202 research outputs found

    A new approach to particle swarm optimization algorithm

    Get PDF
    Particularly interesting group consists of algorithms that implement co-evolution or co-operation in natural environments, giving much more powerful implementations. The main aim is to obtain the algorithm which operation is not influenced by the environment. An unusual look at optimization algorithms made it possible to develop a new algorithm and its metaphors define for two groups of algorithms. These studies concern the particle swarm optimization algorithm as a model of predator and prey. New properties of the algorithm resulting from the co-operation mechanism that determines the operation of algorithm and significantly reduces environmental influence have been shown. Definitions of functions of behavior scenarios give new feature of the algorithm. This feature allows self controlling the optimization process. This approach can be successfully used in computer games. Properties of the new algorithm make it worth of interest, practical application and further research on its development. This study can be also an inspiration to search other solutions that implementing co-operation or co-evolution.Angeline, P. (1998). Using selection to improve particle swarm optimization. In Proceedings of the IEEE congress on evolutionary computation, Anchorage (pp. 84–89).Arquilla, J., & Ronfeldt, D. (2000). Swarming and the future of conflict, RAND National Defense Research Institute, Santa Monica, CA, US.Bessaou, M., & Siarry, P. (2001). A genetic algorithm with real-value coding to optimize multimodal continuous functions. Structural and Multidiscipline Optimization, 23, 63–74.Bird, S., & Li, X. (2006). Adaptively choosing niching parameters in a PSO. In Proceedings of the 2006 genetic and evolutionary computation conference (pp. 3–10).Bird, S., & Li, X. (2007). Using regression to improve local convergence. In Proceedings of the 2007 IEEE congress on evolutionary computation (pp. 592–599).Blackwell, T., & Bentley, P. (2002). Dont push me! Collision-avoiding swarms. In Proceedings of the IEEE congress on evolutionary computation, Honolulu (pp. 1691–1696).Brits, R., Engelbrecht, F., & van den Bergh, A. P. (2002). Solving systems of unconstrained equations using particle swarm optimization. In Proceedings of the 2002 IEEE conference on systems, man, and cybernetics (pp. 102–107).Brits, R., Engelbrecht, A., & van den Bergh, F. (2002). A niching particle swarm optimizer. In Proceedings of the fourth asia-pacific conference on simulated evolution and learning (pp. 692–696).Chelouah, R., & Siarry, P. (2000). A continuous genetic algorithm designed for the global optimization of multimodal functions. Journal of Heuristics, 6(2), 191–213.Chelouah, R., & Siarry, P. (2000). Tabu search applied to global optimization. European Journal of Operational Research, 123, 256–270.Chelouah, R., & Siarry, P. (2003). Genetic and Nelder–Mead algorithms hybridized for a more accurate global optimization of continuous multiminima function. European Journal of Operational Research, 148(2), 335–348.Chelouah, R., & Siarry, P. (2005). A hybrid method combining continuous taboo search and Nelder–Mead simplex algorithms for the global optimization of multiminima functions. European Journal of Operational Research, 161, 636–654.Chen, T., & Chi, T. (2010). On the improvements of the particle swarm optimization algorithm. Advances in Engineering Software, 41(2), 229–239.Clerc, M., & Kennedy, J. (2002). The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Transactions on Evolutionary Computation, 6(1), 58–73.Fan, H., & Shi, Y. (2001). Study on Vmax of particle swarm optimization. In Proceedings of the workshop particle swarm optimization, Indianapolis.Gao, H., & Xu, W. (2011). Particle swarm algorithm with hybrid mutation strategy. Applied Soft Computing, 11(8), 5129–5142.Gosciniak, I. (2008). Immune algorithm in non-stationary optimization task. In Proceedings of the 2008 international conference on computational intelligence for modelling control & automation, CIMCA ’08 (pp. 750–755). Washington, DC, USA: IEEE Computer Society.He, Q., & Wang, L. (2007). An effective co-evolutionary particle swarm optimization for constrained engineering design problems. Engineering Applications of Artificial Intelligence, 20(1), 89–99.Higashitani, M., Ishigame, A., & Yasuda, K., (2006). Particle swarm optimization considering the concept of predator–prey behavior. In 2006 IEEE congress on evolutionary computation (pp. 434–437).Higashitani, M., Ishigame, A., & Yasuda, K. (2008). Pursuit-escape particle swarm optimization. IEEJ Transactions on Electrical and Electronic Engineering, 3(1), 136–142.Hu, X., & Eberhart, R. (2002). Multiobjective optimization using dynamic neighborhood particle swarm optimization. In Proceedings of the evolutionary computation on 2002. CEC ’02. Proceedings of the 2002 congress (Vol. 02, pp. 1677–1681). Washington, DC, USA: IEEE Computer Society.Hu, X., Eberhart, R., & Shi, Y. (2003). Engineering optimization with particle swarm. In IEEE swarm intelligence symposium, SIS 2003 (pp. 53–57). Indianapolis: IEEE Neural Networks Society.Jang, W., Kang, H., Lee, B., Kim, K., Shin, D., & Kim, S. (2007). Optimized fuzzy clustering by predator prey particle swarm optimization. In IEEE congress on evolutionary computation, CEC2007 (pp. 3232–3238).Kennedy, J. (2000). Stereotyping: Improving particle swarm performance with cluster analysis. In Proceedings of the 2000 congress on evolutionary computation (pp. 1507–1512).Kennedy, J., & Mendes, R. (2002). Population structure and particle swarm performance. In IEEE congress on evolutionary computation (pp. 1671–1676).Kuo, H., Chang, J., & Shyu, K. (2004). A hybrid algorithm of evolution and simplex methods applied to global optimization. Journal of Marine Science and Technology, 12(4), 280–289.Leontitsis, A., Kontogiorgos, D., & Pange, J. (2006). Repel the swarm to the optimum. Applied Mathematics and Computation, 173(1), 265–272.Li, X. (2004). Adaptively choosing neighborhood bests using species in a particle swarm optimizer for multimodal function optimization. In Proceedings of the 2004 genetic and evolutionary computation conference (pp. 105–116).Li, C., & Yang, S. (2009). A clustering particle swarm optimizer for dynamic optimization. In Proceedings of the 2009 congress on evolutionary computation (pp. 439–446).Liang, J., Suganthan, P., & Deb, K. (2005). Novel composition test functions for numerical global optimization. In Proceedings of the swarm intelligence symposium [Online]. Available: .Liang, J., Qin, A., Suganthan, P., & Baskar, S. (2006). Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Transactions on Evolutionary Computation, 10(3), 281–295.Lovbjerg, M., & Krink, T. (2002). Extending particle swarm optimizers with self-organized criticality. In Proceedings of the congress on evolutionary computation, Honolulu (pp. 1588–1593).Lung, R., & Dumitrescu, D. (2007). A collaborative model for tracking optima in dynamic environments. In Proceedings of the 2007 congress on evolutionary computation (pp. 564–567).Mendes, R., Kennedy, J., & Neves, J. (2004). The fully informed particle swarm: simpler, maybe better. IEEE Transaction on Evolutionary Computation, 8(3), 204–210.Miranda, V., & Fonseca, N. (2002). New evolutionary particle swarm algorithm (EPSO) applied to voltage/VAR control. In Proceedings of the 14th power systems computation conference, Seville, Spain [Online] Available: .Parrott, D., & Li, X. (2004). A particle swarm model for tracking multiple peaks in a dynamic environment using speciation. In Proceedings of the 2004 congress on evolutionary computation (pp. 98–103).Parrott, D., & Li, X. (2006). Locating and tracking multiple dynamic optima by a particle swarm model using speciation. In IEEE transaction on evolutionary computation (Vol. 10, pp. 440–458).Parsopoulos, K., & Vrahatis, M. (2004). UPSOA unified particle swarm optimization scheme. Lecture Series on Computational Sciences, 868–873.Passaroand, A., & Starita, A. (2008). Particle swarm optimization for multimodal functions: A clustering approach. Journal of Artificial Evolution and Applications, 2008, 15 (Article ID 482032).Peram, T., Veeramachaneni, K., & Mohan, C. (2003). Fitness-distance-ratio based particle swarm optimization. In Swarm intelligence symp. (pp. 174–181).Sedighizadeh, D., & Masehian, E. (2009). Particle swarm optimization methods, taxonomy and applications. International Journal of Computer Theory and Engineering, 1(5), 1793–8201.Shi, Y., & Eberhart, R. (2001). Particle swarm optimization with fuzzy adaptive inertia weight. In Proceedings of the workshop particle swarm optimization, Indianapolis (pp. 101–106).Shi, Y., & Eberhart, R. (1998). A modified particle swarm optimizer. In Proceedings of IEEE International Conference on Evolutionary Computation (pp. 69–73). Washington, DC, USA: IEEE Computer Society.Thomsen, R. (2004). Multimodal optimization using crowding-based differential evolution. In Proceedings of the 2004 congress on evolutionary computation (pp. 1382–1389).Trojanowski, K., & Wierzchoń, S. (2009). Immune-based algorithms for dynamic optimization. Information Sciences, 179(10), 1495–1515.Tsoulos, I., & Stavrakoudis, A. (2010). Enhancing PSO methods for global optimization. Applied Mathematics and Computation, 216(10), 2988–3001.van den Bergh, F., & Engelbrecht, A. (2004). A cooperative approach to particle swarm optimization. IEEE Transactions on Evolutionary Computation, 8, 225–239.Wolpert, D., & Macready, W. (1997). No free lunch theorems for optimization. IEEE Transaction on Evolutionary Computation, 1(1), 67–82.Xie, X., Zhang, W., & Yang, Z. (2002). Dissipative particle swarm optimization. In Proceedings of the congress on evolutionary computation (pp. 1456–1461).Yang, S., & Li, C. (2010). A clustering particle swarm optimizer for locating and tracking multiple optima in dynamic environments. In IEEE Trans. on evolutionary computation (Vol. 14, pp. 959–974).Kuo, H., Chang, J., & Liu, C. (2006). Particle swarm optimization for global optimization problems. Journal of Marine Science and Technology, 14(3), 170–181

    A Co-evolutionary Algorithm-based Enhanced Grey Wolf Optimizer for the Routing of Wireless Sensor Networks

    Get PDF
    Wireless networks are frequently installed in arduous environments, heightening the importance of their consistent operation. To achieve this, effective strategies must be implemented to extend the lifespan of nodes. Energy-conserving routing protocols have emerged as the most prevalent methodology, as they strive to elongate the network\u27s lifetime while guaranteeing reliable data routing with minimal latency. In this paper, a plethora of studies have been done with the purpose of improving network routing, such as the integration of clustering techniques, heterogeneity, and swarm intelligence-inspired approaches. A comparative investigation was conducted on a variety of swarm-based protocols, including a new coevolutionary binary grey wolf optimizer (Co-BGWO), a BGWO, a binary whale optimization, and a binary Salp swarm algorithm. The objective was to optimize cluster heads (CHs) positions and their number during the initial stage of both two-level and three-level heterogeneous networks. The study concluded that these newly developed protocols are more reliable, stable, and energy-efficient than the standard SEP and EDEEC heterogeneous protocols. Specifically, in 150 m2 area of interest, the Co-BGWO and BGWO protocols of two levels were found the most efficient, with over than 33% increase in remaining energy percentage compared to SEP, and over 24% more than EDEEC in three-level networks

    Optimizing density, dynamic viscosity, thermal conductivity and specific heat of a hybrid nanofluid obtained experimentally via ANFIS-based model and modern optimization

    Get PDF
    In this study, rGO/Co3O4 nanocomposite was synthesized, characterized, and then the thermophysical properties were obtained experimentally, after which the experimental data at varying values of temperature and particle loadings was used for optimization purposes. The study was concerned with different values of the controlling parameters. The in-situ/chemical reduction technique was used to synthesize the rGO/Co3O4 nanocomposite and then characterized with x-ray diffraction, transmission electron microscope, and magnetometry. The system was studied at temperature values ranging at 20, 30, 40, 50, and 60 °C and with particle loadings of 0.05%, 0.1%, and 0.2% wt%. The authors in this article have introduced a novel population-based algorithm that is known as Marine Predators Algorithm to obtain the optimal values of the controlling parameters (i.e., temperature and nanofluid mixture percentage) that minimize two controlled variables (i.e., density and viscosity) as well as maximize the other two controlled variables (thermal conductivity and specific heat). The rGO/Co3O4 nanocomposite nanofluid thermal conductivity and viscosity were investigated experimentally, and a maximum increment of 19.14% and 70.83% with 0.2% particle loadings at 60 °C was obtained. At 0.05%, 0.1%, and 0.2% particle loading wt%, the density increased by 0.115%, 0.23%, and 0.451% at a temperature of 20 °C; simultaneously, density increased by 0.117%%, 0.235%, and 0.469% at 60 °C, respectively as compared to water. At 0.2 wt%, the maximum decreased specific heat was 0.192% and 0.194% at 20 °C and 60 °C. When compared with water, no effect was observed with an increase in temperature/: a similar trend as that of the water was followed. The optimal values were found to be at a temperature of 60 °C and for 0.05% particle loading of the prepared nanofluid. However, among the conducted experiments, the optimizer pointed out that the optimal experiment was the one conducted at a temperature of 60 °C and a nanofluid percentage at 0.05. In conclusion, the proposed methodology of modelling with an artificial intelligence tool such as an adaptive network-based fuzzy inference system technique and then determining the optimal parameters with the marine predators algorithm accomplished the goal of the study with major success.publishe

    Adaptive Marine Predator Optimization Algorithm (AOMA)–Deep Supervised Learning Classification (DSLC)based IDS framework for MANET security

    Get PDF
    Due to the dynamic nature and node mobility, assuring the security of Mobile Ad-hoc Networks (MANET) is one of the difficult and challenging tasks today. In MANET, the Intrusion Detection System (IDS) is crucial because it aids in the identification and detection of malicious attacks that impair the network’s regular operation. Different machine learning and deep learning methodologies are used for this purpose in the conventional works to ensure increased security of MANET. However, it still has significant flaws, including increased algorithmic complexity, lower system performance, and a higher rate of misclassification. Therefore, the goal of this paper is to create an intelligent IDS framework for significantly enhancing MANET security through the use of deep learning models. Here, the min-max normalization model is applied to preprocess the given cyber-attack datasets for normalizing the attributes or fields, which increases the overall intrusion detection performance of classifier. Then, a novel Adaptive Marine Predator Optimization Algorithm (AOMA) is implemented to choose the optimal features for improving the speed and intrusion detection performance of classifier. Moreover, the Deep Supervise Learning Classification (DSLC) mechanism is utilized to predict and categorize the type of intrusion based on proper learning and training operations. During evaluation, the performance and results of the proposed AOMA-DSLC based IDS methodology is validated and compared using various performance measures and benchmarking datasets

    Multiple Route Generation Using Simulated Niche Based Particle Swarm Optimization

    Get PDF
    This research presents an optimization technique for multiple routes generation using simulated niche based particle swarm optimization for dynamic online route planning, optimization of the routes and proved to be an effective technique. It effectively deals with route planning in dynamic and unknown environments cluttered with obstacles and objects. A simulated niche based particle swarm optimization (SN-PSO) is proposed using modified particle swarm optimization algorithm for dealing with online route planning and is tested for randomly generated environments, obstacle ratio, grid sizes, and complex environments. The conventional techniques perform well in simple and less cluttered environments while their performance degrades with large and complex environments. The SN-PSO generates and optimizes multiple routes in complex and large environments with constraints. The traditional route optimization techniques focus on good solutions only and do not exploit the solution space completely. The SN-PSO is proved to be an efficient technique for providing safe, short, and feasible routes under dynamic constraints. The efficiency of the SN-PSO is tested in a mine field simulation with different environment configurations and successfully generates multiple feasible routes

    A Survey on Scheduling the Task in Fog Computing Environment

    Full text link
    With the rapid increase in the Internet of Things (IoT), the amount of data produced and processed is also increased. Cloud Computing facilitates the storage, processing, and analysis of data as needed. However, cloud computing devices are located far away from the IoT devices. Fog computing has emerged as a small cloud computing paradigm that is near to the edge devices and handles the task very efficiently. Fog nodes have a small storage capability than the cloud node but it is designed and deployed near to the edge device so that request must be accessed efficiently and executes in time. In this survey paper we have investigated and analysed the main challenges and issues raised in scheduling the task in fog computing environment. To the best of our knowledge there is no comprehensive survey paper on challenges in task scheduling of fog computing paradigm. In this survey paper research is conducted from 2018 to 2021 and most of the paper selection is done from 2020-2021. Moreover, this survey paper organizes the task scheduling approaches and technically plans the identified challenges and issues. Based on the identified issues, we have highlighted the future work directions in the field of task scheduling in fog computing environment

    Metaheuristic design of feedforward neural networks: a review of two decades of research

    Get PDF
    Over the past two decades, the feedforward neural network (FNN) optimization has been a key interest among the researchers and practitioners of multiple disciplines. The FNN optimization is often viewed from the various perspectives: the optimization of weights, network architecture, activation nodes, learning parameters, learning environment, etc. Researchers adopted such different viewpoints mainly to improve the FNN's generalization ability. The gradient-descent algorithm such as backpropagation has been widely applied to optimize the FNNs. Its success is evident from the FNN's application to numerous real-world problems. However, due to the limitations of the gradient-based optimization methods, the metaheuristic algorithms including the evolutionary algorithms, swarm intelligence, etc., are still being widely explored by the researchers aiming to obtain generalized FNN for a given problem. This article attempts to summarize a broad spectrum of FNN optimization methodologies including conventional and metaheuristic approaches. This article also tries to connect various research directions emerged out of the FNN optimization practices, such as evolving neural network (NN), cooperative coevolution NN, complex-valued NN, deep learning, extreme learning machine, quantum NN, etc. Additionally, it provides interesting research challenges for future research to cope-up with the present information processing era

    Numerical optimization for vibration and noise of the wheel based on PSO-GA method

    Get PDF
    Currently, those reported researches conducted optimal design for the wheel only in order to reduce the tread wear and increase the service life, but they did not consider the wheel vibration and radiation noise which seriously influence people’s life and did not achieve obvious noise reduction effects. Aiming at this question, a multi-body dynamic model of the high-speed train was established, and the vertical and radial force was extracted to input into the finite element model of the wheel to compute its vibration characteristics. Then, the wheel was conducted on a multi-objective optimization based on particle swarm optimization improved by genetic algorithm (PSO-GA) method. Finally, the optimized vibration results were mapped to the acoustic element model to compute the radiation noise of the wheel. The computational model was also validated by experimental test. In order to observe the optimized effect, the optimized results were compared with those of the traditional GA and PSO method. Solutions of the traditional GA and PSO method were relatively dispersed during iterations and the algorithm could easily fall into the locally optimal solution. The optimized results of PSO-GA method were obviously better. Compared with the original wheel, the vibration acceleration was reduced by 22.9 %, and the mass was reduced by 1.1 %. Finally, the optimized vibration was mapped to the boundary element model to compute the radiation noise of the wheel, and the computational results were compared with the original wheel. Radiation noises of the original wheel were obviously more than that of the optimized wheel, and there were a lot of obvious peak noises in the original wheel. Radiation noises of the optimized wheel only had two obvious noise peaks in the analyzed frequency. Therefore, a wheel with low noises and lightweight was achieved in this paper

    Alzheimer Disease Detection of 3D-CNN with SE-Net Model using SVM Classifier

    Get PDF
    Alzheimer disease is a fatal progressive neurological brain disorder. Earlier detection of Alzheimer's disease can help with proper treatment and prevent brain tissue damage. In this work we proposed two methods. First, proposed connected median filter using PSO feature extraction from MRI images and Analysis of Alzheimer’s diseases state by using 3D-CNN based SE-Net. In the first phase, the algorithm first normalizes and removes skull from the MRI images. Connected median filter using Particle Swarm Optimization algorithm is used to partition the image into white matter (WM), grey matter (GM) and black holes (BH). The relevant diagnostic features are extracted from the segmented image component. The classifier is trained by the training data to predict the test data. The features are defined to construct classification model by using Support Vector Machine with Squeeze- Excitation block. Here, database contains total of 1000 images which are resized into 350 × 350 without loss of information. Deep Learning demands large number of images and its strength was increased as per requirement by augmentation technique. In the first phase of the method takes 1000 images of different features are selected to train SVM classifier and the accuracy obtained is 98.37%  and contribution of this work is classification of images into categories such as Alzheimer (AD) and normal. First phase of work emphasized program specific applications to extract features.  In the second phase the CNN multiple layers which are studied from lower level to the higher-level image characteristics

    Numerical Treatment of Non-Linear System for Latently Infected CD4+T Cells: A Swarm- Optimized Neural Network Approach

    Get PDF
    Swarm-inspired computing techniques are the best candidates for solving various nonlinear problems. The current study aims to exploit the swarm intelligence technique known as Particle Swarm Optimization (PSO) for the numerical investigation of a nonlinear system of latently infected CD4+T cells. The strength of the Mexican Hat Wavelet (MHW) based unsupervised Feed Forward Artificial Neural Network (FFANN) is used to solve the nonlinear system of latently infected CD4+T cells. The function approximation of unsupervised ANN is used to construct the mathematical model of the latently infected CD4+T cells by defining the error function in the mean square manner. The adjustable parameters called the unknowns of the network are optimized by using the Particle Swarm Optimization (PSO), Nedler Mead Simplex Method (NMSM), and their hybrid PSO-NMSM. The PSO applied for the global optimization of weights aided by the NMSM algorithm for rapid local search. Finally, a Comprehensive Monte Carlo simulation and statistical analysis of the analytical method, numerical Range Kutta (RK) method, ANN optimized with Genetic Algorithm (GA) aided with Sequential Quadratic Programming (SQP) known as GA-SQP, ANN-PSO-SQP and the proposed MHW-HIVFFANN-PSO-NMSM are performed to validate the effectiveness, stability, convergence, and computational complexity of each scheme. It is observed that the proposed MHW-FFANN-HIVPSO-NMSM scheme has converged in all classes at 10 −6 , 10−7 , and 10 −8 and solved the nonlinear system of latently infected CD4+ T cells more accurately and effectively. The absolute error lies in 10−3 , 10−4 , 10−4 , and 10−5 for numerical, ANN-GA-SQP, ANN-PSO-SQP, and proposed MHW-ANN-PSO-NMSM respectively. Moreover, the proposed scheme is stable for the large number of independent runs. The values for global statistical indicators’ global mean squared error are lies 8.15E-09, 3.25E-10, 4.15E-09, and 3.15E-10 for class X(t), W(t), Y(t), and V(t) respectively whereas the global mean absolute deviation lies in range 7.35E-09, 8.50E-10, 2.10E-10 and 7.10E-09
    corecore