of their 

physics.  
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4.CHAPTER 4 

STATISTICAL AND SCALING PROPERTIES OF SIMULATED SOIL MOISTURE  

Introduction 

As mentioned in Chapters 1 and 2, the investigation of the spatial variability of 

soil moisture (θ) across different scales requires the availability of high-resolution θ 

estimates. These have been provided by ground sensors at limited locations and at ~1 km 

resolution by airborne sensors flown during intensive a limited number of field 

campaigns, as in the case of the NAFE campaigns analyzed in Chapter 2. As a result, 

while extremely valuable, the conclusions drawn by studies that have investigated the 

statistical properties of θ with observed datasets are related to specific locations and 

times. An alternative strategy to generate high-resolution θ estimates over different 

regions and times is through the application of hydrologic models, as done in Chapter 3.  

Somewhat surprisingly, a very limited number of studies have used θ fields 

simulated by hydrologic models to investigate the statistical properties of this hydrologic 

variable. For example, Vivoni et al. (2010) calibrated a physically-based distributed 

hydrologic model in a small basin in northwest Mexico and used the model outputs to 

investigate the spatiotemporal variability of soil moisture, including the effect of 

seasonality of climate and vegetation and the feedback with evapotranspiration fluxes. 

Manfreda et al. (2007) and Gebremichael et al. (2009) used θ fields simulated by a land 

surface and a hydrologic model, respectively, to explore the presence of scale-invariant 

properties. These studies led to important results that helped assessing the utility of 

hydrologic simulations to analyze the statistical properties of θ. However, these studies 
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have limitations: Vivoni et al. (2010) focused on a small study site; Manfreda et al. 

(2007) used model outputs at coarse resolution (~125 km); and Gebremichael et al. 

(2009) adopted a limited number of metrics to test the scaling properties. Further efforts 

are then needed to answer the following research question: do the simulated θ fields 

exhibit the same statistical properties found by analyzing ground and remotely-sensed 

observations? Investigating this question is important because, if simulated θ fields prove 

to be valuable, they can be used to (i) quantify how different land surface properties and 

wetness conditions that have not been observed by remote sensors affect the θ statistical 

properties; and (ii) investigate the existence of scale invariance and multifractality across 

a larger range of scales that those observed by remote sensors. 

Several studies have investigated the statistical properties of soil moisture using 

observations from remote- and ground-based sensors. A group of these studies has 

focused on the relation between the spatial mean soil moisture (<θ>) and its variability, 

measured through the spatial standard deviation (σθ) or the coefficient of variation (CVθ 

= σθ / <θ>) (e.g., Charpentier and Groffman, 1992; Crow and Wood, 1999; Albertson and 

Montaldo, 2003; Brocca et al., 2007; Choi and Jacobs, 2007; Lawrence and Hornberger, 

2007; Vereecken et al., 2007; Vivoni et al., 2008a; Famiglietti et al., 1999; Mascaro et al., 

2011; Mascaro and Vivoni, 2012). These efforts have analyzed data with different 

supports (the characteristic size of the θ measurement) and extents (the size of the entire 

area where θ measurements were acquired) collected in a wide range of climatic regions, 

ranging from arid to temperate and humid. Famiglietti et al. (2008) provide a 

comprehensive summary of the results across different regions and scales. In general, it 
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has been found that the relation σθ vs. <θ > is characterized by a convex-upward pattern, 

where σθ increases linearly with <θ >, reaches a maximum value, and decreases as <θ > 

approaches porosity. Depending on climate, some or all of these portions of the pattern 

are observed. Lawrence and Hornberger (2007) attempted to identify the physical 

controls of this relation, suggesting that: (i) the increasing part of the relation, which is 

mostly found in arid and semiarid regions, is controlled by wilting point; (ii) the part 

where σθ  peaks, which is mainly visible in temperate regions, is affected by soil 

hydraulic conductivity; and (iii) the decreasing part, which appears in humid sites, is 

controlled by porosity.  

Another group of studies have investigated and found the existence of scale 

invariance and multifractal properties in spatially-distributed θ estimates retrieved from 

airborne sensors (Rodriguez‐Iturbe et al., 1995; Hu et al., 1997; Kim and Barros, 2002a; 

Oldak et al., 2002; Das and Mohanty, 2008; Mascaro and Vivoni, 2010). The work 

presented in Chapter 2 is a further confirmation that θ exhibits this statistical property in 

two new study regions. Driven by the goal of developing downscaling routines that 

reproduce multifractality, these studies have analyzed a scale range from ~1 km (the 

aircraft footprint) to ~30-50 km (the satellite footprint). Given the limited number of field 

campaigns, further evidences are needed to (i) explore the existence of scale invariance in 

θ fields at different locations, times, and scale ranges; and (ii) identify the control exerted 

by terrain, vegetation and soil properties. 

Chapter 4 has the goal of filling this research gap by using the hyperresolution 

simulations of θ obtained in Chapter 3. This extensive dataset is available in a large study 
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region, the Río Sonora basin (RSB), characterized by highly heterogeneous land surface 

and terrain features that significantly affect the θ variability, and spans a decade 

characterized by different wetness states. As a result, the high-resolution θ fields 

simulated in the RSB offer a unique opportunity to investigate the research question 

outlined above. For this aim, the simulated θ fields are first aggregated at 1-km 

resolution, which mimics the aircraft footprint. Next, to sample a large range of terrain, 

soil, and vegetation characteristics, a total of sixteen square domains of 32-km size 

(mimicking the satellite footprint) are selected within the RSB. In each domain, the σθ vs. 

<θ > and CVθ vs. <θ > relations are computed and compared with those found with 

observed datasets. A multilinear regression between the parameters controlling the σθ vs. 

<θ > relation and the domain terrain, vegetation, and soil properties is used to explore 

how these properties affect the θ variability. As a next step, the presence of scale 

invariance is analyzed in each domain following the approach of Mascaro et al. (2010), 

which is based on Deidda (2000). When multiple scaling regimes are found, the potential 

reasons explaining the presence of these regimes are investigated focusing on the 

limitations of simulated θ fields. After eliminating the days where scale invariance is not 

present, the multifractal downscaling model used by Mascaro et al. (2011a, 2010) and 

adopted in Chapter 2 is applied to each domain. Following Mascaro et al. (2011b), the 

model is then used to explore the control exerted by the domain land surface features on 

θ intermittency and multifractality. 
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Study Region 

The Río Sonora Basin  

The study site selected to explore the statistical properties of simulated θ across a 

range of wetness and land surface conditions is the RSB (drainage area of 21,237 km2) 

located in northwest Mexico [Figure 4.1(a)]. Chapter 3 provides a larger description of 

the basin that is briefly summarized here. Climate in the RSB is arid and semiarid (Peel et 

al., 2007), with mean annual precipitation (temperature) varying from 350 to 750 mm (11 

to 29 ºC). The precipitation regime is characterized by marked seasonality due to the 

occurrence of the North American Monsoon (NAM) from July to September (Robles-

Morua et al., 2012; Vivoni et al., 2010). During the NAM, approximately 40-80% of the 

total annual precipitation falls in forms of localized thunderstorms with a strong diurnal 

cycle (Mascaro et al., 2014). Winters are instead relatively dry, apart from a few 

widespread precipitation events.  

Topography in the RSB is quite complex, with elevation (slope) ranging from 200 

m to 2618 m (from 0° to 77°) [Figure 4.1(b)]. Soil texture and vegetation in the RSB are 

also characterized by high spatial heterogeneity. Precipitation seasonality has a 

significant impact on vegetation, which dramatically greens during the summer season 

(Forzieri et al., 2011). Figure 4.1(c) shows the map of the time-averaged vegetation 

fraction (VF) in the RSB derived in 1-km pixels of Moderate Resolution Imaging 

Spectroradiometer (MODIS, 250-m) imagery by applying the empirical relationships 

presented in Méndez-Barroso et al. (2014) and Xiang et al. (2014). Figure 4.2(b) shows 

instead the saturated hydraulic conductivity (Ks) generated by integrating the information 
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of the soil map provided by the Comisión Nacional para el Conocimiento y Uso de la 

Biodiversidad (CONABIO) with the high-resolution (250-m) soil dataset, named 

SoilGrids250m, recently released by the International Soil Reference Information Centre 

(ISRIC)-World Soil Information (Hengl et al., 2017). Overall, the strong seasonal 

variability of climate and vegetation affect the soil moisture spatiotemporal variability 

within each year (Vivoni et al., 2008a).  

Selection of Domains for Statistical Analyses 

To conduct the statistical analyses across different land surface features, sixteen 

square domains of size 32 km by 32 km were selected within the RSB. The domain size 

has benne selected so that it mimics the resolution of satellite products. The domains 

cover most of the RSB and do not overlap. This choice allows conducting the analyses 

under the assumption of statistical independence. Table 4.1 lists the spatial mean and 

standard deviation of some terrain (elevation and slope), vegetation (VF), and soil (Ks and 

θR; symbols defined in the caption) properties of the domains. To visualize the 

differences across the sixteen domains, Figure 4.2(a)-(c) show the spatial mean ± 

standard deviation of elevation, time-averaged VF, and Ks. Domains 1-5 in the upper 

portion of the basin are characterized by mean elevation >1000 m, relatively higher VF 

and lower Ks. Domains 7, 8, 11, and 14 have also a relatively high elevation (700-1000 

m) and VF, but Ks is higher (~30 mm/h, on average). The other domains are located at 

lower elevations (< ~700 m), with domains 6, 9, 10 and 12 characterized by the lowest 

mean VF and relatively high Ks and domains 13, 15, and 16 by slightly higher VF and 

low Ks. When considering the spatial variability of the properties within the domains, it is 
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worth noting that: (i) domains 1-5 exhibit lower spatial variability for all properties as 

compared to the other domains; (ii) the variability of VF is rather constant across all 

domains; and (iii) domains 6, 13, and 16 have the highest spatial variability of Ks. 

 
Figure 4.1. (a) Location of the RSB in the state of Sonora, Mexico. (b) Elevation map 
with the selected sixteen square domains of size 32 km by 32 km. (c) Time-averaged 
vegetation fraction (VF). (d) Saturated hydraulic conductivity (Ks).  
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Figure 4.2. Spatial mean ± standard deviation of (a) elevation, (b) time-averaged VF, and 
(c) Ks in the 16 domains. Basin properties for each domain are described in Table 4.1. 
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Table 4.1. Basin-averaged properties for the RSB and 16 domains (Dom#): Spatial mean (<->) and standard deviation (𝜎𝜎) of 
elevation (H), slope (SL), Ks, time-averaged VF, and residual soil moisture <θR>, as well as the annual precipitation (P). 

 <H>  
[m] 

𝝈𝝈H 

[m] 
<SL> 
[ º ]  

𝝈𝝈SL 

[ º ] 
<VF> 

 [-] 
𝝈𝝈VF 

[ º ] 
<Ks> 

 [mm/hr] 
𝝈𝝈𝑲𝑲𝒔𝒔  

[mm/hr] 
<θR> 
[%] 

𝝈𝝈𝜽𝜽𝑹𝑹  
[%] 

P 
[mm] 

RSB 862.8 418.7 4.38 4.11 0.157 0.084 21.4 16.2 1.23 1.41 416.7 
Dom 1 1439.5 192.5 4.55 3.69 0.150 0.084 13.7 8.31 1.99 1.26 464.0 
Dom 2 1343.4 180.8 5.78 4.11 0.199 0.068 16.7 12.35 1.16 0.60 424.2 
Dom 3 1144.6 141.2 4.31 2.66 0.145 0.051 16.6 9.37 1.03 1.08 450.3 
Dom 4 1042.9 147.7 4.85 3.17 0.171 0.057 16.7 10.12 0.92 0.93 380.7 
Dom 5 1125.1 233.2 6.45 3.91 0.193 0.070 25.1 12.50 0.95 0.62 428.2 
Dom 6 733.2 107.8 1.65 0.93 0.087 0.049 33.8 18.35 0.97 1.34 357.9 
Dom 7 1006.5 248.4 6.68 4.03 0.226 0.069 30.2 11.28 0.92 1.05 404.5 
Dom 8 892.7 201.5 5.76 4.79 0.187 0.068 29.1 15.46 1.30 1.83 459.5 
Dom 9 538.1 77.0 1.53 1.21 0.080 0.052 44.6 9.08 0.56 0.95 359.4 
Dom 10 650.6 116.1 3.57 2.53 0.180 0.056 37.7 11.15 1.05 1.43 410.8 
Dom 11 869.3 288.3 7.40 5.70 0.237 0.089 31.8 11.24 1.18 1.44 465.3 
Dom 12 390.6 54.1 1.63 1.20 0.095 0.061 36.1 15.29 0.41 0.49 369.9 
Dom 13 454.4 74.6 2.04 1.67 0.141 0.066 23.8 16.38 0.63 0.48 418.0 
Dom 14 719.9 183.2 5.75 4.02 0.225 0.066 34.6 12.11 1.00 1.26 472.8 
Dom 15 341.4 77.2 1.90 1.73 0.107 0.081 14.7 12.36 1.28 1.76 378.3 
Dom 16 500.2 153.6 2.25 4.07 0.121 0.070 15.6 15.99 0.71 0.63 441.5 
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Hydrologic Simulations 

As described in the Introduction of this Chapter, θ outputs of the hyperresolution 

hydrologic simulations of Chapter 3 were used here to conduct the statistical analyses. In 

the following, I provide a brief overview of the setup of the hydrologic model, the 

datasets used, and the numerical simulations. I refer the reader to Chapter 3 for additional 

details. The TIN-based Real-time Integrated Basin Simulator (tRIBS, Ivanov et al., 

2004a, 2004b) was used to perform the hyper-resolution simulations in the RSB. tRIBS is 

a fully distributed, physically-based hydrological model that can reproduce the coupled 

water-energy balance in a continuous fashion. tRIBS is a computational efficient model 

suitable for hyperresolution simulations, since (i) it is based on an irregular domain, 

which allows capturing the details of complex topography with minimal loss of 

information as compared to grid-based models (Vivoni et al., 2005); (ii) it uses 

approximate solutions in the infiltration and routing schemes (Cabral et al., 1992); and 

(iii) its code has been parallelized to be run in high performance computing clusters 

(Vivoni et al., 2011). 

To setup tRIBS in the RSB, a TIN domain of 2,612,662 nodes was generated 

from a 30-m digital elevation model, corresponding to an average cell size of ~88 m and 

11.4% of the original DEM pixels. Hydrometeorological forcings were generated by 

combining the NLDAS reanalysis products at 12-km resolution with ground observations 

from different networks of rain gauges and weather stations. Meteorological data, 

including atmospheric pressure, relative humidity, wind speed, and incoming solar 

radiation, were downscaled at 1-km resolution using the approach of Liston and Elder 
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(2006) that accounts for variability of terrain properties. Time-varying grids of vegetation 

parameters at 250- to 1-km resolution were obtained from remotely-sensed imagery of 

MODIS. The spatial variability of soil properties was characterized by combining the 

coarse CONABIO map with the SoilGrids250m datasets. Specifically, grids at 250-m 

resolution of Ks, residual moisture content (θr), saturated moisture content (θs) and 

porosity (n) were generated by incorporating the SoilGrids250m maps into the 

CONABIO soil map. The other model parameters were assumed constant within the 

polygons of the CONABIO map. The hydrologic model was calibrated against soil 

moisture observations at distributed locations that cover most of the soil classes of 

CONABIO. The model was then validated against independent observations, including 

time series of soil moisture and land surface temperature (LST) recorded at a network of 

stations, and spatial patterns of LST estimated by MODIS. Simulations were conducted 

from 1 January 2004 to 31 December 2013. The validation effort included the 

comparison of observed and simulated time series of θ and LST, as well as the use of 

multiple techniques to test the correspondence of simulated and observed hyperresolution 

spatial patterns of LST. Overall, the validation analyses provided confidence in the 

model’s ability to capture the hydrologic response of the complex, regional watershed. 

The dataset of soil moisture spatial outputs used here consists of 3653 daily maps. Each 

map was resampled from the irregular mesh to a 1-km regular grid.  
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Methods 

Three main types of statistical analyses were conducted on the simulated soil 

moisture fields, which are described in the following subsections. 

Relation between Spatial Mean and Variability of Soil Moisture 

The spatial variability of θ was first analyzed through the relations σθ vs. <θ> and 

CVθ vs. <θ>, which were computed over the entire basin and at each domain. σθ 

represents the standard deviation of the soil moisture values in all 1-km pixels included 

within the 32-km coarse domains. CVθ is simply equal to σθ/<θ>, To interpret these 

relations, the empirical functions proposed by Famiglietti et al. (2008) were utilized. The 

relation CVθ vs. <θ> can be interpreted through the negative exponential equation:  

CV𝜃𝜃 = 𝑎𝑎 ∙ exp(−𝑏𝑏 < 𝜃𝜃 >),                                             (4.1) 

which can be rearranged to provide the curve interpreting the σθ vs. <θ> relationship: 

𝜎𝜎𝜃𝜃 = 𝑎𝑎 < 𝜃𝜃 >∙ exp(−𝑏𝑏 < 𝜃𝜃 >),                                             (4.2) 

where a and b are parameters that were estimated at each domain. To analyze the control 

on these relations of land surface properties, a principal component analysis was 

performed on terrain (slope), soil (Ks and θR), and vegetation (VF) properties of all 

domains (hereafter, ancillary factors). Next, parameters a and b were linked to the 

dominant principal components through a multilinear regression. 

Scale Invariance and Multifractality 

The second type of statistical analyses was the investigation of scale invariance 

and multifractality according to the approach of Mascaro et al. (2010). Methodological 

details of these analyses are provided in Chapter 2 and, for completeness, they are 
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summarized here. The presence of scale invariance was searched from the coarse scale of 

L = 32 km to the fine scale l = 1 km. Note that a binary approach was adopted, where 𝐿𝐿 =

𝑙𝑙 ∙ 2𝑁𝑁lev, where Nlev = 5 is the number of the downscaling levels. The presence of scale 

invariance is identified by verifying the linearity of log-log relation  

log𝑆𝑆𝑞𝑞(𝜆𝜆)~𝐾𝐾(𝑞𝑞) ∙ log𝜆𝜆,                                                      (4.3) 

where Sq(λ) is the structure function computed from the soil moisture field aggregated at 

scale at scale l ≤ λ ≤ L for a given moment q (usually ranging from 1.5 to 4): 

𝑆𝑆𝑞𝑞(𝜆𝜆) =
1

𝑁𝑁(𝜆𝜆)2 � ��𝜃𝜃𝑖𝑖,𝑗𝑗(𝜆𝜆)�
𝑞𝑞

                                         (4.4)
𝑁𝑁(𝜆𝜆)

𝑖𝑖=1

𝑁𝑁(𝜆𝜆)

𝑖𝑖=1

 

where θi,j(λ) is the mean value of θ on a grid cell λ x λ in the location (i, j) within the 

domain and N(λ)2 = (L/ λ)2 is the number of λ x λ cells embedded in the coarse domain.  

If equation (4.3) is verified, then a scaling regime is found from l to L and the 

slope K(q) of (4.3) can be estimated through linear regression. The multifractal behavior 

is investigated by inspecting the relation linking K(q) with q: if it is linear, the field is 

fractal; otherwise the field is multifractal (non-linear) and K(q) is called multifractal 

exponents. K(q) controls the intermittency of the field, with larger (smaller) values 

corresponding to more intermittent (smoother) fields. Note that, if this analysis is applied 

to two fields, where one is obtained from the other by adding a bias, results are different, 

and the differences become larger as the bias increases.  

The Multifractal Downscaling Model 

For the simulated θ fields exhibiting the presence of scale invariance and 

multifractality, the downscaling model proposed by Deidda (2000) was used to explore 
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how terrain, soil, and vegetation affect the multifractal properties of θ. The model is 

based on a log-Poisson stochastic generator of homogeneous, random binary cascades 

that reproduce the observed scale-invariance and multifractal properties. The generator 

depends on two parameters, c and β, that control the theoretical expectation for the 

multifractal exponents (Deidda et al., 1999; Deidda, 2000): 

𝐾𝐾(𝑞𝑞) = 𝑐𝑐 ∙
𝑞𝑞(1 − 𝛽𝛽) −  (1 − 𝛽𝛽𝑞𝑞)

ln(2)
.                                           (4.5) 

Parameters c and β are estimated by fitting (4.5) to the observed multifractal exponents 

K(q). Then, empirical calibration relations are identified between c and β and coarse-scale 

predictors. Previously, Mascaro et al. (2011a, 2010) and the work in Chapter 2 (Ko et al., 

2016) found β to be fairly constant, while c was linked to the coarse-scale <θ> according 

to an exponentially decreasing relation: 

𝑐𝑐 = 𝑐𝑐∞ + 𝛼𝛼 ∙ 𝑒𝑒−𝛾𝛾∙<𝜃𝜃>                                           (4.6) 

with parameters 𝑐𝑐∞, α and 𝛾𝛾. As done for parameters a and b of equation (4.2), the 

regression parameters of (4.6) were linked to the dominant principal components of the 

ancillary factors via multilinear regression. This relation will be used to explore the 

impact of land surface properties on the multifractal properties of simulated θ fields.  

 
Results and Discussion 

Interannual and Seasonal Variability of Soil Moisture 

Prior to exploring the statistical properties of simulated θ, an overview of the 

interannual and interannual variability of <θ> is given in Figure 4.3, which shows the 

time series of <θ> simulated during the period from 2004 to 2013 in the RSB and in 
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selected domains. The panels on the right reports the corresponding long-term monthly 

means of <θ>, along with the spatial standard deviation (bars). The distributed tRIBS 

simulations were able to (i) capture the response of θ to individual storms and the 

recession behavior during the interstorm periods; (ii) represent well the seasonality due to 

the NAM, as shown by the high values of <θ> and 𝜎𝜎θ during summer; and (iii) reproduce 

the effect of spatially-variable forcings and land-surface properties, as shown by the 

differences of <θ> across the domains.  

Spatial Variability of Simulated Soil Moisture 

Figure 4.4 shows the σθ vs. <θ> and CVθ vs. <θ> relations obtained with daily 

data of all years in the entire RSB. Different markers are used for summer (July-

September), Winter (November-March), and other seasons (October, April, May). The 

solid lines are equations (4.1) and (4.2) fitted to all points. The equations were also 

separately fitted to winter and summer points and no statistically significant differences at 

the 0.05% level (i.e., using the 95% confidence intervals) were found. Note that the 

availability of a long-term record of θ allowed analyzing a similar range of <θ> in both 

seasons, although winter is generally drier. This result indicates that the distinct 

hydrologic processes occurring in winter and summer do not significantly affect how, on 

average, σθ is related to <θ>. Considering now the solid lines, Figure 4.4(a) shows that 

σθ increases with <θ> until it reaches around 15%, and, then, decreases beyond that 

value, when the field becomes more spatially uniform, likely due to the impact of 

precipitation covering large areas. Figure 4.4(b) shows instead that CVθ exponentially 



 

109 
 

decreases with increasing <θ>, implying the relative variability decreases with higher 

moisture contents.  

 

 

Figure 4.3. (a) Basin-averaged simulated soil moisture (<θ>) from 2004 to 2013 for the 
RSB. (b-f) Same as (a) but for representative domains. Right panels: monthly <θ> with 
the monthly averaged standard deviation of θ (𝜎𝜎θ). 
 

Results presented in Figure 4.4 were compared with findings of Famiglietti et al. 

(2008) and Mascaro and Vivoni (2010), who applied the same analysis in different study 

sites on domains of ~50 km by ~50 km, representing the largest extent that was analyzed. 

Famiglietti et al. (2008) computed the relations (4.2) and (4.3) using ground observations 

collected in humid regions of USA during the Soil Moisture Experiment 2002 and 2003 

(SMEX02 and SMEX03). Mascaro and Vivoni (2010) performed the analysis in a portion 

of the RSB, using aircraft θ estimates from the Polarimetric Scanning Radiometer (PSR) 
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sensor at 800-m resolution collected during the SMEX04 experiment in summer 2004. As 

shown in Figure 4.4, the relations estimated on the simulated θ fields are very similar to 

those found on both observed datasets when considering the increasing portion. The 

relations tend to differ as <θ> reaches ~15%, especially considering SMEX04. This can 

be explained considering that: (i) the SMEX04 dataset includes only 11 θ maps and that, 

during this experiment, <θ> exceeded 15% only once, and (ii) the extent of the analyses 

is different. Parameters a and b of the lines are reported in Table 4.2, along with and the 

root mean square error (RMSE) between each relation and the daily simulated θ. Despite 

differences between the σθ vs. <θ> lines emerge for <θ> > ~15%, the RMSE is quite 

similar across all lines.  

 

Figure 4.4. (a) Relation between the daily spatial standard deviation 𝜎𝜎θ [%] and spatial 
mean <θ> [%] in the RSB along with the empirical fit 𝜎𝜎θ = <θ>·a·e -b<θ> estimated for all 
seasons. Makers indicate seasons: winter (November-March) and summer (July-
September). (b) Same as (a) but for CVθ , with the line CVθ = a·e -b<θ>. In each panel, the 
empirical curves obtained with two observed aircraft-derived datasets of (i) SMEX04 in 
Sonora (Mascaro and Vivoni, 2010) and (ii) SMEX02 and SMEX03 (Famiglietti et al., 
2008) are also shown. 
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Table 4.2. Regression parameters of equations (4.2) and (4.3) for the RSB, SMEX04 
(Mascaro and Vivoni, 2010), and SMEX02 and SMEX03 (Famiglietti et al., 2008), along 
with corresponding RMSE between points and curve.  

 a b RMSE (𝜎𝜎θ) RMSE (CVθ) 
RSB 0.804 0.070 0.844 0.107 

SMEX04 0.770 0.031 1.030 0.383 
SMEX02-03 0.884 5.807 0.947 0.325 

 

To explore the reason of the differences between simulated and SMEX04-PSR, I 

obtained the SMEX04 gridded datasets estimated using not only PSR but also 2D 

Synthetic Aperture Radiometer (2D-STAR). These are microwave sensors measuring 

near-surface (0-5 cm) brightness temperature at different wavelengths. A total of sixteen 

images (11 from PSR and 5 from 2D-STAR) with an extent of 96 km × 52.8 km at 800-

m were available. Simulated θ fields were obtained at the time of the day close to when 

PSR and 2D-STAR were flown and, then, converted into 800-m gridded maps. The flight 

dates and times, and the corresponding time of the selected simulated θ fields are listed in 

Table 4.3 (Ryu et al., 2010; Bindlish et al., 2008). Note that the flight time of PSR and 

2D-STAR is the same. When 𝜎𝜎θ  and <θ> were calculated, the pixels with no data in PSR 

and 2D-STAR datasets were excluded from the simulated θ fields. For this reason, the 

simulated values of 𝜎𝜎θ  and <θ> for each day were slightly different for each case.  

As shown in Figure 4.5, the 𝜎𝜎θ  vs. <θ> and CVθ  vs. <θ> relations estimated on 

PSR and 2D-STAR datasets are significantly different, due to the diverse ability of the 

sensors and the retrieval algorithm. For both PSR and 2D-STAR, the 𝜎𝜎θ  vs. <θ> relations 

are increasing. However, the values of 𝜎𝜎θ  of 2D-STAR and the range of <θ> are much 

lower than those derived from PSR. The relation obtained from the simulations is instead 
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convex-upward with 𝜎𝜎θ  increasing with increasing <θ> until it reaches ~10 % and, then, 

decreasing up to ~15%. In general, the simulated values underestimate 𝜎𝜎θ  and 

overestimate <θ> of both PSR and 2D-STAR. These differences can be caused by: (1) 

errors and coarse resolution of in the precipitation products used to force the hydrologic 

simulations; and (2) time difference between the observations and simulations.  

Despite this difference, the simulated relations are closed to those obtained with 

the 2D-STAR soil moisture estimates. 2D-STAR, which uses dual-polarized L-band 

brightness temperature, has been considered able to produce more accurate θ estimates 

than C-band or X-band, that PSR uses, because the influence of vegetation, soil 

roughness, and radio interference can be minimized at L-band (Calvet et al., 2011; Cui et 

al., 2017). Overall, the analyses at basin scale based on ten years of simulations (see 

Figure 4.4) and those focused on the days and extent of the SMEX04 datasets (see Figure 

4.5) showed that the model is able to simulate reasonably well the patterns estimated 

from observed datasets. 
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Figure 4.5. Same as Figure 4.4 but with SMEX04 datasets obtained from PSR and 2D-
STAR sensors and simulations at the same date and close time when both sensors were 
flown. 

Table 4.3. SMEX04 PSR and 2D-STAR local flight times over the Sonora site and 
corresponding time of the simulated θ.  

Date in 2004 Time PSR 2D-STAR SIM 
5 15:14–16:01 x  16:00 
7 11:35–12:40 x x 12:00 
8 9:38–10:14 x x 10:00 
9 9:23–10:11 x  10:00 
10 9:19–10:06 x  10:00 
12 9:36–10:26 x  10:00 
13 9:37–10:24 x  10:00 
14 9:36–10:25 x  10:00 
24 9:46–10:32 x x 10:00 
25 13:11–14:00 x x 14:00 
26 9:36–11:17 x x 11:00 

 

The σθ vs. <θ> relation was then analyzed at each domain. Results are shown in 

Figure 4.6, while regression parameters of the fitted line and RMSE are reported in Table 

4.4. Equation (4.2) was first estimated locally (LOC, gray lines), obtaining a set of a and 

b parameters at each domain. Next, to investigate how the σθ vs. <θ> relation is affected 

by terrain, soil, and vegetation properties, a principal component analysis (PCA) was 
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applied to a total of eight ancillary factors computed for each domain (Table 4.1), 

including topographic (<SL> and 𝜎𝜎SL), vegetation (<VF> and 𝜎𝜎VF), and soil variables 

(<Ks>, 𝜎𝜎𝐾𝐾𝑠𝑠, <θR>, and 𝜎𝜎𝜃𝜃𝑅𝑅). The PCA was applied to reduce the dimensionality of the 

dataset, while, at the same time, capturing the essential features of each domain. Note that 

elevation was not used because it did not appear to be related to a and b. By an 

orthogonal rotation of the analyzed dataset, the PCA identifies a minimal number of 

principal components (PCs) that explain the largest variability of the original dataset. As 

reported in Table 4.5, the first three PCs explain 99% of the variability. The scores of the 

PCs (PCSj, j = 1, 2, 3) were then linked to a and b with a multilinear regression as: 

�
𝑎𝑎 = 𝑚𝑚0 + 𝑚𝑚1𝑃𝑃𝑃𝑃𝑆𝑆1 + 𝑚𝑚2𝑃𝑃𝑃𝑃𝑆𝑆2 + 𝑚𝑚3𝑃𝑃𝑃𝑃𝑆𝑆3 
𝑏𝑏 = 𝑛𝑛0 + 𝑛𝑛1𝑃𝑃𝑃𝑃𝑆𝑆1 + 𝑛𝑛2𝑃𝑃𝑃𝑃𝑆𝑆2 + 𝑛𝑛3𝑃𝑃𝑃𝑃𝑆𝑆3                                               (4.7) 

with parameters mj and nj. Table 4.5 also reports the coefficients of the first three 

principal components (PCs) and the correlation coefficients (CCs) between the scores of 

the PCs, which support the physical interpretation of the PCs. The first PC (86% of the 

variance) captures the variability of Ks, as revealed by the high CC of 0.9998, followed 

by <θR> with CC of -0.47 and <VF> with CC of -0.39. As a result, soil texture and, to a 

minor extent, vegetation play an important role on the spatial variability of soil moisture. 

The second and third PCs account for different aspects of topography, soil and 

vegetation.  

Estimates of the regional parameters mj and nj are reported in Table 4.6. These 

values can be used to derive a and b starting from the domain ancillary factors. Results of 

this regression (labeled ANC) are plotted in Figure 4.6 (black lines). The parameters of a 

and b estimated by (4.7) and the RMSE are reported in Table 4.4. To compare ANC and 
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LOC performances, I calculated the percent difference of RMSE (𝛼𝛼RMSE) with the 

metrics obtained in LOC. The 𝛼𝛼RMSE was calculated as 

𝛼𝛼RMSE =
−(RMSEANC − RMSELOC)

RMSELOC
 ∙ 100,                                           (4.8) 

where RMSEANC and RMSELOC are the metrics computed in ANC and LOC approaches. 

The negative values of 𝛼𝛼RMSE indicate a degradation in the fit derived from ANC as 

compared to LOC. Even if ANC has lower performances than LOC, the results show the 

ANC calibration method captures the local behavior at most of domains, with lower skills 

in domains 14 and 15 (see 𝛼𝛼RMSE reported in Table 4.4). These two domains exhibit the 

drastic linear change in the variation with small changes in <θ> for dry conditions and the 

maximum θ variance is observed early than other domains.  
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Figure 4.6. Relations between 𝜎𝜎θ  and <θ> [%] at each domain along with the empirical fit 

derived from LOC (gray lines) and ANC (black lines) regressions.  
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Table 4.4. Regression statistics for 𝜎𝜎𝜃𝜃 vs. <θ> for each domain. RMSE estimated 
between the data and the empirical regression fits derived from LOC and ANC 
approaches and 𝛼𝛼RMSE. The average, standard deviation (STD), max and min were 
calculated from domains.    

 LOC Regression ANC Regression 

  a b RMSE 
[%] 

a b RMSE 
[%] 

𝛼𝛼RMSE 
[%] 

Dom 1 0.665 0.056 0.630 0.636 0.060 0.661 -4.9 
Dom 2 0.538 0.044 0.600 0.655 0.052 0.639 -6.5 
Dom 3 0.640 0.065 0.620 0.671 0.063 0.645 -4.0 
Dom 4 0.593 0.056 0.570 0.665 0.060 0.592 -3.9 
Dom 5 0.535 0.049 0.550 0.713 0.062 0.631 -14.7 
Dom 6 1.069 0.087 0.670 0.862 0.071 0.718 -7.2 
Dom 7 0.730 0.068 0.520 0.745 0.070 0.518 0.4 
Dom 8 0.908 0.070 0.660 0.751 0.060 0.708 -7.3 
Dom 9 0.909 0.113 0.500 0.920 0.105 0.514 -2.8 
Dom 10 1.128 0.121 0.510 0.843 0.087 0.509 0.2 
Dom 11 0.895 0.080 0.510 0.737 0.069 0.558 -9.4 
Dom 12 0.980 0.099 0.560 0.871 0.080 0.583 -4.1 
Dom 13 0.732 0.056 0.560 0.773 0.062 0.570 -1.8 
Dom 14 1.303 0.104 0.550 0.790 0.075 0.857 -55.8 
Dom 15 1.320 0.090 0.640 0.695 0.059 1.203 -88.0 
Dom 16 0.695 0.051 0.580 0.692 0.049 0.586 -1.0 
Average 0.853 0.076 0.577 0.751 0.068 0.656 -13.2 

STD 0.246 0.023 0.053 0.083 0.013 0.166 23.2 
Max 1.320 0.121 0.670 0.920 0.105 1.203 0.4 
Min 0.535 0.044 0.500 0.636 0.049 0.509 -88.0 

 

Table 4.5. Ancillary factors selected for the PCA. PCs with percent of variance explained 
in parentheses are reported along with CCs with PCSs. <-> and σ are used to indicate the 
spatial mean and standard deviation, respectively. SL is slope. 

 PC1 (86%) PC2 (9%) PC3 (4%) CC with 
PCS1 

CC with 
PCS2 

CC with 
PCS3 

<SL> -0.0256 -0.4416 0.6969 -0.1216 -0.6688 0.7183 
𝜎𝜎SL -0.0373 -0.2296 0.5157 -0.2559 -0.5013 0.7663 

<VF> -0.0003 -0.0096 0.0176 -0.0517 -0.5841 0.7315 
𝜎𝜎VF -0.0005 -0.0009 0.0020 -0.3879 -0.2374 0.3707 

<Ks> 0.9981 -0.0533 0.0187 0.9998 -0.0170 0.0041 
𝜎𝜎𝐾𝐾𝑠𝑠 0.0377 0.8638 0.4967 0.1267 0.9237 0.3615 

<θR> -0.0175 -0.0483 0.0239 -0.4702 -0.4141 0.1396 
𝜎𝜎𝜃𝜃𝑅𝑅 0.0040 -0.0289 0.0191 0.0902 -0.2084 0.0941 



 

118 
 

Table 4.6. Parameters mj and nj of ANC calibration relation. 
Parameter  Value 

m0 0.751 
m1 0.008 
m2 0.008 
m3 -0.009 
n0 0.068 
n1 0.001 
n2 -0.001 
n3 -0.003 

To analyze the impact of geophysical controls on the spatial variability of θ fields, 

a simple comparison has been performed between domains with contrasting terrain, 

vegetation, and soil properties. Figure 4.7(a) compares domains with contrasting terrain 

properties: domain 3 with higher <H> and <SL> has smaller 𝜎𝜎θ across < θ > than domain 

16, possibly due to the lower evaporation rate at higher elevation areas with steep slopes. 

Figure 4.7(b) presents the comparison between two domains with contrasting vegetation 

properties: domain 2 with higher <VF> shows higher spatial variability with the slow 

decreasing rate as <θ> increases when <θ> is larger than ~10%. This can be due to both 

different evapotranspiration rates and sampling variability. Finally, Figure 4.7(c) shows 

the comparison between two domains with contrasting soil properties: domain 12 with 

higher Ks shows lower spatial variability than domain 15, implying that faster draining is 

associated with less spatial heterogeneity of θ. Additional analyses are needed to 

investigate more systematically all these aspects that have been here discussed just for a 

few representative cases. 
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Figure 4.7. Relation between 𝜎𝜎θ and <θ> for (a) domain 3 and 16 having a large contrast 
in terrain properties (<H> and <SL>), (b) domain 2 and 3 having a large contrast in 
vegetation property (<VF>), and (c) domain 12 and 15 having a large contrast in soil 
property (<Ks>).  

 
Scale invariance and multifractality of the simulated soil moisture fields 

Scale invariance analysis was conducted for the moments q = 1.5, 2, ...,4 in the 

simulated θ fields in each domain. Following Mascaro et al., (2010), the presence of scale 

invariance was identified if the correlation coefficient (CC) of the regression for q = 4 

was higher than 0.9. Additionally, I used the root mean square error (RMSE) of the 

regression larger than 0.4 to exclude the days having multi-scaling regimes due to the 

impact of artificial discontinuity of P at 12 km and the impact of a model input for θR that 

is not scale-invariant. Figure 4.8 shows examples of the scale-invariance analysis in wet 

and dry days in domains 2 and in residual soil moisture in domain 2, 12 and 15. The 

presence of scale invariance was tested by verifying the linearity of (4.1) through the 

estimation of RMSE and CC for q = 4. Table 4.7 reports results of the mean RMSE and 

CC across the scale-invariant θ fields as well as the number of discarded θ fields, the 

mean of <θ> of discarded θ fields and θR of each domain. Overall, most of θ fields (97%) 

in majority domains (70%, 11 out of 16) are scale-invariant, except 5 domains having 

scale-invariant θ fields less than 45% of θ fields. These discarded θ fields in the 5 
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domains are generally very dry with the values <θ> close to <θR> that are not scale-

invariant in these domains, implying that the model input for the soil parameters (e.g., θR 

and Ks) could break the scale invariance property that natural θ field exhibits. Figure 

4.8(e) and (e1) show the impact of soil input clearly. A soil texture class having very high 

θR value than the rest soil classes plays a similar role of irrigation in very dry lands and it 

brakes the scale-invariance property of <θ> field. While the discarded θ fields in the 

other domains have a relatively large mean of <θ> (e.g., domain 1, 2, and 10), indicating 

that the unnatural discontinuity of P at 12 km could affect the scale invariance property 

[see Figure 4.8(c1)]. 

As I found in Chapter 2, there might be an impact of irrigation on scale invariance 

properties in the RSB. Scale invariance analyses were already conducted in the Rio 

Sonora basin in two previous studies, including Mascaro et al. (2011) and Mascaro and 

Vivoni (2010), using SMEX04 remotely sensed soil moisture fields. Both studies 

identified the presence of scale invariance from 0.8 km to 25.6 km and 51.2 km, 

respectively. Mascaro et al. (2011) also conducted preliminary analyses of the effect of 

irrigated fields. These authors detected pixels that were consistently wetter or drier during 

the entire duration of the experiment. However, they found that there is no direct linkage 

between wet pixels and cropland. Similarly, Mascaro and Vivoni (2010) did not find any 

impact of irrigation. As a result, based on these two studies, I assumed that the influence 

of irrigated fields in the domain on the scale invariance properties might be negligible or 

not present. 
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Figure 4.8. Examples of presence of scale invariance in (a) wet day, (b) dry day, and (c) 

day with the impact of discontinuity of P at 12 km in domains 2 and in residual soil 

moisture in (d) domain 2, (e) domain 12 and (f) domain 15. (a1-c1) Spatial maps of <θ>. 

(d1-f1) Spatial maps of <θR>.  
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Table 4.7. Mean across all scale-Invariant θ fields and θR of RMSE and CC computed from the scale invariance analysis when 
q = 4 for each domain.  

 
Number of 

scale-invariant  
θ fields  

RMSE  
[%] 

CC  
[-] 

Number of 
Discarded  

θ fields 

<θ>of 
Discarded  

θ fields 

<θR>  
[%] 

RMSE 
[%] 

CC  
[-] 

Dom 1 3633 0.163 0.981 20 9.494 1.99 0.209 0.980 
Dom 2 3622 0.117 0.980 31 8.742 1.16 0.264 0.956 
Dom 3 3608 0.172 0.986 45 5.344 1.03 0.308 0.986 
Dom 4 1738 0.095 0.981 1915 1.300 0.92 0.763 0.928 
Dom 5 3527 0.175 0.945 126 3.197 0.95 0.632 0.854 
Dom 6 1487 0.121 0.985 2166 1.233 0.97 0.720 0.949 
Dom 7 1825 0.120 0.978 1828 1.220 0.92 0.822 0.927 
Dom 8 3634 0.239 0.984 19 7.772 1.30 0.290 0.991 
Dom 9 3604 0.218 0.985 49 3.867 0.56 0.343 0.992 
Dom 10 3627 0.159 0.988 26 8.511 1.05 0.502 0.972 
Dom 11 3630 0.203 0.987 23 6.317 1.18 0.372 0.983 
Dom 12 3192 0.292 0.976 461 2.312 0.41 0.765 0.954 
Dom 13 3384 0.236 0.971 269 3.242 0.63 0.609 0.929 
Dom 14 1268 0.135 0.984 2385 1.383 1.00 0.470 0.979 
Dom 15 1374 0.170 0.982 2279 1.727 1.28 0.443 0.977 
Dom 16 3565 0.238 0.985 88 3.652 0.71 0.612 0.960 
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To investigate the impact of P at 12 km and the soil inputs, I studied the time 

series of RMSE and Figure 4.9 present this for the representative domains. It is evident 

that to see the impact of the discontinuity of the coarse resolution P from Figure 4.9(a) 

and (b) with the few spikes. The days having a constant value of RMSE for all domains 

are the driest days when their <θ> are close to <θR>. A large number of days having 

RMSE higher than 0.5 was found in domain 15 and these were excluded for multifractal 

analysis which is designed based on the hypothesis of spatial homogeneity.

 

Figure 4.9. Time series of RMSE between samples and the linear regression model in the 
representative domains. 
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For each domain, c and β of the multifractal model were estimated by fitting the 

theoretical expectation for K(q). Figure 4.10 shows results for selected wet and dry days 

in four pairs of two domains contrasting in terrain, vegetation, soil and annual P. In all 

cases, the relations between K(q) and q are nonlinear, indicating the presence of 

multifractality. Figure 4.10 also shows the θ with lower <θ> has higher K(q) for all the 

cases even in the different domains and conditions. The K(q) is an indicator to measure 

the variation of the intermittency in a <θ> field within the aggregation scales. The higher 

K(q) will be obtained from a more intermittent <θ> field since its variability will 

significantly decrease as the aggregation of the field processes. As a result, our findings 

reveal that θ values in dry conditions (or domains) are more intermittent while in wet 

conditions are more uniformly distributed, consistent with the result in Chapter 2 (Ko et 

al., 2016) and previous studies by Hu et al. (Hu et al., 1997), Oldak et al. (Oldak et al., 

2002), Das and Mohanty (Das and Mohanty, 2008), and Mascaro and Vivoni (Mascaro 

and Vivoni, 2010).  

 
Figure 4.10. Relation between multifractal exponent K(q) and moments q for four pairs 
consisting of two domains contrasting in (a, e: domains 2 and 3) terrain, (b, f: domain 4 
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and 15) vegetation, (c, g: domains 10 and 16) soil, and (d, h: domain 6 and 14) annual P on 
the same (a-d) wet and (e-h) dry days for each group.   

The two parameters, c and β, were estimated in all domains. The values of β were 

found to be fairly constant for all domains with an average value of 0.82±0.15, whereas 

the values of c are highly scattered. As a next step, I assumed a fixed value of β equal to 

the average and then estimated c. The resulting values of c ranged from 0.04 to 6.58 with 

an exponentially decreasing relation with <θ>, similar to the finding by Mascaro et al. 

(Mascaro et al., 2010, 2011). Mascaro et al. (2010) found a relatively smaller range of c 

with a smaller β for SMXE04, Sonora but it might be due to its narrow range of θ 

observations.  

Two approaches were tested for calibrating the multifractal model. In the first 

approach labeled as the local (LOC), the sets of parameters, 𝑐𝑐∞, α and 𝛾𝛾, in (4.4) were 

estimated through the nonlinear fitting for each domain. The value of 𝑐𝑐∞that controls the 

intermittency of θ in larger <θ> was fixed to 0.2 due to the small variation of 𝑐𝑐∞ over the 

domains then reestimated α and 𝛾𝛾. The values of α and 𝛾𝛾, the RSME, and R2 are reported 

in Table 4.8. The second approach labeled as ancillary (ANC) was tested by applying the 

PCA to the same eight ancillary factors used for the analysis of the spatial variability of θ 

(Table 4.1) to interpret the relation between c and <θ>. To minimize the number of 

parameters involved in the ANC approach, I tested the possible presence of a relation 

between α and 𝛾𝛾 for all domains and linear regression relation was found as 𝛾𝛾 = 0.0611α-

0.0341 with RMSE of 0.087 and R2 of 0.65. In this way, (4.4) depends only on α and this 

parameter can be linked to the PCSj (j = 1,2,3) with a multilinear regression as:  

𝛼𝛼 = 𝑘𝑘0 + 𝑘𝑘1PCS1 + 𝑘𝑘2PCS2 + 𝑘𝑘3PCS3                                        (4.8) 
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with parameters k0, k1, k2, and k3 reported in Table 4.8 and the estimates of 𝛼𝛼 and 𝛾𝛾, 

RMSE and R2 are summarized in Table 4.9. Results of the ANC and LOC approaches in 

the sixteen domains are plotted in Figure 4.11.  

Table 4.8. Parameters k0, k1, k2, and k3 
Parameter Value 

k0 4.1920 
k1 0.0706 
k2 -0.0551 
k3 -0.1645 

 

Table 4.9. Average of parameters between c and <θ> estimated from LOC and ANC 
approaches. RMSE and R2 are reported.  
 LOC Regression ANC Regression 

 α 𝛾𝛾 RMSE α 𝛾𝛾 RMSE 𝛼𝛼RMSE 
[%] 

Dom 1 3.888 0.202 0.243 3.760 0.203 0.245 -0.8 
Dom 2 1.636 0.093 0.425 3.320 0.066 1.064 -150.4 
Dom 3 7.270 0.578 0.301 3.934 0.410 0.631 -109.6 
Dom 4 3.199 0.238 0.492 3.758 0.161 0.623 -26.6 
Dom 5 1.415 0.095 0.461 3.846 0.052 1.524 -230.6 
Dom 6 4.433 0.190 0.364 4.377 0.237 0.456 -25.3 
Dom 7 3.514 0.209 0.466 4.326 0.181 0.546 -17.2 
Dom 8 6.765 0.289 0.333 3.744 0.379 1.320 -296.4 
Dom 9 8.378 0.589 0.423 6.307 0.478 0.721 -70.4 
Dom 10 5.321 0.295 0.285 5.271 0.291 0.285 0.0 
Dom 11 6.061 0.269 0.285 4.249 0.336 0.891 -212.6 
Dom 12 4.162 0.203 0.457 4.910 0.220 0.647 -41.6 
Dom 13 2.817 0.127 0.429 3.834 0.138 0.734 -71.1 
Dom 14 5.953 0.178 0.450 4.617 0.330 0.910 -102.2 
Dom 15 5.816 0.160 0.364 3.711 0.321 1.111 -205.2 
Dom 16 6.190 0.434 0.507 3.111 0.344 1.316 -159.6 
Average 4.801 0.259 0.393 4.192 0.259 0.814 -107.5 

STD 1.935 0.147 0.080 0.768 0.118 0.362 89.3 
Max 8.378 0.589 0.507 6.307 0.478 1.524 0.0 
Min 1.415 0.093 0.243 3.111 0.052 0.245 -296.4 
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The multifractal model performances for the ANC approach are, in general, less 

accurate than LOC but 63% of the domains (10 domains out of 16; domain 1, 4, 6, 7, 9-

14) shows relatively similar performances to LOC with RMSE of 0.607. Figure 4.11(b) 

and (e) show the difference of LOC and ANC approaches in the variation of c in the dry 

conditions (~5% of <θ>) in domain 2 and 5. These domains have a large range of 

variation of c in very dry conditions as well as majority of the pairs of c estimates and 

<θ> were clustered where <θ> = ~1.23% and ~1.0% for domain 2 and 5 respectively 

which are the extremely dry conditions that <θ> is close to <θR>. This is obviously 

caused by the impact of the model input for the soil parameters and affected the empirical 

fits derived from LOC approach. ANC approach couldn’t capture the drastic changes in 

the dry conditions (less intermittency up to ~10% of <θ>) in domain 3 and 16 [see Figure 

4.11(c) and (p)] by underestimating both α and γ, and it underestimates the intermittency 

of <θ> in domain 14 and 15 [see Figure 4.11(n) and (o)] by underestimate α and 

overestimate γ. It might be due to the simple linear relation of α and γ I used. The results 

were also compared with findings of Mascaro and Vivoni (2010), who applied the same 

analysis using SMEX04 datasets conducted in the same region. Figure 4.12 shows the 

comparison in the two domain 4 and 7 located within the coverage of SMEX04. The 

behaviors of the relations are relatively similar, but the smaller variation range of c was 

found in SMEX04. Possible reasons are; 1) a small number of θ fields used, 2) smaller 

range of <θ>, and 3) the smaller value of the fixed β (0.71 for SMEX04 whereas 0.82 for 

the RSB) that can lead higher values of c.    
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To understand the geophysical control factors on the multifractal model, I also 

conducted the same analysis of comparing two domains contrasting in land surface 

properties as I previously did for spatial variability of θ. As shown in Figure 4.13(a), 

there is no significant impact of terrain properties on the multifractal properties even I 

found its impact on the spatial variability of θ [see Figure 4.7(a)]. Figure 4.13(b) shows 

the comparison between two domains with contrasting <VF>. Two domains have 

significantly different behaviors in the relation. Domain 3 with higher vegetation fraction 

tends to be more intermittent, implying different evapotranspiration rates play a major 

role on the heterogeneity in the field. Lastly, Figure 4.13(c) presents the comparison 

between two domains with contrasting <Ks>. Domain 12 with higher Ks shows less 

intermittency in the field, implying that faster draining is associated with less spatial 

heterogeneity of θ. Overall, the vegetation and soil properties significantly affect both 

spatial variability and multifractality of θ but soil properties have a larger impact on the 

spatial variability while vegetation properties have a significant impact on the 

multifractal properties of θ. The higher impact of terrain properties was found on the 

spatial variability, but it was minimal on multifractality.  
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Figure 4.11. Relation between the c and <θ> [%] of each domain along with the empirical 

fit derived from LOC (gray lines) and ANC (black lines) regression.   
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Figure 4.12. Relation between c vs. <θ> [%] in (a) domain 4 and (c) domain 7 which are 

located within the SMEX04 coverage. The empirical curve obtained with observed 

aircraft-derived datasets of SMEX04 in Sonora (Mascaro and Vivoni, 2010) are shown. 

RMSE between the daily points and each curve of RSB and SMEX04 are also presented 

in the panels.    

 

 
Figure 4.13. Relation between c vs. <θ>. (a) domain 3 and 16 having a large contrast in 

terrain properties (<H> and <SL>), (b) domain 2 and 3 having a large contrast in 

vegetation property (<VF>), and (c) domain 12 and 15 having a large contrast in soil 

property (<Ks>).  

 

 
  



 

131 
 

Conclusions 

Relatively few ground or remote sensing observation of soil moisture are available in 

the semiarid regions and only a few studies have used simulated θ to analyze the 

statistical and scaling properties of soil moisture. In this chapter, I used an extensive 

dataset of simulated θ in the RSB, characterized by complex terrain features with 

heterogeneous land surface to investigate; i) the statistical and scaling properties of θ 

fields, ii) if the simulated θ fields exhibit the similar statistical properties found by 

analyzing ground and remotely-sensed observations, and iii) how they vary under 

different soil, vegetation and terrain conditions. The results from this chapter reveal the 

following main conclusions;  

1) The distributed tRBS simulates were able to capture the interannual and seasonal 

variability of θ and reproduce the effect of spatially-variable forcings and land surface 

properties.  

2) Variability of θ (𝜎𝜎θ) shows a convex-upward behavior with increasing <θ> and 

relative variability (CVθ) decreases exponentially with higher moisture contents. The 

relations estimated on the simulated θ fields were very similar to the findings of 

previous studies, Famiglietti et al. (2008) using SMEX02 and 03 and Mascaro and 

Vivoni 2010. The behaviors of relations at the high <θ> can be explained by the 

differences in size of the datasets, range of <θ> values, and the extent scale of the 

analysis.  
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3) Scale invariance properties can be affected by either the coarse resolution of 

meteorological forcings potentially introducing the unnatural discontinuity on θ fields 

or soil parameter inputs that are initially not scale-invariant.  

4) The relations linking θ intermittency preparties (quantified by c) and <θ> show that 

the θ spatial distribution in drier (wetter) domains tends to ve more intermittent 

(smoother), consistent with previous studies. They were also relatively similar to the 

result that Mascaro and Vivoni found in SMEX04. 

5) In all the domains, the vegetation and soil properties significantly affect both spatial 

variability and multifractality of θ. The higher impact of terrain properties is found on 

the spatial variability, but it was minimal on multifractality.  

Overall, this chapter suggests that the high-resolution θ fields can be used to quantify 

the impact of land surface properties and wetness conditions that have not been observed 

by ground and remote sensors on the statistical properties of θ and investigate the 

existence of scale invariance and multifractality across a wide range of scales. Future 

studies should be conducted to test the presence of scale invariance on the simulated 

fields at ~100 m, which is the highest spatial resolution of the model domain. The 

limitations of hyperresolution simulations that this chapter found can be addressed by: (i) 

applying sophisticated downscaling strategies in advance to increase the resolution of 

rainfall fields, in order to limit the impact of discontinuity of input data at coarse 

resolution and (ii) testing the technique proposed to generate high-resolution soil 

parameters in areas where there is sufficient information on soil texture.  
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5.CHAPTER 5 

CONCLUSIONS AND FUTURE WORK 

General Conclusions 

Soil moisture (θ) is a fundamental variable controlling the exchange of water and 

energy at the land surface. As a result, the characterization and investigation of the spatial 

distribution of θ across multiple scales are essential for many applications including flood 

prediction, drought monitoring, and weather forecasting. Empirical evidences have 

demonstrated that θ fields exhibit scale invariance and multifractal properties across a 

range of scales. However, these evidences have been limited to a few locations and times 

using high-resolution (~1 km) θ images collected from airborne sensors during intensive 

field campaigns. This dissertation advances the characterization of the scaling invariance 

and multifractal properties of θ by (1) analyzing the role of irrigation in observed θ 

products collected during two field campaigns in Australia (Chapter 2); and (2) 

investigating the variation in time and across different landscape conditions of these 

properties using θ outputs of a distributed hydrologic model (Chapters 3 and 4). 

Chapter 2 of my dissertation had the main goal of investigating how the presence of 

irrigated fields modifies the spatial distribution of θ and the associated scale invariance 

properties, which have been so far observed only in natural landscapes. I used the 

aircraft-based θ datasets from the NAFE05 and NAFE06 field campaigns carried out in 

two semiarid sites in Australia characterized by the presence of agricultural districts of 

different extent. A framework has been proposed to: 1) quantitatively analyze and 

compare the scale invariance and multifractal properties of θ in the presence of irrigation; 
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and 2) filter out the effect of irrigated croplands in the application of a multifractal 

downscaling algorithm based on the hypothesis of spatial homogeneity. Results showed 

that irrigation affects the scale-invariance properties in a large high-density agricultural 

district in the semi-arid NAFE06 site, although it does not have a significant impact on 

the sparser agricultural districts of the temperate NAFE05 region. I calibrated the 

multifractal downscaling model using the θ fields with attenuated effect of irrigation by 

removed the irrigated areas and interpolated from surrounding values from the natural 

landscape, thus mimicking natural settings. Performances tested against aircraft and, for 

the first time, ground-based θ observations, were adequate in most cases. Some 

deficiencies were found for drier conditions in regions with a higher percentage of 

irrigated fields, suggesting the need to further refine the techniques for detecting irrigated 

croplands. Overall, the findings of this work reveal that the impact of irrigation on the 

soil moisture statistical variability and downscaling is larger in drier regions or 

conditions, where irrigation creates a drastic contrast with the surrounding areas. The 

results of these analyses increase the utility of coarse θ satellite products by improvement 

of the calibration of multifractal downscaling models in agricultural regions. 

Furthermore, the framework proposed in Chapter 2 can be applied or easily adapted to 

investigate the effect of different sources of spatial heterogeneity, such as the presence of 

built areas and human activities. 

An approach that allows advancing the characterization of scale invariance and 

multifractal properties of soil moisture to regions and times that have not monitored 

during intensive field campaigns, is through the use of distributed hydrologic models run 
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at very high spatial resolutions (hyperresolution). In Chapter 3, I aimed at generating 

reliable high-resolution θ field over a large basin using a physically-based hydrologic model 

by addressing important challenges associated with hyperresolution hydrologic 

simulations. At the same time, I evaluated and quantify the model ability to simulate 

spatial patterns of daily land surface temperature (LST) by comparing the outputs against 

the LST products at 1-km resolution from the Moderate Resolution Imaging 

Spectroradiometer (MODIS). I used the TIN-based Real-time Integrated Basin Simulator 

(tRIBS) DHM at a nominal resolution of ~88 m in a regional basin of ~21,000 km2 in 

northwest Mexico. It was applied from 2004 to 2013 and model performances were 

extensively tested by comparing simulated outputs against independent observations, 

including time series of soil moisture recorded at a network of stations and spatial 

patterns of daily land surface temperature (LST) estimated by remote sensors. The model 

was able to simulate quite well the observed soil moisture response to precipitation and 

the subsequent recession phases during dry periods during the calibration periods as well 

as validation periods. The spatial variability of LST is captured well by the 

hyperresolution simulated patterns, and vegetation properties are the major physical 

factors explaining the discrepancies between simulated and remotely-sensed products. 

The strategies and results presented here are based on global datasets and robust 

statistical methods that can be utilized in different settings with other DHMs to diagnose 

model deficiencies and strategize improvement of their physics. 

The hyperresolution simulations conducted in Chapter 3 generated a database of 

reliable soil moisture maps at high spatial and temporal resolution that span a large basin 
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of ~21000 km2 and more than 10 years. In chapter 4, I investigated; (i) whether simulated 

θ data exhibits the scaling properties including scale invariance and multifractality found 

by analyzing ground and remotely-sensed observations, and (ii) how these properties vary 

under different soil, vegetation, and terrain conditions. The simulated θ fields capture the 

spatial patterns and scaling properties estimated from observed datasets very well. The 

statistical properties reproduced by simulated θ were found to be significantly controlled 

by soil and vegetation properties and a slight of terrain properties. These results suggest 

that the high-resolution θ fields can be used to quantify the impact of land surface 

properties and wetness conditions that have not been observed by ground and remote 

sensors on the statistical properties of θ and investigate the existence of scale invariance 

and multifractality across a wide range of scales. 

Overall, the knowledge acquired through this dissertation will support the refinement 

of the calibration of multifractal downscaling models. Specifically, calibrations relations 

of the multifractal downscaling model proposed by Deidda et al. (2000) have been 

identified in the two regions of Australia analyzed in Chapter 2 and in the Rio Sonora 

basin, analyzed in Chapter 3 and 4. These relations can be used in the future in these 

study sites to simulate the small-scale spatial variability of soil moisture starting from 

coarse satellite estimates. Ultimately, this will support the decision makers and 

practitioners, including weather forecasters, farmers, and water managers who can apply 

the information to increase the accuracy of weather forecasts, the ability to monitor water 

availability and manage water resources, as well as plan irrigation schedules.   
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Future Work 

There are many ways that my dissertation work can be expanded upon. In Chapter 2, 

I have shown that irrigation is a major factor influencing the spatial variability of θ fields 

and inclusion of irrigation in downscaling schemes is crucial in drier regions or 

conditions. The multifractal downscaling scheme can be refined by introducing 

techniques for postprocessing the disaggregated fields generated in a spatially 

homogeneous framework to include the spatial heterogeneity due to irrigated conditions. 

To do so, identification of irrigated croplands correctly is highly required. The framework 

proposed in Chapter 2 for detecting the irrigated croplands via remote sensed imagery has 

worked nicely in most cases, but it may have not been fully effective in some conditions. 

In future study, the framework should be refined to increase its accuracy by considering 

additional remote sensed imageries or indices. In addition, agricultural practices such as 

tillage and fallow system of farming can bring the spatial heterogeneity in soil moisture 

fields, thus necessitating inclusion of identification techniques to detect them into the 

framework.  

Distributed hydrologic models applied at high resolution over large basins can 

generate high-resolution soil moisture data to improve the calibration relations for any 

type of downscaling method at a new location. In addition, in regions with the presence 

of irrigation, it is necessary to account for this source of spatial heterogeneity. 

Developing irrigation module for a hydrological model is highly required to improve its 

applicability for sites with presence of irrigation. The refined framework detecting the 
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potential factors bring the spatial heterogeneity via remote sensed imagery and 

attenuating their effect can be adapted into the module. 

I have recognized that limitations of hydrological simulations for studying statistical 

and scaling properties of soil moisture. The use of meteorological forcings, especially 

precipitation, at coarse resolution can bring unnatural discontinuities in soil moisture 

fields and they would affect the scale invariance properties of soil moisture. To 

overcome, sophisticated downscaling strategies should be applied in advance to increase 

the resolution of rainfall fields, in order to limit the impact of discontinuity of input data 

at coarse resolution. Furthermore, additional efforts to test the technique proposed to 

generate high-resolution soil parameters are needed in areas where there is sufficient 

information on soil texture. This will allow better testing the utility of the global datasets 

from ISCRI-WISE. 

The downscaling model was applied up to 31.25 m which is a scale representative of 

the ground measurements in Chapter 2, but it was not tested because gridded remotely 

sensed fields at that scale were not available. On the other hand, investigation of 

statistical and scaling properties of the simulated soil moisture has been carried out 

within the range from 32-km to 1-km. Future studies should be conducted to test the 

presence of scale invariance on the simulated fields at ~100 m, which is the highest 

spatial resolution of the model domain.  

  



 

139 
 

6.REFERENCES 

Ahmadalipour, A., H. Moradkhani and A. Rana. 2018. Accounting for downscaling and 
model uncertainty in fine-resolution seasonal climate projections over the Columbia 
River Basin. Climate Dynamics 50(1–2): 717–733. 

Albertson, J.D., and N. Montaldo. 2003. Temporal dynamics of soil moisture variability: 
1. Theoretical basis. Water Resources Research 39(10). 

Baker, I.T., P.J. Sellers, A.S. Denning, I. Medina, P. Kraus, K.D. Haynes and S.C. 
Biraud. 2017. Closing the scale gap between land surface parameterizations and 
GCMs with a new scheme, SiB3-Bins. Journal of Advances in Modeling Earth 
Systems 9(1): 691–711. 

Barnes, S.L. 1994. Applications of the Barnes objective analysis scheme. Part I: Effects 
of undersampling, wave position, and station randomness. Journal of Atmospheric 
and Oceanic Technology 11(6): 1433–1448. 

Bertoldi, G., S. Della Chiesa, C. Notarnicola, L. Pasolli, G. Niedrist and U. Tappeiner. 
2014. Estimation of soil moisture patterns in mountain grasslands by means of SAR 
RADARSAT2 images andhydrological modeling. Journal of Hydrology 516: 245–
257. http://dx.doi.org/10.1016/j.jhydrol.2014.02.018. 

Beven, K.J., and H.L. Cloke. 2012. Comment on “Hyperresolution global land surface 
modeling: Meeting a grand challenge for monitoring Earth’s terrestrial water” by 
Eric F. Wood et al. Water Resources Research 48(1). 

Bierkens, M.F.P., V.A. Bell, P. Burek, N.W. Chaney, L.E. Condon, C.H. David, A. de 
Roo, P. Döll, N. Drost and J.S. Famiglietti. 2015. Hyper-resolution global 
hydrological modelling: What is next? Everywhere and locally relevant. 
Hydrological Processes 29(2): 310–320. 

Bindlish, R., T.J. Jackson, A. Gasiewski, B. Stankov, M. Klein, M.H. Cosh, I. 
Mladenova, et al. 2008. Aircraft based soil moisture retrievals under mixed 
vegetation and topographic conditions. Remote Sensing of Environment 112(2): 
375–390. 

Brito‐Castillo, L., A. V Douglas, A. Leyva-Contreras and D. Lluch-Belda. 2003. The 
effect of large‐scale circulation on precipitation and streamflow in the Gulf of 
California continental watershed. International Journal of Climatology 23(7): 751–
768. 

Brocca, L., F. Melone, T. Moramarco, W. Wagner, V. Naeimi, Z. Bartalis and S. 
Hasenauer. 2010. Improving runoff prediction through the assimilation of the 
ASCAT soil moisture product. Hydrology and Earth System Sciences 14(10): 1881–
1893. 



 

140 
 

Brocca, L., R. Morbidelli, F. Melone and T. Moramarco. 2007. Soil moisture spatial 
variability in experimental areas of central Italy. Journal of Hydrology 333(2–4): 
356–373. 

Brocca, L., T. Tullo, F. Melone, T. Moramarco and R. Morbidelli. 2012. Catchment scale 
soil moisture spatial-temporal variability. Journal of Hydrology 422–423: 63–75. 
http://dx.doi.org/10.1016/j.jhydrol.2011.12.039. 

Cabral, M.C., L. Garrote, R.L. Bras and D. Entekhabi. 1992. A kinematic model of 
infiltration and runoff generation in layered and sloped soils. Advances in Water 
Resources 15(5): 311–324. 

Cai, X., M. Pan, N.W. Chaney, A. Colliander, S. Misra, M.H. Cosh, W.T. Crow, T.J. 
Jackson and E.F. Wood. 2017. Validation of SMAP soil moisture for the 
SMAPVEX15 field campaign using a hyper-resolution model. Water Resources 
Research 53(4): 3013–3028. 

Calvet, J.C., J.P. Wigneron, J. Walker, F. Karbou, A. Chanzy and C. Albergel. 2011. 
Sensitivity of Passive Microwave Observations to Soil Moisture and Vegetation 
Water Content: L-Band to W-Band. IEEE Transactions on Geoscience and Remote 
Sensing 49(4): 1190–1199. 

Camporese, M., C. Paniconi, M. Putti and S. Orlandini. 2010. Surface-subsurface 
fCamporese, M., C.Fatichi, S., ECamporese, M., C. Paniconi, M. Putti and S. 
Orlandini. 2010. Surface-subsurface fCamporese, M., C.Fatichi, S., E.R. Vivoni, 
F.L. Ogden, V.Y. Ivanov, B. Mirus, D. Gochis, C.W. Downer, M. Camporese, J.H. 
Da. Water Resources Research 46(2). 

Charpentier, M.A., and P.M. Groffman. 1992. Soil moisture variability within remote 
sensing pixels. Journal of Geophysical Research 97(D17): 18987. 

Choi, M., and J.M. Jacobs. 2007. Soil moisture variability of root zone profiles within 
SMEX02 remote sensing footprints. Advances in Water Resources 30(4): 883–896. 

Cosh, M.H., and W. Brutsaert. 1999. Aspects of soil moisture variability in the Washita 
’92 study region. Journal of Geophysical Research 104(D16): 749. 

Crow, W.T., and E.F. Wood. 1999. Multi‐scale dynamics of soil moisture variability 
observed during SGP’97. Geophysical Research Letters 26(23): 3485–3488. 

Crow, W.T., and E.F. Wood. 2002. The value of coarse-scale soil moisture observations 
for regional surface energy balance modeling. Journal of Hydrometeorology 3(4): 
467–482. 

Cui, C., J. Xu, J. Zeng, K.-S. Chen, X. Bai, H. Lu, Q. Chen, et al. 2017. Soil moisture 
mapping from satellites: An intercomparison of SMAP, SMOS, FY3B, AMSR2, and 



 

141 
 

ESA CCI over two dense network regions at different spatial scales. Remote Sensing 
10(2): 33. 

Das, N.N., and B.P. Mohanty. 2008. Temporal dynamics of PSR-based soil moisture 
across spatial scales in an agricultural landscape during SMEX02: A wavelet 
approach. Remote Sensing of Environment 112(2): 522–534. 

Dee, D.P., S.M. Uppala, A.J. Simmons, P. Berrisford, P. Poli, S. Kobayashi, U. Andrae, 
M.A. Balmaseda, G. Balsamo and P. Bauer. 2011. The ERA-Interim reanalysis: 
configuration and performance of the data assimilation system. Quarterly Journal of 
the Royal Meteorological Society 137(656): 553–597. 

Deidda, R. 2000. Rainfall downscaling in a space‐time multifractal framework. Water 
Resources Research 36(7): 1779–1794. 

Deidda, R., R. Benzi and F. Siccardi. 1999. Multifractal modeling of anomalous scaling 
laws in rainfall. Water Resources Research 35(6): 1853–1867. 

dell’ Arciprete, D., R. Bersezio, F. Felletti, M. Giudici, A. Comunian and P. Renard. 
2012. Comparison of three geostatistical methods for hydrofacies simulation: a test 
on alluvial sediments. Hydrogeology Journal 20(2): 299–311. 

Do, H.X., L. Gudmundsson, M. Leonard and S. Westra. 2018. The Global Streamflow 
Indices and Metadata Archive (GSIM)-Part 1: The production of a daily streamflow 
archive and metadata. Earth System Science Data 10(2): 765. 

Entekhabi, D. 1995. Recent advances in land‐atmosphere interaction research. Reviews of 
Geophysics 33(S2): 995–1003. 

Entekhabi, D., E.G. Njoku, P.E. O’Neill, K.H. Kellogg, W.T. Crow, W.N. Edelstein, J.K. 
Entin, S.D. Goodman, T.J. Jackson and J. Johnson. 2010. The soil moisture active 
passive (SMAP) mission. Proceedings of the IEEE 98(5): 704–716. 

Famiglietti, J.S., J.A. Devereaux, C.A. Laymon, T. Tsegaye, P.R. Houser, T.J. Jackson, 
S.T. Graham, M. Rodell and P.J. Van Oevelen. 1999. Ground-based investigation of 
soil moisture variability within remote sensing footprints during the Southern Great 
Plains 1997 (SGP97) Hydrology Experiment. Water Resources Research 35(6): 
1839–1851. 

Famiglietti, J.S., D. Ryu, A.A. Berg, M. Rodell and T.J. Jackson. 2008. Field 
observations of soil moisture variability across scales. Water Resources Research 
44(1): 1–16. 

Fang, Z., H. Bogena, S. Kollet, J. Koch and H. Vereecken. 2015. Spatio-temporal 
validation of long-term 3D hydrological simulations of a forested catchment using 
empirical orthogonal functions and wavelet coherence analysis. Journal of 



 

142 
 

Hydrology 529: 1754–1767. 

Fatichi, S., E.R. Vivoni, F.L. Ogden, V.Y. Ivanov, B. Mirus, D.J. Gochis, C.W. Downer, 
M. Camporese, J.H. Davison and B. Ebel. 2016. An overview of current 
applications, challenges, and future trends in distributed process-based models in 
hydrology. Journal of Hydrology 537: 45–60. 

Fensholt, R., I. Sandholt and M.S. Rasmussen. 2004. Evaluation of MODIS LAI, fAPAR 
and the relation between fAPAR and NDVI in a semi-arid environment using in situ 
measurements. Remote Sensing of Environment 91(3–4): 490–507. 

Forzieri, G., F. Castelli and E.R. Vivoni. 2011. Vegetation Dynamics within the North 
American Monsoon Region. Journal of Climate 24(6): 1763–1783. 
http://journals.ametsoc.org/doi/abs/10.1175/2010JCLI3847.1. 

Franz, T.E., T.D. Loecke, A.J. Burgin, Y. Zhou, T. Le and D. Moscicki. 2017. Spatio-
temporal predictions of soil properties and states in variably saturated landscapes. 
Journal of Geophysical Research: Biogeosciences. 

Gautam, J., and G. Mascaro. 2018. Evaluation of Coupled Model Intercomparison Project 
Phase 5 historical simulations in the Colorado River basin. International Journal of 
Climatology: 1–17. 

Gebremichael, M., R. Rigon, G. Bertoldi and T.M. Over. 2009. On the scaling 
characteristics of observed and simulated spatial soil moisture fields. Nonlinear 
Processes in Geophysics 16(1): 141–150. 

Gebremichael, M., E.R. Vivoni, C.J. Watts and J.C. Rodríguez. 2007. Submesoscale 
spatiotemporal variability of North American monsoon rainfall over complex 
terrain. Journal of Climate 20(9): 1751–1773. 

Gibson, J., T.E. Franz, T. Wang, J. Gates, P. Grassini, H. Yang and D. Eisenhauer. 2017. 
A case study of field-scale maize irrigation patterns in western Nebraska: 
implications for water managers and recommendations for hyper-resolution land 
surface modeling. Hydrology and Earth System Sciences 21(2): 1051. 

Gochis, D.J., L. Brito-Castillo and W.J. Shuttleworth. 2006. Hydroclimatology of the 
North American Monsoon region in northwest Mexico. Journal of Hydrology 
316(1–4): 53–70. 

Grayson, R.B., G. Blöschl, A.W. Western and T.A. McMahon. 2002. Advances in the use 
of observed spatial patterns of catchment hydrological response. Advances in Water 
Resources 25(8–12): 1313–1334. 

Grayson, R.B., A.W. Western, F.H.S. Chiew and G. Blöschl. 1997. Preferred states in 
spatial soil moisture patterns: Local and nonlocal controls. Water Resources 



 

143 
 

Research 33(12): 2897–2908. 

Hannachi, A., I.T. Jolliffe and D.B. Stephenson. 2007. Empirical orthogonal functions 
and related techniques in atmospheric science: A review. International Journal of 
Climatology 27(9): 1119–1152. 

Harris, I., P.D. Jones, T.J. Osborn and D.H. Lister. 2014. Updated high‐resolution grids 
of monthly climatic observations–the CRU TS3. 10 Dataset. International Journal 
of Climatology 34(3): 623–642. 

Heathman, G.C., M.H. Cosh, E. Han, T.J. Jackson, L. McKee and S. McAfee. 2012. Field 
scale spatiotemporal analysis of surface soil moisture for evaluating point-scale in 
situ networks. Geoderma 170: 195–205. 

Hengl, T., J.M. de Jesus, G.B.M. Heuvelink, M.R. Gonzalez, M. Kilibarda, A. Blagotić, 
W. Shangguan, M.N. Wright, X. Geng and B. Bauer-Marschallinger. 2017. 
SoilGrids250m: Global gridded soil information based on machine learning. PLoS 
ONE 12(2): e0169748. 

Hengl, T., J.M. de Jesus, R.A. MacMillan, N.H. Batjes, G.B.M. Heuvelink, E. Ribeiro, A. 
Samuel-Rosa, B. Kempen, J.G.B. Leenaars and M.G. Walsh. 2014. SoilGrids1km—
global soil information based on automated mapping. PLoS ONE 9(8): e105992. 

Hu, Z., Y. Chen and S. Islam. 1998. Multiscaling properties of soil moisture images and 
decomposition of large-and small-scale features using wavelet transforms. 
International Journal of Remote Sensing 19(13): 2451–2467. 

Hu, Z.L., S. Islam and Y.Z. Cheng. 1997. Statistical characterization of remotely sensed 
soil moisture images. Remote Sensing of Environment 61(2): 310–318. 

Huete, A.R. 1988. A soil-adjusted vegetation index (SAVI). Remote Sensing of 
Environment 25(3): 295–309. 

Ivanov, V.Y., E.R. Vivoni, R.L. Bras and D. Entekhabi. 2004a. Catchment hydrologic 
response with a fully distributed triangulated irregular network model. Water 
Resources Research 40(11). 

Ivanov, V.Y., E.R. Vivoni, R.L. Bras and D. Entekhabi. 2004b. Preserving high-
resolution surface and rainfall data in operational-scale basin hydrology: a fully-
distributed physically-based approach. Journal of Hydrology 298(1–4): 80–111. 

Johnson, R.H., P.E. Ciesielski, B.D. McNoldy, P.J. Rogers and R.K. Taft. 2007. 
Multiscale variability of the flow during the North American Monsoon Experiment. 
Journal of Climate 20(9): 1628–1648. 

Kaheil, Y.H., M.K. Gill, M. McKee, L.A. Bastidas and E. Rosero. 2008. Downscaling 



 

144 
 

and assimilation of surface soil moisture using ground truth measurements. IEEE 
Transactions on Geoscience and Remote Sensing 46(5): 1375–1384. 

Kaplan, S., and S.W. Myint. 2012. Estimating irrigated agricultural water use through 
landsat TM and a simplified surface energy balance modeling in the semi-arid 
environments of Arizona. Photogrammetric Engineering and Remote Sensing 78(8): 
849–859. 

Karypis, G., and V. Kumar. 1998. A fast and high quality multilevel scheme for 
partitioning irregular graphs. SIAM Journal on Scientific Computing 20(1): 359–
392. 

Kerr, Y.H., P. Waldteufel, J.-P. Wigneron, J. Martinuzzi, J. Font and M. Berger. 2001. 
Soil moisture retrieval from space: The Soil Moisture and Ocean Salinity (SMOS) 
mission. IEEE Transactions on Geoscience and Remote Sensing 39(8): 1729–1735. 

Kim, G., and A.P. Barros. 2002a. Space–time characterization of soil moisture from 
passive microwave remotely sensed imagery and ancillary data. Remote Sensing of 
Environment 81(2): 393–403. 

Kim, G., and A.P. Barros. 2002b. Downscaling of remotely sensed soil moisture with a 
modified fractal interpolation method using contraction mapping and ancillary data. 
Remote Sensing of Environment 83(3): 400–413. 

Ko, A., G. Mascaro and E.R. Vivoni. 2016. Irrigation Impacts on Scaling Properties of 
Soil Moisture and the Calibration of a Multifractal Downscaling Model. IEEE 
Transactions on Geoscience and Remote Sensing 54(6): 3128–3142. 

Koch, J., T. Cornelissen, Z. Fang and H. Bogena. 2016a. Inter-comparison of three 
distributed hydrological models with respect to seasonal variability of soil moisture 
patterns at a small forested catchment. Journal of Hydrology 533: 234–249. 

Koch, J., K.H. Jensen and S. Stisen. 2015. Toward a true spatial model evaluation in 
distributed hydrological modeling: Kappa statistics, Fuzzy theory, and EOF-analysis 
benchmarked by the human perception and evaluated against a modeling case study. 
Water Resources Research 51(2): 1225–1246. 

Koch, J., G. Mendiguren, G. Mariethoz and S. Stisen. 2017. Spatial sensitivity analysis of 
simulated land surface patterns in a catchment model using a set of innovative 
spatial performance metrics. Journal of Hydrometeorology 18(4): 1121–1142. 
http://journals.ametsoc.org/doi/10.1175/JHM-D-16-0148.1. 

Koch, J., A. Siemann, S. Stisen and J. Sheffield. 2016b. Spatial validation of large‐scale 
land surface models against monthly land surface temperature patterns using 
innovative performance metrics. Journal of Geophysical Research: Atmospheres 
121(10): 5430–5452. 



 

145 
 

Koch, J., and S. Stisen. 2017. Citizen science: A new perspective to advance spatial 
pattern evaluation in hydrology. PloS One 12(5): e0178165. 

Koch, S.E., M. DesJardins and P.J. Kocin. 1983. An interactive Barnes objective map 
analysis scheme for use with satellite and conventional data. Journal of Climate and 
Applied Meteorology 22(9): 1487–1503. 

Kollet, S.J., and R.M. Maxwell. 2006. Integrated surface–groundwater flow modeling: A 
free-surface overland flow boundary condition in a parallel groundwater flow 
model. Advances in Water Resources 29(7): 945–958. 

Kollet, S.J., R.M. Maxwell, C.S. Woodward, S. Smith, J. Vanderborght, H. Vereecken 
and C. Simmer. 2010. Proof of concept of regional scale hydrologic simulations at 
hydrologic resolution utilizing massively parallel computer resources. Water 
Resources Research 46(4). 

Kumar, P. 1999. A multiple scale state-space model for characterizing subgrid scale 
variability of near-surface soil moisture. IEEE Transactions on Geoscience and 
Remote Sensing 37(1): 182–197. 

Lawrence, J.E., and G.M. Hornberger. 2007. Soil moisture variability across climate 
zones. Geophysical Research Letters 34(20). 

Lehner, B., K. Verdin and A. Jarvis. 2008. New global hydrography derived from 
spaceborne elevation data. Eos, Transactions American Geophysical Union 89(10): 
93–94. 

Lin, D.-S., E.F. Wood, P.A. Troch, M. Mancini and T.J. Jackson. 1994. Comparisons of 
remotely sensed and model-simulated soil moisture over a heterogeneous watershed. 
Remote Sensing of Environment 48(2): 159–171. 

Liston, G.E., and K. Elder. 2006. A meteorological distribution system for high-
resolution terrestrial modeling (MicroMet). Journal of Hydrometeorology 7(2): 217–
234. 

Lymburner, L., P. Tan, N. Mueller, R. Thackway, A. Lewis, M. Thankappan, L. Randall, 
A. Islam and U. Senarath. 2011. The National Dynamic Land Cover Dataset. 
Geoscience Australia, Symonston, Australia 10. 

Mahmood, T.H., and E.R. Vivoni. 2008. Evaluation of distributed soil moisture 
simulations through field observations during the North American monsoon in 
Redondo Creek, New Mexico. Ecohydrology 1(3): 271–287. 

Mahmood, T.H., and E.R. Vivoni. 2011. A climate-induced threshold in hydrologic 
response in a semiarid ponderosa pine hillslope. Water Resources Research 47(9). 



 

146 
 

Maidment, D.R. 2016. Open water data in space and time. JAWRA Journal of the 
American Water Resources Association 52(4): 816–824. 

Maidment, D.R. 2017. Conceptual framework for the national flood interoperability 
experiment. JAWRA Journal of the American Water Resources Association 53(2): 
245–257. 

Manfreda, S., M.F. McCabe, M. Fiorentino, I. Rodríguez-Iturbe and E.F. Wood. 2007. 
Scaling characteristics of spatial patterns of soil moisture from distributed 
modelling. Advances in Water Resources 30(10): 2145–2150. 

Martínez García, G., Y.A. Pachepsky and H. Vereecken. 2014. Effect of soil hydraulic 
properties on the relationship between the spatial mean and variability of soil 
moisture. Journal of Hydrology 516: 154–160. 

Mascaro, G., R. Deidda and E.R. Vivoni. 2008. A New Verification Method to Ensure 
Consistent Ensemble Forecasts through Calibrated Precipitation Downscaling 
Models. Monthly Weather Review 136(9): 3374–3391. 
http://dx.doi.org/10.1175/2008MWR2339.1. 

Mascaro, G., and E.R. Vivoni. 2010. Statistical and scaling properties of remotely-sensed 
soil moisture in two contrasting domains in the North American monsoon region. 
Journal of Arid Environments 74(5): 572–578. 

Mascaro, G., and E.R. Vivoni. 2012. Utility of coarse and downscaled soil moisture 
products at L‐band for hydrologic modeling at the catchment scale. Geophysical 
Research Letters 39(10). 

Mascaro, G., E.R. Vivoni and R. Deidda. 2010. Downscaling soil moisture in the 
southern Great Plains through a calibrated multifractal model for land surface 
modeling applications. Water Resources Research 46(8). 

Mascaro, G., E.R. Vivoni and R. Deidda. 2011. Soil moisture downscaling across climate 
regions and its emergent properties. Journal of Geophysical Research: Atmospheres 
(1984–2012) 116(D22). 

Mascaro, G., E.R. Vivoni, D.J. Gochis, C.J. Watts and J.C. Rodríguez. 2014. Temporal 
downscaling and statistical analysis of rainfall across a topographic transect in 
Northwest Mexico. Journal of Applied Meteorology and Climatology 53(4): 910–
927. 

Mascaro, G., E.R. Vivoni and L.A. Méndez-Barroso. 2015. Hyperresolution hydrologic 
modeling in a regional watershed and its interpretation using empirical orthogonal 
functions. Advances in Water Resources 83: 190–206. 

McKenzie, N.J., D.W. Jacquier, L.J. Ashton and H.P. Cresswell. 2000. Estimation of soil 



 

147 
 

properties using the Atlas of Australian Soils. CSIRO Land and Water Technical 
Report 11(00): 1–12. 

Melsen, L.A., A.J. Teuling, P.J.J.F. Torfs, R. Uijlenhoet, N. Mizukami and M.P. Clark. 
2016. HESS Opinions: The need for process-based evaluation of large-domain 
hyper-resolution models. Hydrology and Earth System Sciences 20(3): 1069–1079. 

Méndez-Barroso, L.A., and E.R. Vivoni. 2010. Observed shifts in land surface conditions 
during the North American Monsoon: Implications for a vegetation–rainfall 
feedback mechanism. Journal of Arid Environments 74(5): 549–555. 

Méndez-Barroso, L.A., E.R. Vivoni and G. Mascaro. 2016. Impact of spatially-variable 
soil thickness and texture on simulated hydrologic conditions in a semiarid 
watershed in northwest Mexico. Revista Mexicana de Ciencias Geológicas 33(3). 

Méndez-Barroso, L.A., E.R. Vivoni, A. Robles-Morua, G. Mascaro, E.A. Yépez, J.C. 
Rodríguez, C.J. Watts, J. Garatuza-Payan and J.A. Saíz‐Hernández. 2014. A 
modeling approach reveals differences in evapotranspiration and its partitioning in 
two semiarid ecosystems in Northwest Mexico. Water Resources Research 50(4): 
3229–3252. 

Méndez-Barroso, L.A., E.R. Vivoni, C.J. Watts and J.C. Rodríguez. 2009. Seasonal and 
interannual relations between precipitation, surface soil moisture and vegetation 
dynamics in the North American monsoon region. Journal of Hydrology 377(1–2): 
59–70. 

Merlin, O., A. Chehbouni, G. Boulet and Y.H. Kerr. 2006a. Assimilation of 
Disaggregated Microwave Soil Moisture into a Hydrologic Model Using Coarse-
Scale Meteorological Data. Journal of Hydrometeorology 7(6): 1308–1322. 
http://dx.doi.org/10.1175/JHM552.1. 

Merlin, O., A. Chehbouni, Y.H. Kerr and D.C. Goodrich. 2006b. A downscaling method 
for distributing surface soil moisture within a microwave pixel: Application to the 
Monsoon’90 data. Remote Sensing of Environment 101(3): 379–389. 

Merlin, O., A.G. Chehbouni, Y.H. Kerr, E.G. Njoku and D. Entekhabi. 2005. A 
combined modeling and multipectral/multiresolution remote sensing approach for 
disaggregation of surface soil moisture: Application to SMOS configuration. IEEE 
Transactions on Geoscience and Remote Sensing 43(9): 2036–2050. 

Merlin, O., J.P. Walker, A. Chehbouni and Y.H. Kerr. 2008a. Towards deterministic 
downscaling of SMOS soil moisture using MODIS derived soil evaporative 
efficiency. Remote Sensing of Environment 112(10): 3935–3946. 

Merlin, O., J.P. Walker, J.D. Kalma, E.J. Kim, J.M. Hacker, R. Panciera, R. Young, G. 
Summerell, J. Hornbuckle and M. Hafeez. 2008b. The NAFE’06 data set: Towards 



 

148 
 

soil moisture retrieval at intermediate resolution. Advances in Water Resources 
31(11): 1444–1455. 

Merlin, O., J.P. Walker, R. Panciera, M.J. Escorihuela and T.J. Jackson. 2009. Assessing 
the SMOS soil moisture retrieval parameters with high-resolution NAFE’06 data. 
Geoscience and Remote Sensing Letters, IEEE 6(4): 635–639. 

Mitchell, K.E., D. Lohmann, P.R. Houser, E.F. Wood, J.C. Schaake, A. Robock, B.A. 
Cosgrove, J. Sheffield, Q. Duan and L. Luo. 2004. The multi-institution North 
American Land Data Assimilation System (NLDAS): Utilizing multiple GCIP 
products and partners in a continental distributed hydrological modeling system. 
Journal of Geophysical Research: Atmospheres 109(D7). 

Mohanty, B.P., J.S. Famiglietti and T.H. Skaggs. 2000. Evolution of soil moisture spatial 
structure in a mixed vegetation pixel during the Southern Great Plains 1997 (SGP97) 
Hydrology Experiment. Water Resources Research 36(12): 3675–3686. 

Monteith, J.L. 1965. Evaporation and environment. In Symposia of the Society for 
Experimental Biology, 19:205–234. 

Njoku, E.G., T.J. Jackson, V. Lakshmi, T.K. Chan and S. V Nghiem. 2003. Soil moisture 
retrieval from AMSR-E. IEEE Transactions on Geoscience and Remote Sensing 
41(2): 215–229. 

Oldak, A., Y. Pachepsky, T.J. Jackson and W.J. Rawls. 2002. Statistical properties of soil 
moisture images revisited. Journal of Hydrology 255(1): 12–24. 

Orth, R., M. Staudinger, S.I. Seneviratne, J. Seibert and M. Zappa. 2015. Does model 
performance improve with complexity? A case study with three hydrological 
models. Journal of Hydrology 523: 147–159. 

Panciera, R. 2009. Effect of land surface heterogeneity on satellite near-surface soil 
moisture observations. University of Melbourne, Department of Civil and 
Environmental Engineering. 

Panciera, R., J.P. Walker, J.D. Kalma, E.J. Kim, J.M. Hacker, O. Merlin, M. Berger and 
N. Skou. 2008. The NAFE’05/CoSMOS data set: Toward SMOS soil moisture 
retrieval, downscaling, and assimilation. IEEE Transactions on Geoscience and 
Remote Sensing 46(3): 736–745. 

Panciera, R., J.P. Walker, J.D. Kalma, E.J. Kim, K. Saleh and J.-P. Wigneron. 2009. 
Evaluation of the SMOS L-MEB passive microwave soil moisture retrieval 
algorithm. Remote Sensing of Environment 113(2): 435–444. 

Paniconi, C., and M. Putti. 2015. Physically based modeling in catchment hydrology at 
50: Survey and outlook. Water Resources Research 51(9): 7090–7129. 



 

149 
 

Peel, M.C., B.L. Finlayson and T.A. McMahon. 2007. Updated World Map of the 
Köppen-Geiger Climate Classification. Hydrol. Earth Systm. Sci. Discuss. 4: 439–
473. 

Pellenq, J., J.D. Kalma, G. Boulet, G.-M. Saulnier, S. Wooldridge, Y.H. Kerr and A. 
Chehbouni. 2003. A disaggregation scheme for soil moisture based on topography 
and soil depth. Journal of Hydrology 276(1–4): 112–127. 

Penmen, H.L. 1948. Natural evaporation from open water, hare soil and grass. 
Proceedings of the Royal Society of London. Series A, Mathematical and Physical 
Sciences 193(1032): 120–145. 

Perry, M.A., and J.D. Niemann. 2008. Generation of soil moisture patterns at the 
catchment scale by EOF interpolation. Hydrology and Earth System Sciences 
Discussions 12(1): 39–53. 

Peters-Lidard, C.D., F. Pan and E.F. Wood. 2001. A re-examination of modeled and 
measured soil moisture spatial variability and its implications for land surface 
modeling. Advances in Water Resources 24(9–10): 1069–1083. 

Pierini, N.A., E.R. Vivoni, A. Robles-Morua, R.L. Scott and M.A. Nearing. 2014. Using 
observations and a distributed hydrologic model to explore runoff thresholds linked 
with mesquite encroachment in the Sonoran Desert. Water Resources Research 
50(10): 8191–8215. 

Quinn, J.W. 2001. Band Combinations. available: 
http://Aweb.pdx.edu/~emch/ip1/bandcombinations.html. 

Rebel, K.T., R.A.M. De Jeu, P. Ciais, N. Viovy, S.L. Piao, G. Kiely and A.J. Dolman. 
2012. A global analysis of soil moisture derived from satellite observations and a 
land surface model. Hydrology and Earth System Sciences 16: 833–847. 

Reichle, R.H., R.D. Koster, P. Liu, S.P.P. Mahanama, E.G. Njoku and M. Owe. 2007. 
Comparison and assimilation of global soil moisture retrievals from the Advanced 
Microwave Scanning Radiometer for the Earth Observing System (AMSR‐E) and 
the Scanning Multichannel Microwave Radiometer (SMMR). Journal of 
Geophysical Research: Atmospheres 112(D9). 

Renard, P., and D. Allard. 2013. Connectivity metrics for subsurface flow and transport. 
Advances in Water Resources 51: 168–196. 

Richards, J.A., and J.A. Richards. 1999. Remote sensing digital image analysis. Vol. 3. 
Springer. 

Robles-Morua, A., D. Che, A.S. Mayer and E.R. Vivoni. 2015. Hydrological assessment 
of proposed reservoirs in the Sonora River Basin, Mexico, under historical and 



 

150 
 

future climate scenarios. Hydrological Sciences Journal 60(1): 50–66. 
http://www.tandfonline.com/doi/abs/10.1080/02626667.2013.878462. 

Robles-Morua, A., E.R. Vivoni and A.S. Mayer. 2012. Distributed Hydrologic Modeling 
in Northwest Mexico Reveals the Links between Runoff Mechanisms and 
Evapotranspiration. Journal of Hydrometeorology 13(3): 785–807. 
http://journals.ametsoc.org/doi/abs/10.1175/JHM-D-11-0112.1. 

Rodriguez‐Iturbe, I., G.K. Vogel, R. Rigon, D. Entekhabi, F. Castelli and A. Rinaldo. 
1995. On the spatial organization of soil moisture fields. Geophysical Research 
Letters 22(20): 2757–2760. 

Rowe, A.K., S.A. Rutledge, T.J. Lang, P.E. Ciesielski and S.M. Saleeby. 2008. 
Elevation-dependent trends in precipitation observed during NAME. Monthly 
Weather Review 136(12): 4962–4979. 

Ryu, D., T.J. Jackson, R. Bindlish, D.M. Le Vi and M. Haken. 2010. Soil Moisture 
Retrieval Using a Two-Dimensional L-Band Synthetic Aperture Radiometer in a 
Semiarid Environment. IEEE Transactions on Geoscience and Remote Sensing 
48(12): 4273–4284. 

Ryu, Y., J. Verfaillie, C. Macfarlane, H. Kobayashi, O. Sonnentag, R. Vargas, S. Ma and 
D.D. Baldocchi. 2012. Continuous observation of tree leaf area index at ecosystem 
scale using upward-pointing digital cameras. Remote Sensing of Environment 126: 
116–125. 

Saulnier, G.-M., K. Beven and C. Obled. 1997. Including spatially variable effective soil 
depths in TOPMODEL. Journal of Hydrology 202(1–4): 158–172. 

Schaap, M.G., F.J. Leij and M.T. Van Genuchten. 2001. Rosetta: A computer program 
for estimating soil hydraulic parameters with hierarchical pedotransfer functions. 
Journal of Hydrology 251(3–4): 163–176. 

Senatore, A., G. Mendicino, D.J. Gochis, W. Yu, D.N. Yates and H. Kunstmann. 2015. 
Fully coupled atmosphere‐hydrology simulations for the central Mediterranean: 
Impact of enhanced hydrological parameterization for short and long time scales. 
Journal of Advances in Modeling Earth Systems 7(4): 1693–1715. 

Shen, X., and E.N. Anagnostou. 2017. A framework to improve hyper-resolution 
hydrological simulation in snow-affected regions. Journal of Hydrology 552: 1–12. 

Shin, Y., and B.P. Mohanty. 2013. Development of a deterministic downscaling 
algorithm for remote sensing soil moisture footprint using soil and vegetation 
classifications. Water Resources Research 49(10): 6208–6228. 

Siebert, S., M. Kummu, M. Porkka, P. Döll, N. Ramankutty and B.R. Scanlon. 2015. A 



 

151 
 

global data set of the extent of irrigated land from 1900 to 2005. Hydrology and 
Earth System Sciences 19(3): 1521–1545. 

Singh, R.S., J.T. Reager, N.L. Miller and J.S. Famiglietti. 2015. Toward hyper-resolution 
land-surface modeling: The effects of fine-scale topography and soil texture on 
CLM4. 0 simulations over the Southwestern US. Water Resources Research 51(4): 
2648–2667. 

Svoboda, M., D. LeComte, M. Hayes, R. Heim, K. Gleason, J. Angel, B. Rippey, R. 
Tinker, M. Palecki and D. Stooksbury. 2002. The drought monitor. Bulletin of the 
American Meteorological Society 83(8): 1181–1190. 

Tao, F., M. Yokozawa, Y. Hayashi and E. Lin. 2003. Changes in agricultural water 
demands and soil moisture in China over the last half-century and their effects on 
agricultural production. Agricultural and Forest Meteorology 118(3–4): 251–261. 

Taylor, K.E. 2001. Summarizing multiple aspects of model performance in a single 
diagram. Journal of Geophysical Research: Atmospheres 106(D7): 7183–7192. 

Teuling, A.J., and P.A. Troch. 2005. Improved understanding of soil moisture variability 
dynamics. Geophysical Research Letters 32(5): L05404. 

Vereecken, H., J.A. Huisman, Y. Pachepsky, C. Montzka, J. van der Kruk, H. Bogena, L. 
Weihermu¨ller, M. Herbst, G. Martinez and J. Vanderborght. 2014. On the spatio-
temporal dynamics of soil moisture at the field scale. Journal of Hydrology 516: 76–
96. 

Vereecken, H., T. Kamai, T. Harter, R. Kasteel, J. Hopmans and J. Vanderborght. 2007. 
Explaining soil moisture variability as a function of mean soil moisture: A stochastic 
unsaturated flow perspective. Geophysical Research Letters 34(22): L22402. 

Vivoni, E.R., D. Entekhabi, R.L. Bras and V.Y. Ivanov. 2007a. Controls on runoff 
generation and scale-dependence in a distributed hydrologic model. Hydrology and 
Earth System Sciences Discussions 11(5): 1683–1701. 

Vivoni, E.R., M. Gebremichael, C.J. Watts, R. Bindlish and T.J. Jackson. 2008a. 
Comparison of ground-based and remotely-sensed surface soil moisture estimates 
over complex terrain during SMEX04. Remote Sensing of Environment 112(2): 314–
325. 

Vivoni, E.R., H.A. Gutiérrez-Jurado, C.A. Aragón, L.A. Méndez-Barroso, A.J. Rinehart, 
R.L. Wyckoff, J.C. Rodríguez, C.J. Watts, J.D. Bolten and V. Lakshmi. 2007b. 
Variation of hydrometeorological conditions along a topographic transect in 
northwestern Mexico during the North American monsoon. Journal of Climate 
20(9): 1792–1809. 



 

152 
 

Vivoni, E.R., V.Y. Ivanov, R.L. Bras and D. Entekhabi. 2004. Generation of triangulated 
irregular networks based on hydrological similarity. Journal of Hydrologic 
Engineering 9(4): 288–302. 

Vivoni, E.R., V.Y. Ivanov, R.L. Bras and D. Entekhabi. 2005. On the effects of 
triangulated terrain resolution on distributed hydrologic model response. 
Hydrological Processes 19(11): 2101–2122. 

Vivoni, E.R., G. Mascaro, S. Mniszewski, P. Fasel, E.P. Springer, V.Y. Ivanov and R.L. 
Bras. 2011. Real-world hydrologic assessment of a fully-distributed hydrological 
model in a parallel computing environment. Journal of Hydrology 409(1–2): 483–
496. 

Vivoni, E.R., A.J. Rinehart, L.A. Méndez-Barroso, C.A. Aragón, G. Bisht, M.B. 
Cardenas, E. Engle, B.A. Forman, M.D. Frisbee and H.A. Gutiérrez-Jurado. 2008b. 
Vegetation controls on soil moisture distribution in the Valles Caldera, New 
Mexico, during the North American monsoon. Ecohydrology 1(3): 225–238. 

Vivoni, E.R., J.C. Rodríguez and C.J. Watts. 2010. On the spatiotemporal variability of 
soil moisture and evapotranspiration in a mountainous basin within the North 
American monsoon region. Water Resources Research 46(2). 

Vivoni, E.R., K. Tai and D.J. Gochis. 2009. Effects of initial soil moisture on rainfall 
generation and subsequent hydrologic response during the North American 
monsoon. Journal of Hydrometeorology 10(3): 644–664. 

Walker, J., R. Panciera and E. Kim. 2008. High resolution airborne soil moisture 
mapping. In Proceedings of the 14th Australasin Remote Sensing and 
Photogrammetry Conference, Darwin, Australia, 30 Sept-2 Oct. 

Walker, J.P., O. Merlin, R. Panciera, J.D. Kalma, E. Kim and J.M. Hacker. 2006. 
National Airborne Field Experiments for soil moisture remote sensing. In 
Proceedings 30th Hydrology and Water Resources Symposium. 

Western, A.W., G. Blöschl and R.B. Grayson. 2001. Toward capturing hydrologically 
significant connectivity in spatial patterns. Water Resources Research 37(1): 83–97. 

Western, A.W., R.B. Grayson, G. B16schl, G.R. Willgoose and T.A. Mcmahon. 1999. 
Observed spatial organization of soil moisture and its relation to terrain indices. 
Water Resources Research 35(3): 797–810. 

Wood, E.F., J.K. Roundy, T.J. Troy, L.P.H. Van Beek, M.F.P. Bierkens, E. Blyth, A. de 
Roo, P. Döll, M. Ek and J.S. Famiglietti. 2011. Hyperresolution global land surface 
modeling: Meeting a grand challenge for monitoring Earth’s terrestrial water. Water 
Resources Research 47(5). 



 

153 
 

Xiang, T., E.R. Vivoni and D.J. Gochis. 2014. Seasonal evolution of ecohydrological 
controls on land surface temperature over complex terrain. Water Resources 
Research 50(5): 3852–3874. 

Xiang, T., E.R. Vivoni, D.J. Gochis and G. Mascaro. 2017. On the diurnal cycle of 
surface energy fluxes in the North American monsoon region using the WRF-Hydro 
modeling system. Journal of Geophysical Research: Atmospheres 122(17): 9024–
9049. 

Zhou, Q., S. Yang, C. Zhao, M. Cai, H. Lou, Y. Luo and L. Hou. 2016. Development and 
implementation of a spatial unit non-overlapping water stress index for water 
scarcity evaluation with a moderate spatial resolution. Ecological Indicators 69: 
422–433. 

Zink, M., J. Mai, M. Cuntz and L. Samaniego. 2018. Conditioning a Hydrologic Model 
Using Patterns of Remotely Sensed Land Surface Temperature. Water Resources 
Research. 

 

  



 

154 
 

APPENDIX A 

NAFE05 AND NAFE06 DATASETS 
  



 

155 
 

This appendix describes the data collected from NAFE05 and NAFE06 as stored 

in a disital format. This data is organized withing the digital folder (/Seagate Expansion 

Drive/DIGITAL_APPENDIX/AppendixA). The data is organized as follows: 

 
Folder Name: Description: 
NAFE05 This folder contains data collected from NAFE05 and remote sensing 

products that I used for data analyses in Chapter 2.  
NAFE06 Same as NAFE05 but for NAFE06  

The folder “NAFE05” is organized as follows: 

Folder Name: Description: 
GIS This folder contains all GIS data for NAFE05. 

- Digital elevation model 
- Flight paths  
- Boundary of Goulburn watershed  
- Location of ground stations 
- Boundary of NAFE05 study area 

Landcover This folder contains land cover map derived from Landsat 
5 Thematic Mapper (TM) 

Soiltype This folder contains soil type shape file 
(“Goulburn_soiltype_poly.shp”) and database for it.  

GroundObservations_SM This folder contains all ground-based soil moisture 
observations at point scale collected during the field 
campaign.  

GroundObservations_ST This folder contains all ground-based soil temperature 
observations at point scale collected during the field 
campaign. 

Soil_Moisture_1km This folder contains aircraft-based soil moisture estimates 
at 1 km in binary format 
(“NAFE05_soil_moisture_1km.mat”) and a paper of data 
provider (Rocco Panciera) that used the NAFE05 data 
(“Panciera2010_published.pdf”) 

Landsat_USGS This folder contains three days of Landsat 5TM datasets 
that I used to calculate the indices to identify irrigated 
areas in Chapter 2. 
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The folder “NAFE06” is organized as follows: 

Folder Name: Description: 
GIS This folder contains all GIS data for NAFE06. 

- Digital elevation model 
- Flight paths  
- Boundary of Goulburn watershed  
- Location of ground stations 
- Boundary of NAFE06 study area 

Landcover This folder contains land cover map derived from Landsat 5 
Thematic Mapper (TM) 

Soiltype This folder contains soil type shape file 
(“Goulburn_soiltype_poly.shp”) and database for it.  

GroundObservations This folder contains all ground-based soil moisture 
observations at point scale collected during the field 
campaign.  
“Hydraprobe_Point_data _regionalDays” 
“Hydraprobe_Point_data_transectDays” folder contains  

Soil_Moisture_1km This folder contains 11 days of aircraft-based soil moisture 
estimates at 1 km in cvs format (“smDOY.csv”). DOY: day 
of year.  

Landsat_USGS This folder contains three days of Landsat 5TM datasets 
that I used to calculate the indices to identify irrigated areas 
in Chapter 2. 
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APPENDIX B 

RIO SONORA BASIN DATASETS 
  



 

158 
 

This appendix describes the data collected for the hydrological simulations over 
the Rio Sonora basin as stored in a disital format. This data is organized withing the 
digital folder (/Seagate Expansion Drive/DIGITAL_APPENDIX/AppendixB). The data 
is organized as follows: 
 
Folder Name: Description: 
GIS This folder contains all GIS datasets:  

- Digital elevation model (*.tif). 
- Rio Sonora basin boundary (*.shape). 
- Location of ground stations (*.shape). 
- Soil class map (*.tif). 
- Land cover map (*.tif). 
- NLDAS 1km boundary map for Rio Sonora basin. 

MODIS This folder contains MODIS products that were used to derive 
time-varying vegetation parameters and to validate the tRIBS. 
There are four folders: 

- NDVI: MOD13Q1 at 250m. 
- LAI: MOD15A2 at 1 km. 
- Albedo: MOD43A3 at 500m (white sky short wave). 
- LST (MOD11A1 and MYD11A1 at 1km. 

NLDAS This folder contains NLDAS reanalysis datasets that are not 
processed.  

Observations_G This folder contains station observations for soil moisture and 
land surface temperature. 
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APPENDIX C 

tRIBS MODEL SETUP and OUTPUT 
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This appendix describes the setup and output of tRIBS simulations over the Rio 
Sonora basin as stored in a disital format. This data is organized withing the digital folder 
(/Seagate Expansion Drive/DIGITAL_APPENDIX/AppendixC). The data is organized as 
follows: 
 
Folder Name: Description: 
tRIBS setup This folder contains the model setups used in Chapter 3. 

tRIBS output This folder contains the tRIBS outputs of hyperresolution simulations 
conducted in Chapter 3 and used in Chapter 4.  

The folder “tRIBS setup” is organized as follows: 

Folder Name: Description: 
Input This folder contains tabular format of soil parameters and land use 

parameters, bedrock depth, and initial ground water table obtained 
from 5-years spin-up simulation. The files are: 

- CONABIO_ST250_17class (*.sdtt and *.soi) 
- INEGI_LC250_14class (*.ldtt and *.lan) 
- RSN_bedrock30m (*.brd) 
- Groundwater_initial_500m_SpinupFinal (*.iwt) 

LandUse This folder contains vegetation parameters (*.txt) derived from 
MOIDS products using a set of empirical equations presented in 
Xiang et al. (2014). There are six subfolders: 

- AL20042013: Albedo. 
- CC20042013: Maximum Canopy storage Capacity (CC). 
- OT20042013: Optical Transmission coefficient (OT). 
- SR20042013: minimum canopy Stomatal Resistance (SR). 
- TF20042013: free ThroughFall coefficient (TF). 
- VF20042013: Vegetation Fraction (VF). 

Rain Hourly rainfall data obtained from NLDAS reanalysis product.  
ReachFiles Stream networks in the basin that tRIBS reads. 
Reservoir It contains information of reservoirs in Rio Sonora basin.  
SoilTexture This folder contains soil parameters (*.txt) generated and used in 

Chapter 3. The files are:  
- AS250: Saturated Anisotropy Ratio. 
- AU250: Unsaturated Anisotropy Ratio. 
- KS250: Saturated Hydraulic Conductivity. 
- PsiB250: Air Entry Bubbling Pressure. 
- SHcsDry250: Soil Heat Capacity in dry condition. 
- SHcsWet250: Soil Heat Capacity in wet condition. 
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- ThetaR250: Residual Soil Moisture. 
- ThetaS250: Soil Moisture at Saturation. 
- VHksDry250: Volumetric Heat Conductivity in dry condition. 
- VHkswet250: Volumetric Heat Conductivity in wet condition. 
- F501: Decay parameter. 
- N250: Porosity. 
- M250: Pore distribution index. 

Weather This folder contains weather forcings (*.txt) obtained from NLDAS 
and downscaled in Chapter 3. This folder contains 5 subfolders: 

- IS: Incoming Solar radiation. 
- PA: Pressure. 
- RH: Relative humidity. 
- TA: Air Temperature. 
- US: Wind Speed. 

 

The folder “tRIBS output” is organized as follows: 
Folder Name: Description: 
Output This folder contains two folders (hyd and voronoi) that store all the 

time series of simulations (*.mrf, *.pixel, *.qout, and *_Outlet.qout) 
and spatial outputs (*timestamp_00d and *timestamp_00i).   

Restart This folder contains files that stored simulation states at a certain 
simulation time.  

Binaryoutputs It contains binary outputs (*.mat) converted from dynamic (00d) and 
time-integrated (00i) spatial outputs that tRIBS generates.  
There are four folders: 

- 00d: all the dynamic spatial outputs 
- 00i: all the time-integrated spatial outputs 
- LST: simulated land surface temperature  
- SM: simulated soil moisture 
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This appendix describes matlab scripts used to process data within this 
dissertation. The files are stored in digital format under the folder (Seagate 
Expansion/Drive/DIGITAL_APPENDIX/AppendixD). This folder is organized as 
follows: 
 
Folder Name: Description: 
Chapter2 All the scripts used within chapter 2 to process data and build 

figures. There are two folders: 
DataProcess: Scripts used for data process. 
Figures: Scripts used for figure generation.   

Chapter3 All the scripts used within chapter 3 to process data and build 
figures. There are two folders: 
DataProcess: Scripts used for data process. 
Figures: Scripts used for figure generation. 

Chapter4 All the scripts used within chapter 4 to process data and build 
figures. There are two folders: 
DataProcess: Scripts used for data process. 
Figures: Scripts used for figure generation. 
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