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Abstract 

In this study, rGO/Co3O4 nanocomposite was synthesized, characterized, and then the thermophysical 

properties were obtained experimentally, after which the experimental data at varying values of 

temperature and particle loadings was used for optimization purposes. The study was concerned with 

different values of the controlling parameters. The in-situ/chemical reduction technique was used to 

synthesize the rGO/Co3O4 nanocomposite and then characterized with x-ray diffraction, transmission 

electron microscope, and magnetometry.  The system was studied at temperature values ranging at 20, 30, 

40, 50, and 60 ℃ and with particle loadings of 0.05%, 0.1%, and 0.2% wt.%. The authors in this article 

have introduced a novel population-based algorithm that is known as Marine Predators Algorithm to 

obtain the optimal values of the controlling parameters (i.e., temperature and nanofluid mixture 

percentage) that minimize two controlled variables (i.e., density and viscosity) as well as maximize the 

other two controlled variables (thermal conductivity and specific heat). The rGO/Co3O4 nanocomposite 

nanofluid thermal conductivity and viscosity were investigated experimentally, and a maximum 

increment of 19.14% and 70.83% with 0.2% particle loadings at 60
o
C was obtained. At 0.05%, 0.1%, and 

0.2% particle loading wt.%, the density increased by 0.115%, 0.23%, and 0.451% at a temperature of 

20℃; simultaneously, density increased by 0.117%%, 0.235%, and 0.469% at 60℃, respectively as 

compared to water. At 0.2 wt.%, the maximum decreased specific heat was 0.192% and 0.194% at 20
o
C 

and 60
o
C. When compared with water, no effect was observed with an increase in temperature/: a similar 

trend as that of the water was followed. The optimal values were found to be at a temperature of 60℃ and 

for 0.05% particle loading of the prepared nanofluid. However, among the conducted experiments, the 
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optimizer pointed out that the optimal experiment was the one conducted at a temperature of 60℃ and a 

nanofluid percentage at 0.05. In conclusion, the proposed methodology of modelling with an artificial 

intelligence tool such as an adaptive network-based fuzzy inference system technique and then 

determining the optimal parameters with the marine predators algorithm accomplished the goal of the 

study with major success. 

Keywords: nanofluid, hybrid, graphene, parameter estimation, ANFIS, optimization 

1. Introduction 

Thermal plants and petrochemical applications have been using traditional heat exchangers by operating 

single-phase fluids such as water, ethylene glycol, propylene glycol, and engine oil as heat transfer fluids 

[1]. Low thermal conductivity single-phase fluids used in the conventional heat exchangers generate low 

efficiency. The efficiency can be enhanced by utilizing fluids with high thermal conductivity, such as 

nanofluids [2, 3]. Nanofluids are defined as the suspension of nanometer-sized particles in the base fluid 

and are reported to have higher thermal conductivity as compared to single-phase fluids [4, 5]. The 

thermal conductivity of the fluid has a direct impact on the heat transfer coefficient [6], so when the 

thermal conductivity increases, there is an enhancement in the heat transfer coefficient [7-9]. The thermal 

conductivity of nanofluids depends on the thermal conductivity of particle [10] and base fluid [11], with a 

fixed amount of heat supply, but the thermal conductivity of the particle has more impact on the 

enhancement of thermal conductivity [12, 13]. Several nanoparticles such as Al2O3, Cu, CuO, carbon-

based, Co3O4, Fe3O4, Fe2O3, SiO2, TiO2, etc. [14-16] are available and reliable. Several factors [17], such 

as long-term stability [18, 19], thermal conductivity [20], viscosity [21], specific heat, and density [22], 

affect the heat transfer performance of nanofluids [8, 23, 24], as well as the structure of heat exchanger 

and the flow conditions.  

Carbon-based nanoparticles such as carbon nanotubes, graphene oxide, and nanodiamond are 

reported to have promising high thermal conductivity [24-26]. Graphene (G) has attracted considerable 

attention due to the higher thermal conductivity of 5000 W/m.K, excellent electrical, mechanical, 

Young’s modulus, and optical characteristics [27]. Graphene has a 2D sheet-like structure similar to 

graphene oxide, but a significant difference is that graphene oxide has highly decorated carbon atoms. 

Reduced graphene oxide (rGO) is obtained by chemically modifying graphene oxide, and both are 

utilized as electrodes in lithium recharged batteries [28], adsorption substrates [29], whereas graphene 

oxide-based nanofluids are further used as heat transfer fluid because of high thermal conductivity. Said 

et al. [30] investigated carbon nanotubes/reduced graphene oxide-based hybrid nanofluids and examined 

thermophysical characteristics of the prepared nanofluids, using the fuzzy logic technique.   

Hybrid nanofluids like graphene oxide-based cobalt oxide (Co3O4) nanocomposite can be 

promising with enhanced thermal conductivity and magnetic property [31]. These nanoparticles can be 
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utilized in lithium-ion batteries [32], catalytic activity [33], and supercapacitor applications [34]. 

Furthermore, they can be used as heat transfer fluids [35]. Sajid and Ali [36] carefully reviewed the 

parameters which affected the hybrid nanofluids’ performance and observed that the most critical factor 

which affects thermal conductivity is the concentration of nanoparticles. Thermal conductivity 

enhancement for effective nanofluids is mostly accredited to higher surface area and high convection heat 

transfer within fluids, in addition to high Brownian motion. Toghraie et al. [37] investigated the effect of 

thermophysical properties of ZnO-TiO2/EG hybrid nanofluids with respect to temperature (25-50 °C) and 

volume concentration (0-3.5 wt.%). Enhancement in thermal conductivity was observed by increasing 

either temperatures or volume concentration or both. Harandi et al. [38] observed a 30% enhancement in 

thermal conductivity of functionalized multiwalled carbon nanotubes (FMWCNTs)-Fe3O4/EG hybrid 

nanofluids at 2.3 wt.% concentration and 50°C. It was also observed that the temperature affecting 

thermal conductivity ratio was more noticeable with increased volume concentration. Afrand [39] 

examined the thermal conductivity of ethylene-glycol by adding nanoparticles of F-MWCNTs and 

magnesium oxide (MgO), and by changing temperature, and volume concentration range from 25 to 50°C 

and 0 to 0.6% respectively. They observed an improvement of 21.3% in thermal conductivity at 25°C and 

0.6 wt.% volume concentration. Nine et al. [40] produced Al2O3-MWCNTs hybrid nanofluids to 

investigate thermal conductivity with volume concentration ranges from 1-6 wt.%. It was observed that 

spherically shaped nanoparticles had fewer enhancements in thermal conductivity as compared to 

cylindrically shaped nanoparticles in hybrid nanofluids. Esfahani et al. [41] investigated the effect of 

thermal conductivity of ZnO-Ag (50%–50%)/H2O nanofluids. Enhancement in thermal conductivity was 

noted as the Brownian motion became substantial by increasing volume concentration at high 

temperatures. Several other analyses on the effect of thermal conductivity on hybrid nanofluids are 

described further [8, 16, 30]. 

Soltani and Akbari [42] examined the impact of volume concentration and temperature on the 

viscosity of MgO-MWCNT EG-based hybrid nanofluids. They observed a Newtonian behavior. They 

also observed that the dynamic viscosity displayed a declining trend with increasing temperature and 

volume concentration. Alirezaie et al. [43] investigated the effect of dynamic viscosity on COOH-

FMWCNT's/MgO-engine oil hybrid nanofluids, and they observed a reduction with temperature. They 

also observed non-Newtonian behavior at a low temperature, which develops into Newtonian at high 

temperature. Zareie and Akbari [44] investigated the MgO-MWCNTs/H2O-EG hybrid nanofluid to 

analyze the viscosity by varying temperatures from 25 to 50°C, and volume concentration ranges from 

0.025 to 0.8 vol%. They reported enhancement in viscosity with an increase in particle loadings and an 

increase in temperature. Studies on the specific heat of hybrid nanofluids are reported in the literature: 

most of the studies showed a decreasing trend in the nanofluids with a rise in particle loadings and 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



temperature [45-47]. For the reports presented on the density of hybrid nanofluids [48-50], the results 

showed an increase in density by increasing particle loadings and a decline in density by increasing the 

temperature. Adriana et al. [46] used a numerical approach to evaluate the thermal conductivity, 

viscosity and heat transfer characteristics of Al2O3, TiO2, and SiO2 hybrid nanofluids and they 

found thermal conductivity enhancement of 12% in addition to developing a new Nusselt 

number correlation. Bellos  and Tzivanidis [47] prepared Al2O3 and TiO2/Syltherm 800 hybrid 

nanofluids and estimated thermal efficiency by using hybrid nanofluids flow in parabolic trough 

collectors. They found a thermal efficiency enhancement of 1.8% and a Nusselt number 

enhancement of 178% using hybrid nanofluid.     

The present research was carried out to understand the thermophysical characteristics of 

graphene-based cobalt oxide (Co3O4) hybrid nanofluids, which were synthesized in the laboratory, and 

water-based hybrid nanofluids that were produced and optimized using the ANFIS approach. The in-

situ/chemical reduction technique was used to synthesize the rGO/Co3O4 nanocomposite and then 

characterized with x-ray diffraction, transmission electron microscope, and magnetometry. Experimental 

thermophysical properties such as thermal conductivity, viscosity, density, and specific heat were 

obtained at temperature values of 20, 30, 40, 50, and 60 ℃ and with particle loadings of 0.05%, 0.1%, and 

0.2% wt.%. One of the main objectives of the current research work is to create a fuzzy model based on 

an experimental dataset for later use with optimization purposes to obtain the best operating conditions. A 

fuzzy system is one of the artificial intelligent (AI) tools that can accurately and efficiently model 

complex systems. The accuracy of using fuzzy logic technique in systems modelling is dependent upon 

its two main features. The first one is the nonlinear mapping between the inputs to the output of the fuzzy 

system through its rule-based list, and the second is the ability to learn through a training algorithm to 

update the fuzzy system’s parameters. Based on the fuzzy model, the optimal control parameters can be 

determined. In this study, the objective is to determine the optimal (controlling) set of parameters that 

minimizes the density and viscosity but maximizes the thermal conductivity and the specific heat which 

represent the four controlled parameters. The controlling variables are temperature and percentage of 

nanofluid mixture. The experiments involve 20 input-output data samples that relate the controlled 

variables (outputs) to the controlling variables (inputs). The proposed strategy starts by building a robust 

model, and then applying the marine predators’ algorithm (MPA) to determine the best set of input values 

that accomplish the goal of this study.  

2. Materials and Methods 

2.1. Synthesis of reduced graphene oxide (rGO)    

Reduced graphene oxide (rGO) nanosheets were synthesized by a modified Hummers procedure [51]. 
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Graphite powder of 2 g was mixed in 70 ml of concentrated sulphuric acid and 0.025 moles NaNO3 for 

about 25 minutes, and then kept in an ice-water bath to cool down. The solution was mixed with 0.039 

moles of potassium permanganate. The mixture was stirred for 20 minutes at 0
o
C. The color of the 

solution changed to green because of the accessibility of the oxidizing agent (MnO
3+

). The ice-water bath 

was removed, and distilled water of about 200 ml was added. Water was added to dilute the suspension 

and rinsed with 70 ml of hydrogen peroxide (H2O2) (30 wt.%) for half an hour to eliminate the 

contaminations. The mixture was centrifuged and rinsed various times with deionized water to remove 

sulphur. The rGO produced was dried at 60
o
C in a vacuum chamber for 12 hours. To obtain carboxyl 

(COOH) groups on the surface of rGO, which was preserved with hydrochloric acid (HCL) for about 48 

hours. The Co3O4 nanoparticles were attached to rGO’s surface by carboxyl groups (COOH). The rGO 

nanomaterial was prepared in large quantities using the procedure mentioned above.  

 

2.2. Synthesis of rGO/Co3O4  

The synthesis procedure is displayed in Fig. 1. The rGO/Co3O4 hybrid nanomaterial was synthesized by 

in-situ/chemical reaction. First, 100 ml of water was added to 0.2 g of rGO in a 500 ml beaker and 

sonicated; in the meantime, 0.4 g of CoCI2.6H2O was mixed with 40 ml of distilled water and stirred 

continuously. Both solutions were mixed and stirred slowly for up to 15 minutes, and then 0.2932 g of 

sodium borohydride was added, resulting in the formation of a black colour precipitate. The precipitate 

was rinsed with distilled water to eliminate sodium, chloride, and boron impurities and dried at 60
o
C for 

one day. The same technique was used to prepare nanomaterials in a large quantity. Furthermore, pure 

Co3O4 nanoparticles were prepared for comparing results. The synthesized rGO/Co3O4 hybrid 

nanomaterial is shown in Fig. 1a. Several characterization techniques were used to investigate the 

nanomaterial.  

 

2.3. Characterization 

Transmission electron microscopy (JEOL 2200F, 200KV) was used for the characterization of rGO and 

rGO/Co3O4 nanomaterial. Morphology and size of nanoparticles were estimated by using a transmission 

electron microscope (TEM). XRD (Siemens D-500) was used to obtain the patterns of rGO/Co3O4 and 

Co3O4. The VSM (Crogenics, UK) was used to obtain the magnetization of rGO/Co3O4 and Co3O4. The 

Fourier transform infrared (Bruker Equinox V70) was used to obtain the results of rGO/Co3O4, and Co3O4 

nanoparticles.  

 

2.4. Preparation of rGO/Co3O4 nanofluids  

Particle loadings of 0.05 wt.%, 0.1 wt.%, and 0.2 wt.% were produced by diluting rGO/Co3O4. The 
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physical properties of water, GO, Co3O4, and rGO/Co3O4 are presented in Table 1. A two-step method 

was employed to produce to rGO/Co3O4 nanofluids, using a probe sonicator. The production of 

nanoparticle preparation and suspension in a base fluid were processed individually in this method to 

reduce agglomeration and achieve better dispersion. This method is more dominant and efficient as 

compared to the one-step method. The prepared hybrid nanofluid sample is shown in Fig. 1. All the 

prepared nanofluid samples had pH values close to neutral (pH=6.5). Therefore, the prepared samples 

would not result in any corrosive reactions when used for a particular application.  

 

 

Fig. 1 (a) Synthesized dry rGO/Co3O4 nanoparticles suspended in distilled water to prepare rGO/Co3O4 

hybrid nanofluids (0.2 vol. %) using probe sonicator.  

The nanoparticles were suspended in the base fluid at pH=7.  

 

Table 1: The properties of water, GO, Co3O4, and rGO/Co3O4 nanoparticles at 20
o
C. 

Substance  𝜌, (kg/m
3
) 𝑘, (W/m K) 𝐶𝑝, (J/Kg K) 𝜇, (mPa.s) 

Water 998.5 0.602 4178 0.89 

GO 1910 1000 710 ---- 
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Co3O4 6110 69 460 ---- 

GO/Co3O4 3296 692.7 627.5 ---- 

 

2.4. Thermophysical properties  

The thermal conductivity of hybrid nanofluids was characterized by the thermal conductivity (KD2 Pro, 

Decagon Devices Inc., USA). In the present study, thermal conductivity was measured by taking an 

average of 15 readings at 5-minute intervals with the help of a sensor KS1(~±5.0%). To stabilize the 

temperature, a water bath was used with 0.1°C accuracy. Measurements of viscosity were characterized 

by a sine-wave Vibro viscometer SV-10 (A&D Company, Japan) with ranges from 0.3 mPa.s to 10,000 

mPa.s. Measurements were recorded and the average computed to consider final values with an interval 

of 5 K: a constant temperature bath controller was used to maintain the temperature. The flow behavior of 

samples was measured at different shear rates and temperatures. 

The Archimedes’ principle, the density was characterized by differential scanning calorimeter (DSC 2920 

modulated, TA Instruments, New Castle, DE), and the specific heat was also measured. A controlled 

differential scanning calorimeter device was provided with a refrigerated cooling system (TA 

Instruments). The data was investigated using a Universal Analysis Program (Version 4.1D, TA 

Instruments). The cell constant was measured using indium and temperature, and enthalpy calibrations 

with indium, tin, and water as standards were performed. The aluminum sample pans (TA Instruments) 

were sonicated, first in methanol, and then in acetone, for 15 minutes each and air-dried before 

performing DSC experiments, and then the 10 mg solution was wrapped in an aluminum pan.  

 

3. Modelling and Optimization 

3.1 Adaptive Network-based Fuzzy Inference System (ANFIS) 

Fuzzy logic (FL) appeared approximately in the 1960s. Since then its applications have been increasing 

day by day  [30, 52]. Despite there being many types of research in the field of fuzzy logic, the structure 

of the fuzzy system remains the same. The structure comprises three main components, namely 

fuzzification, inference system, and defuzzification. The concept of fuzzy logic is considered as an 

expansion of the renowned Boolean logic. The latter deals with only two representations (0 and 1) of the 

events, but the former deals with multi-valued representations. Therefore, FL is thought to be much closer 

to human thinking. In binary systems, one may represent a case as either black or white, but definitely, 

there is something else in between. Thus, FL represents events, for example, black, grey, and white. 

The output of the fuzzy system is obtained after three consequent operations have taken place. The first is 

to pass the crisp inputs to the fuzzifier to obtain the fuzzy value of the inputs. This process is done by 

mapping the inputs through fuzzy membership functions (MFs). The accessible fuzzifying functions are 
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the Gaussian and triangular shapes. The fuzzified inputs are then passed to fire the fuzzy IF-THEN rules 

in order to obtain the rules’ fuzzy outputs in the second component. Usually, the rule takes the form IF 

(Antecedent) THEN (Consequence). The Antecedent is a logical input combination; however, the 

Consequence is the rule’s output. There are two famous structures (types) of fuzzy rule. In 1975, 

Mamdani proposed the first form of a fuzzy rule in the design of a controller to a heat transfer application. 

Ten years later, Sugeno and his colleagues revealed the second type. Equations (1) and (2), are examples 

of the rules of two-input one-output system for the Mamdani-form and the Sugeno-form, respectively. 

IF a is MFa and b is MFb THEN c is MFc (1) 

IF a is MFa and b is MFb THEN c = f(a, b) (2) 

where, a and b are the system’s inputs with MFa and MFb as their fuzzy membership functions, 

respectively; c is the system’s output, and MFc is its fuzzy membership function; f(a, b) is either a linear 

or nonlinear function of the two inputs a and b. 

The fuzzy outputs of whole fired rules are aggregated to obtain one fuzzy output. Through the third 

component, the final fuzzy output is defuzzified to come up with the final crisp value of the output. In 

Mamdani-type form, the Centre of Gravity (COG) is the most suitable defuzzifier; however, the Weighted 

Average (Wavg) is more prevalent in the Sugeno-type. In the mid-nineties of the last century, Jang 

developed a fuzzy inference system (FIS) by means of an artificial neural network (ANN), namely the 

Adaptive Network-based Fuzzy Inference System (ANFIS). Consequently, the conjunction between the 

two strategies re-enforced the resulting system with the ability to model a complex system with high 

nonlinearity as well as to be trained in the same procedure as the one used in ANN.  

3.2 MPA Optimizer 

The marine predators algorithm (MPA) is a very new optimizer that was proposed by Faramarzi et al. in 

March 2020. The main MPA inspiration is the widespread search for food strategy, which is the 

movement of Levy and Brownie among surrounding predators together with an optimum encounter of 

modified policy in the biological interface between the predator and the prey. More details about core 

idea and mathematical representation can be found in [53]. In MPA, the prey, as well as the predator, is 

viewed as search representative, since the predator is searching for the prey; meanwhile, the prey itself 

looking for its food. The velocity ratio among the predator and the prey is the key factor in transferring 

the process from one stage to another. In MPA, the large-velocity ratio is a notable feature in the first 

phase, whereas unity and low ratio are the visible markers for the second and third stages. 

The optimization process by MPA contains three main stages dependent upon the speed ratio between the 

prey as well as predator. In the first stage (high ratio) the prey moves very fast searching for its food; 

meanwhile, the predator stands without moving. This situation occurs in the first third of repetitions when 

the step size or the velocity is large for high evaluation ability. The step size in this stage can be 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



formulated by the following relation [53]; 

 iPreysize B i BS R Elite R   
uuuuur uuuuur

                                                                   (3) 

Where; 

Elite
uuuuur

 denotes the fittest solution which is nominated as the top predator 

Prey
uuuuur

represents another matrix with a similar dimension as Elite
uuuuur

 where the predators review their 

positions based on it. 

RB is a random vector 

  denotes the process of eliminating wise multiplications. 

For the second phase, both the predator and the prey are shifting at the same velocity. This stage occurs in 

the middle stage of the optimization procedure. Accordingly, part of the population is nominated for 

investigation and the other half for utilizations. The prey is accountable for utilization and the predator for 

investigation. The prey moves in Lévy, whereas the predator moves in Brownian. 

The step size for the first half of the population can be estimated as follows; 

 iPreysize L i LS R Elite R   
uuuuur uuuuur

                                                                 (4) 

Where RL is a vector of random numbers founded on Lévy’s distribution  

The second half of the population follows the Brownian strategy. In the last stage, the predator is moving 

quicker than the prey. This stage occurs at the end of the optimization procedure, which is typically 

related to great exploitation ability. Therefore, the Lévy distribution is adopted to update the step size of 

the population. 

Based on the developed fuzzy models, the MPA optimizer is applied to obtain the optimal values 

of the controlling parameters (i.e., temperature and nanofluid mixture percentage) that minimize two 

controlled variables (i.e., density and viscosity) as well as maximize the other two controlled variables 

(thermal conductivity and specific heat). In this study, the optimization procedure is done in two different 

strategies. The first is to optimize each output individually as a single-objective (SO) function. The 

second is to optimize the whole set of outputs all at once (simultaneously). The latter procedure could be 

considered as a multi-objective (MO) optimization. However, the MO optimization can be transformed to 

be manipulated as a SO by summing up the normalized SO functions, as shown in Equation (3). 

f(X) = WY
T
 (3) 

where, X = [x1, x2], W = [w1, w2, -w3, -w4] and Y = [ y1, y2, y3, y4] 

X is the controlling variables’ vector that refers to the temperature and the nanofluid mixture’s percentage, 

respectively; W is the scaling (normalizing) vector, which is equal to [1002, 1.50263, -0.778, -4183] and 

Y is the output’s vector that refers to the density, viscosity, thermal conductivity, and specific heat, 
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respectively. 

4. Results and Discussion 

4.1. Characterization of rGO/Co3O4    

The TEM (JEOL 2200F, 200KV) results were presented in Fig. 2b and the TEM samples were prepared 

by water diluted rGO/Co3O4 deposited on the copper grid. Results clearly indicated the synthesized rGO is 

a 2-dimensional sheet (left-side image) without any impurities. Based on the in-situ growth technique, the 

cobalt oxide is reduced onto the rGO sheet through –COOH groups, and these –COOH groups act as a 

covalent bond between rGO and Co3O4 and help with the uniform dispersion of nanoparticles in water. 

The TEM results of rGO/Co3O4 clearly show the Co3O4 nanoparticles are dispersed on the top surface of 

the rGO sheet.     

 

Fig. 2 rGO/Co3O4 hybrid nanoparticles, (a) synthesis procedure, and (b) TEM results 

 

The Fourier transform infrared (Bruker Equinox V70) spectra rGO, Co3O4, and rGO/Co3O4 are 

indicated in Fig. 3. The IR spectra of rGO indicate the presence of various groups: the wavenumbers of 

1623 cm
-1

 and 1726 cm
-1

 indicate the C=C group and C=O groups. These two groups reveal the formation 

of –COOH groups on the surface of rGO. Additionally, the wavenumber of 1044 cm
–1

, 1221 cm
–1, 

and 
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1411 cm
–1 

indicated the formation of C–O–C epoxy or alkoxy groups. The IR spectra of Co3O4 also 

presents various groups: the wavenumbers of 584 cm
–1

 and 671 cm
-1

 are related to the Co–O vibration 

[54], which shows that Co
2+

 is oxidized into Co3O4. Moreover, the IR spectra of rGO/Co3O4 exhibits the 

peaks of both rGO and CO3O4, which are at wavenumbers of 1623, 1726, 1044, 1221, and 1411 cm
–1

 

related to C=C, C=O, and C–O–C groups for rGO and the wavenumbers 584 and 671 cm
-1

 are related to 

Co–O groups for Co3O4.   

 

Fig. 3 FTIR results of the prepared nanomaterials. 

The XRD (Siemens D-500) patterns of rGO/Co3O4 and Co3O4 are represented in Fig. 4. From the XRD 

pattern, the Co3O4 nanoparticles planes of (111), (220), (311), (400), (511), and (440) and the 

corresponding 2𝜃 positions of19.03
o
, 31.31

o
, 36.87

o
, 44.81

o
, 59.42

o
, and 65.25

o
 were perfectly matched 

with the JCPDS card No: 073-1701 file, which identifies the cubic structure of the nanoparticles. The rGO 

plane of (002) and the corresponding 2𝜃 position is 11.67
o
, which can be observed in the rGO/Co3O4 

nanoparticles, and it is marked in the figure.  

The average hybrid nanoparticle size was evaluated based on Scherrer’s expression 

proposed by Sundar et al. [55], and the equation is presented below. 

Scherrer’s equation, 𝛿 =
0.94 𝜆

𝐵(2𝜃)𝐶𝑜𝑠𝜃
                                                                          (1) 

The terms in Eq. (1) are particle size (𝛿), Bragg angle (θ), and wavelength (𝜆 =1.5405 Å) and  

𝐵(2𝜃) is the peak at full width half maximum.  

From XRD patterns, the 𝐵(2𝜃) value is 1.3
o
 (0.0226 radians) and (θ) = 36.83

o
. By substituting 

these values in Eq. (1), it was found that the hybrid nanoparticle size is 79.64 nm.  
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Fig. 4 XRD results of the prepared nanomaterials. 

The weight composition of rGO and Co3O4 nanoparticles was analyzed on the magnetic characterization. 

The composite matrix contains non-magnetic material (rGO) and magnetic material (Co3O4). The same 

synthesis procedure is adopted without using rGO for the preparation of Co3O4 nanoparticles for 

comparison purposes. Fig. 5 shows the magnetic (Crogenics, UK) results of both rGO/Co3O4 and Co3O4. 

By using rGO, the magnetic behaviour of Co3O4 is decreased. The magnetization value of Co3O4 is 14.23 

emu/g [56, 57], but with the mixing of rGO its value is decreased to 4.67 emu/g. Based on the 

magnetization rule, the decreased magnetization of Co3O4 is 33%, which means 67% of rGO is present in 

the rGO/Co3O4 material matrix.  Fig. 5 shows the magnetic measurement results, which indicate the 

potential of the prepared hybrid nanoparticles to be used as ferrofluids, due to their magnetic property.  
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Fig. 5 Magnetic measurement results of the prepared nanomaterials. 

 

4.2. Thermophysical properties of rGO/Co3O4 nanofluids  

The properties of thermal conductivity, viscosity, density, and specific heat are measured for heat transfer 

and thermal performance applications with the weight concentrations of 0.05%, 0.1% and 0.3% for 

temperatures from 20
o
C to 60

o
C.  

 

4.2.1. Thermal conductivity and viscosity of nanofluids 

The most complex and essential thermophysical property of nanofluids is thermal conductivity, which has 

attracted attention from researchers. There are some factors such as the concentration of nanoparticles, 

base fluid, temperature, particle size, Brownian motion of particles, clustering effect, and pH value that 

impact the thermal conductivity of hybrid nanofluids.  

In the study, the thermal conductivity and viscosity of hybrid nanofluids were measured 

experimentally, and the data is recorded in Fig. 6 and Fig. 7, respectively. By increasing the particle 

loading wt.% and temperature, enhancement in thermal conductivity was observed. The enhancement in 

thermal conductivity of 2.82%, 3.82%, and 7.64% was observed at 20
o
C and 0.05 wt.%, 0.1 wt.%, and 0.2 

wt.%, respectively, as compared to water data. At 60
o
C, the enhancement in thermal conductivity was 

8.58%, 12.40%, and 19.14%, respectively, as compared to water data, as presented in Fig. 6. Intensifying 

the temperature increases the kinetic energy, and the interface, because of more significant Brownian 

motion, is improved, which in turn increases thermal conductivity. The increase in particle loading not 
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only results in higher thermal conductivity and viscosity, but also causes aggregations, which make the 

performance susceptible [58, 59]. The cluster formations of the investigated hybrid nanofluid could be a 

possible mechanism for enhanced thermal conductivity. An increase in thermal conductivity with the 

increase in temperature is desirable for applications that work at higher temperatures.  

The modification in the pH value of the hybrid nanofluids provides effective outcomes to enhance 

the thermal conductivity. Optimum pH value signifies enhanced dispersion of nanoparticles in the base 

fluid due to the improved electrostatic repulsive forces that reduce clusters and improve performance. The 

nanoparticle size has a significant impact on the thermal conductivity of nanofluids. Most literature has 

reported the effect of nanoparticle size on thermal conductivity enhancement. It was observed that smaller 

nanoparticles provided high thermal conductivity as compared to large-sized nanoparticles. The effect of 

sonication might also play a significant role in the enhancement of thermal conductivity. All these 

parameters should be taken into account to enhance the thermal conductivity of hybrid nanofluids [60]. 

It was observed by increasing particle loading wt.% that the viscosity improved, but it decreased 

with a rise in temperature as presented in Fig. 7. The viscosity was enhanced up to 7.59%, 16.45%, and 

49.39% at 0.05 wt. %, 0.1 wt.%, 0.2 wt.% at 20
o
C, whereas at 60

o
C, the enhancement was observed at 

about 16.66%, 33.33% and 70.83%, respectively as compared to water data. The enhancement in the 

viscosity of hybrid nanofluids is due to the high resistance among the fluid layers and the high density of 

nanoparticles [61, 62]. The variation in viscosity affects the flow property parameters such as pumping 

power, convective heat transfer, and pressure drop. Van der Waals forces became noteworthy by 

increasing the particle concentration, which caused nanoclusters. These clusters opposed the fluid’s 

movement and thus enhanced viscosity. The impact of increasing the volume concentration was 

significant at low temperatures as compared to high temperature, where the Van der Waals forces at high 

temperature are lower. Conclusively, the interaction between the molecules of the base fluid and the 

nanoparticles, as well as adhesive intermolecular forces among the particles, results in an increase of 

viscosity for the studied hybrid nanofluids.  

Several investigations examined the effects of various parameters such as particle size, stability, 

sonication time, temperature, particle concentration, and the dispersion methods on the conventional 

nanofluids’ viscosity [63]. Most literature focused on the impact of temperature and volume concentration 

with several nanoparticles in hybrid nanofluids. These are the parameters that affect viscosity the most, 

but other parameters are also significant. Scholars in the future should conduct studies, taking these 

parameters into consideration, to improve and analyze the models for precise computation of viscosity.  
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Fig. 6 Thermal conductivity for different concentrations and changing temperatures. 

 

Fig. 7 Viscosity for different concentrations and changing temperatures. 

 

4.2.2. Density and specific heat of nanofluids 

The Archimedes’ principle, the density of nanofluids were measured, and a differential scanning 

calorimeter was used to measure the specific heat of nanofluids, the data for which is presented in Fig. 8 

and Fig. 9, respectively. With increased particle loadings, the density increased, but it decreased with the 
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increasing temperatures. At 0.05%, 0.1%, and 0.2% particle loading wt.%, the density rise was 1.0011-

times, 1.0022-times, and 1.0045-times at 20
o
C; simultaneously, the density rise was 1.0012-times, 

1.0023-times and 1.0047-times at 60
o
C, respectively compared to water data as shown in Fig. 8. Due to 

particle loadings in the base fluid, the mass of the fluid increased. The increment in the density of the 

hybrid nanofluids is due to the density of nanoparticles, which is more significant compared to the base 

fluid, which attributes the interface effects of the bulk fluid properties, as well as the interaction between 

the nanoparticles [64].  

The specific heat of nanofluids decreased with increased particle loadings and temperatures. At 

0.2 wt.%, the maximum decreased specific heat is 0.192% and 0.194% at 20
o
C and 60

o
C, when compared 

with water, but no effect was observed with the increase in temperature; however, a similar trend as of the 

water was followed, which is shown in Fig. 9. Under the fixed heat supplied to base fluid and nanofluids, 

the temperature difference is lower for nanofluids compared to water. The specific heat of the hybrid 

nanofluids decreased with the increase in the concentration of the nanoparticles and the same pattern as 

that of the base fluid was followed with the increase in temperature. This could possibly be explained that 

due to the higher surface area of the hybrid nanoparticles, the more significant impact of the surface free 

energy on the overall specific heat capacity. Very few studies [45-47], have been reported in the literature 

on the specific heat capacity of hybrid nanofluids, and these studies showed a similar trend as observed 

for our samples.  

 

 

Fig. 8 Density for different concentrations and changing temperatures. 
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Fig. 9 Specific heat of different particle loadings of hybrid nanofluids at different temperatures. 

 

4.3 Modeling and optimization 

4.3.1 ANFIS-based Modelling 

Systems modeling is a strategy often used in engineering applications in two main instances. The first is 

to predict output for inputs that have values different from those conducted in the experiments, but the 

values are within the input-space. The second is to predict output for inputs that have values beyond the 

input-space. In both cases, the resulting model must be robust as well as accurate for it to be relied upon. 

Modelling using ANFIS strategy proved to be an efficient tool, especially in complex and nonlinear 

systems.  

In this study, only 20 data samples were available. Each of them represents a case where the 

temperature and volume concentration of nanoparticles take a value of 20, 40, 50, and 60
o
C and 0, 0.05, 

0.1, and 0.2, respectively. The dataset was divided into two subsets. The first subset comprised of 75% 

(15 samples) of the data samples and was assigned to training. The remaining 25% (5 samples) was 

assigned for testing. The testing subset is usually used to guarantee the success of the training phase and 

ensure those model predictions are accurate and trustable. The fuzzy system’s structure is Sugeno-type, 

which is the most appropriate one for modelling. The fuzzifying MF was selected in Gaussian shape, and 

the defuzzifying method was the Wavg. As the ANFIS is only applicable to a single output system, four 

ANFISes were constructed with a two-input one-output structure. Each ANFIS model represents one of 

the considered outputs. The fuzzy rules were formulated using the “Subtractive Clustering” (SC) 

algorithm. This algorithm can generate the rules from the input-output dataset with a minimum number of 

rules based on a clustering technique. The proposed models of density, viscosity, thermal conductivity, 
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and specific heat ended up with a value of 7, 5, 7, and 5, respectively. All models were trained with 10 

epochs, and the output function was ‘linear’. 

To examine the models’ accuracies, every model was trained until a satisfying small value of the 

mean squared errors (MSE) for the testing subset were met. Table 2 summarizes the statistical measures 

of the modelling phase. The table shows the lowest MSEs values found so far from the training, 

validating, and entire data for the four models. The error here is considered as the difference between the 

experimental output and the fuzzy prediction. Also, the R
2
 measure is an indicator of the well-correlation 

between the models’ predictions and the experimental data, not only for the training subsets but also for 

the testing subsets where the values exceed 99%. 

 

Table 2: The MSEs of the four fuzzy models’ predictions for training, testing, and whole data 

           MSE 

Output 

MSE RMSE R
2
 

Train  Test  All  Train  Test  All  Train  Test  All  

Density 
1.26e-

04 

5.47e-

02 
1.38e-02 1.12e-02 

2.34e-

01 

1.17e-

01 
1.0000 0.9986 0.9995 

Viscosity 
9.34e-

09 

8.36e-

05 
2.09e-05 9.67e-05 

9.14e-

03 

4.57e-

03 
1.0000 0.9989 0.9997 

Thermal 

Conductivity 

1.43e-

11 

1.35e-

05 
3.39e-06 3.78e-06 

3.68e-

03 

1.84e-

03 
1.0000 0.9957 0.9987 

Specific Heat 
1.30e-

03 

1.04e-

01 
2.71e-02 3.60e-02 

3.23e-

01 

1.65e-

01 
0.9999 0.9977 0.9980 

 

For a simple comparison between the fuzzy model computations and the experimental data, the visual 

plots are considered the easiest way. Therefore, the ANFISes outputs are plotted against the experimental 

values for the density, viscosity, thermal conductivity, and specific heat experimental datasets, 

respectively. The four models’ outputs are plotted against the two inputs in a Three-Dimensional (3D) 

shape, as shown in figures (9a), (9b), (9c) and (9d). The plots are for both training and testing. From the 

figures, the predictions coincide well with the corresponding experimental data, which supports the 

correctness of the modelling phase. 
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Fig. 9a A comparison between the experimental data and the outputs of the density’s fuzzy model of a) 

training b) testing. 

 

 

Fig. 9b. A comparison between the experimental data and the outputs of the viscosity fuzzy model of a) 

training b) testing. 
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(a) (b) 

Fig. 9c. A comparison between the experimental data and the outputs of the thermal conductivity fuzzy 

model of a) training b) testing. 

 

 

  

(a) (b) 

Fig. 9d. A comparison between the experimental data and the outputs of the specific heat’s fuzzy model 

of a) training b) testing. 

 

In modelling, the visualization of the spatial shape helps in understanding the relationship between the 

inputs and the output. Figures (10a), (10b), (10c) and (10d) show the 3D shape with the contours of the 

ANFISes models, respectively. The contour curves are helpful in illustrating the nonlinear behavior of the 

output in terms of the variation of the inputs. 
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Fig. 10a. The 3-D spatial shape that relates the density with temperature and nanofluid material. 

 

Fig. 10b. The 3-D spatial shape that relates the viscosity with temperature and nanofluid material 
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Fig. 10c. The 3-D spatial shape that relates the thermal conductivity with temperature and nanofluid 

material 

 

 

Fig. 10d. The 3-D spatial shape that relates the specific heat with temperature and nanofluid material 

The resulting Gaussian membership functions for the temperature and nanofluid mixture after applying 
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the SC method and the 10 epochs training phase are shown in figures (11a), (11b), (11c) and (11d) for 

density, viscosity, thermal conductivity, and specific heat, respectively. 

 

Fig. 11a. The density fuzzy model inputs’ MFs. 

 

Fig. 11b. The viscosity fuzzy model inputs’ MFs. 
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Fig. 11c. The thermal conductivity fuzzy model inputs’ MFs. 

 

Fig. 11d. Specific heat fuzzy analysis inputs’ MFs. 

 

Usually, the prediction accuracy plot is mandatory to measure the extent to which the model predictions 
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are trustable. Therefore, the predicted data are plotted against the target data for the training as well as the 

testing subsets. These plots for the four models are shown in figures (12a), (12b), (12c), and (12d), 

respectively. It can be clearly noticed that the predictions in the figures are close to one hundred percent 

accuracy, which is represented by the diagonal line. 

 

Fig.12a. Density fuzzy analysis prediction accuracy. 

 

Fig12b. The viscosity’s fuzzy analysis prediction accuracy 
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Fig. 12c. The thermal conductivity’s fuzzy analysis prediction accuracy. 

 

Fig.12d. The specific heat’s fuzzy model prediction accuracy. 

 

4.3.2 Determination of optimal parameters based on MPA 

During the optimization phase and for a fair comparison, the values of the MPA parameters have been 

kept fixed for all optimization runs. In other words, the number of agents (particles or solutions) was kept 

at a value of 20, and the maximum number of iterations was kept at a value of 100. Furthermore, the 
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upper and lower temperatures were 60 and 20, respectively, while the nanofluid material percentage was 

0.2 and 0, respectively. 

The optimization is done first to optimize each output as a single object. Thus, W and Y in Equation (3) 

become W = 1 and Y= yn, respectively; where, n = 1, 2, 3, and 4, which refers to the output index. Then, 

multi-objective optimization takes place in two cases; first, to look for the optimal value withing the 

input-output search space, and second, to find out which experiment produces the optimal case. The MPA 

optimizer was applied in all the cases, and the results are illustrated in Table 3. The table compares the 

optimizer findings with the experimental data for single-objective cases.  From the table, it can be noticed 

that density can have a much lower value than that obtained experimentally. However, a value of 

973.743403 g/cm
3
 can be the result when the temperature is lowered to 56.258382

o
C with no nanofluid 

material. 

On the other hand, the viscosity, thermal conductivity, and specific heat all match with the experimental 

data. In Case 1 of multi-objective optimization, the optimizer produced optimal values that occurred at a 

temperature of 60
o
C and a percentage of 0.056005 of nanofluid material. According to the optimizer 

results of Case 2, the temperature at 60
o
C and the nanofluid percentage at 0.05 are the optimal conditions 

that provide the best density, viscosity, thermal conductivity, and specific heat among all the experimental 

cases— it is worth mentioning that all swarm optimizations are based on random processes. Therefore, to 

avoid the doubt of obtaining the results randomly, the MPA optimizer was executed 100 times. The whole 

runs were found to produce the same results. Consequently, the optimizer’s results are reliable and 

trustworthy.   

Table 3: Proposed strategy optimal parameters compared to those obtained experimentally 

Method 
Optimization 

Type 

Controlling Variables Controlled Variables 

Temperature 

(℃) 

Particles 

loading 

(wt.%) 

Density Viscosity 
Thermal 

Conductivity 

Specific 

Heat 

Experimental 

Single 
60 0 

985 (Min) 

0.478 

(Min) 0.653 4183 (Max) 

Single 60 0.2 989.62 0.81658 0.778 (Max) 4175.88 

Optimal using 

ANFIS & 

MPA 

Single 56.26 0 973.74 0.53 0.65 4182.02 

Single 60 0 985.01 0.48 0.65 4183.02 

Single 60 0.2 989.62 0.80 0.78 4175.91 

Single 60 0 985.01 0.48 0.65 4183.02 

Optimal using Multi 60 0.056 986.28 0.57 0.72 4180.90 
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ANFIS & 

MPA (Case1) 

Optimal using 

ANFIS & 

MPA (Case2) 

Multi 60 0.05 986.14 0.56 0.72 4181.13 

 

The movements of the swarm agents that represent the proposed solutions during the optimization process 

were plotted against the iteration number to show the solutions’ convergence.  Figures (13a), (13b), and 

(13c) illustrate the solution agents’ convergence curves throughout the optimization process for the 

objective function, temperature, and the nanofluid material percentage. The figures illustrate that the 

solutions converge after approximately 70 iterations, which indicates that the value of 100 as a maximum 

number of iterations is fair. Furthermore, the crowded plots of the solution agents (particles) at the 

beginning of the optimization process show that several solutions were proposed before the convergence 

occurred. Also, it is worth mentioning that the negative value of the cost function shown in Figure 13a 

indicates that the sum of the normalized outputs to be maximized is more significant than the sum of the 

normalized outputs to be minimized.  

 

Fig. 13a. 1 Output’s solution agents’ convergence curve 
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Fig. 13b. Temperature’s solution agents’ convergence curve 

 

Fig. 13c. Nanofluid material percentage’s solution agents’ convergence curve 

Until now, the optimization process had been performed within the experiment’s upper and lower limits 

of the controlling variables. To maximize the benefits from the obtained fuzzy models, these limits were 
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extended in both lower and upper directions by 5, 10, 15, 20, and 25 percent. This strategy was proposed 

to find out an optimal point outside the inputs’ domain of the experimental data. Therefore, the 

optimization process was executed once again at each percent of the extended searching domain. The 

process was implemented for both single and multi-objective optimizations. 

 

Table 4: The results for single and multi-objective optimization in the extended search domain 

Objective 

function 

Extension 

(%) 

Controlling Variables Controlled Variables 

Temperature 

(
o
C) 

Particles 

loading 

(wt.%) 

Density Viscosity 
Thermal 

Conductivity 

Specific 

Heat 

 

 

Density 

5 56.258382 0 973.743403 0.532234 0.648818 4182.01987 

10 56.258386 0 973.743403 0.532234 0.648818 4182.019871 

15 56.258382 0 973.743403 0.532234 0.648818 4182.01987 

20 56.258382 0 973.743403 0.532234 0.648818 4182.01987 

25 56.258382 0 973.743403 0.532234 0.648818 4182.01987 

Viscosity 

5 63 0 1010.829728 0.428685 0.656518 4183.835442 

10 66 0 1048.667238 0.377977 0.660367 4184.654658 

15 69 0 1094.352174 0.326821 0.664904 4185.474615 

20 72 0 1144.507196 0.275530 0.670832 4186.294211 

25 75 0 1196.984383 0.224199 0.679495 4187.113183 

Thermal 

Conductivity 

5 63 0.21 1015.865518 0.769150 0.805964 4184.671268 

10 66 0.22 1053.888850 0.736247 0.840268 4193.431522 

15 69 0.23 1099.634213 0.701604 0.879148 4202.191398 

20 72 0.24 1149.797024 0.665319 0.920654 4210.951029 

25 75 0.25 1202.265861 0.628174 0.963390 4219.710541 

Specific 

Heat 

5 63 0.21 1015.865518 0.769150 0.805964 4184.671268 

10 66 0.22 1053.888850 0.736247 0.840268 4193.431522 

15 69 0.23 1099.634213 0.701604 0.879148 4202.191398 

20 72 0.24 1149.797024 0.665319 0.920654 4210.951029 

25 75 0.25 1202.265861 0.628174 0.963390 4219.710541 

Multi-

objective 

(Case 1) 

5 63 0.059621 1012.246952 0.523923 0.738936 4181.575636 

10 66 0.069898 1050.432051 0.489651 0.772335 4182.008950 

15 69 0.102893 1097.159869 0.491226 0.843757 4181.436581 
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20 72 0.096754 1147.241632 0.430124 0.886932 4182.615842 

25 75 0.086271 1199.432497 0.362041 0.928519 4183.882418 

 

From Table 4, it can be noticed that in a single optimization of the density, the lowest value is only found 

at a temperature of 56.258382
o 

C with no nanofluid mixture, and there are no benefits of extending the 

search space. However, the viscosity decreases by increasing the temperature but with the absence of the 

nanofluid material. On the other hand, the thermal conductivity is proportional to both temperatures as 

well as the percentage of the nanofluid material. Similarly, the specific heat also increases with the 

increase of both controlling variables. 

In the case of multi-objective optimization, the degree of improvement in each output is measured relative 

to the data of the optimal experiment (refer to Case 2 in Table 2). The percentages of gains are calculated 

according to Equation (6). 

𝐺𝑛 = (−1)𝑀 𝑅−𝑉

𝑅
∗ 100 (6) 

where, 𝐺𝑛 is the gain of output n; n = [1, 2, 3, 4]; R is the value of the output obtained at the optimal 

experiment (reference value); V is the corresponding output found through the extended range; M takes a 

value of 0 or 1 in case of minimization and maximization, respectively.  

An output with a positive gain indicates that there is an improvement in this output and vice versa. In a 

certain condition, the overall improvement I is calculated as the sum of the gains of the four outputs as in 

Equation (7). 

 𝜻 =  ∑ 𝐺𝑛
4
𝑛=1   (7) 

Based on Equation (7), Table 5 shows the values of the gains and the improvement measure in each state 

of the extending range of the inputs.  

Table 5: The improvement measure and the gains of the outputs resulting from the optimization with the 

extended range 

Extension 

(%) 
G1 G2 G3 G4 ζ 

5 -2.64577 6.051428 4.222285 0.008457719 7.636396 

10 -6.51789 12.197 8.933004 0.018821053 14.63093 

15 -11.2563 11.91457 19.00663 0.005132016 19.67006 

20 -16.3348 22.87123 25.09619 0.033335757 31.666 

25 -21.6271 35.07971 30.96178 0.063627762 44.478 

 

From Table 4 and based on the improvements measure presented in Table 5, it can be noticed that the 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



total outputs except density show improvement by extending the search space. Also, the overall 

improvement measure I increases with the extended range. A vast improvement in the extended range is 

noticed on the viscosity and thermal conductivity, as shown from the values of G2 and G3, respectively. 

Therefore, the proposed methodology succeeded in finding out the optimal values of the current system, 

not only in the case of experimental search-space but also when the inputs’ domain was extended within a 

specific range. Utilizing appropriate optimization algorithms, the relative error between the actual data 

and the prediction models can be reduced, which is highly significant for the precision of the models. 

Therefore, future studies must focus on comprehensive modelling that is applicable to different kinds of 

nanofluids.  

Further research work can be carried out for higher particle volume fraction, particle shape, particle size 

and higher temperatures for predicting the thermophysical properties of models utilizing different 

assessment tools and modeling for the nanofluids investigated in this work. The prepared hybrid 

nanoparticles can also be suspended in different base fluids such as oil and molten salts for applications 

that requires high temperatures.  

5. Conclusions 

In this study, rGO/Co3O4 nanocomposite was synthesized, characterized, and then the thermophysical 

properties were obtained experimentally, after which the experimental data at varying values of 

temperature and particle loadings was used for optimization purposes. The study was concerned with 

different values of the controlling parameters. The in-situ/chemical reduction technique was used to 

synthesize the rGO/Co3O4 nanocomposite and then characterized with x-ray diffraction, transmission 

electron microscope, and magnetometry.  The system was studied at temperature values of 20, 30, 40, 50, 

and 60℃ and with 0.05%, 0.1% and 0.2% volume concentrations. The rGO/Co3O4 nanocomposite 

nanofluid thermal conductivity and viscosity were investigated experimentally, and a maximum 

increment of 19.14% and 70.83% with 0.2% particle loadings at a temperature of 60
o
C was obtained. At 

0.05%, 0.1%, and 0.2% particle loading wt.%, the density increased by 0.115%, 0.23%, and 0.451% at a 

temperature of 20℃. Simultaneously, density increased by 0.117%%, 0.235%, and 0.469% respectively, 

at a temperature of 60℃, compared to water. At 0.2 wt.%, specific heat got reduced by 0.192% and 

0.194% at 20
o
C and 60

o
C, respectively. When compared with water, no significant effect with the 

increase in temperature was observed: a similar trend as that of the water was followed by the prepared 

nanofluids. The main goal of this work is to determine the optimal values of temperature and the 

nanoparticle concentration that reduce the density and viscosity and maximize thermal conductivity and 

specific heat in a nanofluid mixture. An ANFIS model as an AI tool has been built for each output. Based 

on the four models, a recent MPA optimizer has been applied. The optimization process was implemented 

as a single and multi-objective optimization. The optimal values were found to be at 60℃ and a 
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percentage of 0.056 of nanofluid material. However, among the conducted experiments, the optimizer 

pointed out that the optimal experiment is the one conducted at 60 ℃ and with a nanofluid percentage at 

0.05. To benefit from the modelling technique, the optimization was executed outside the experimental 

input space by extending the searching domain by 5, 10, 15, 20, and 25%. This procedure was 

implemented for both single and multi-objective optimization. The results showed that there is an 

improvement when the inputs’ range is extended. In conclusion, the proposed methodology of modelling 

with an AI tool such as ANFIS technique and then determining the optimal parameters with the MPA 

accomplished the goal of the work with huge success. 

 

Appendix: Uncertainty analysis  

𝑄𝑐   = Conduction heat (W) 

𝑄𝑆  = Heat supplied (W) 

V = Voltage 

I = Current  

𝑘𝑛𝑓 = thermal conductivity of nanofluuids (W/mK) 

𝑑𝑚   = mean diameter of the needle (m) 

L = length of needle (m) 

∆𝑡 = temperature difference (
o
C) 

R = resistance of the needle  

(i) Thermal conductivity: 

(a)          𝑄𝑐 =
𝑘𝑛𝑓𝜋 𝑑𝑚𝐿 (∆𝑡)

(∆𝑟)                                                                                     (A1) 

(b)            𝑘𝑛𝑓 =
𝑄𝐸𝑙𝑒(∆𝑟)

𝜋𝑑𝑚𝐿(∆𝑡)                                                                                          (A2)       

(c)              𝑄𝑠 =  
𝑉2

𝑅
                                                                        (A3)      

(d)          
𝑈𝑄𝑆

𝑄𝑆
= √(2

𝑈𝑉

𝑉
)

2

+ (
𝑈𝑅

𝑅
)

2

                                              (A4) 

By combining all the parameters, the uncertainty of thermal conductivity is  

   
𝑈𝑘

𝑘
= √(2

𝑈𝑉

𝑉
)

2

+ (
𝑈𝑅

𝑅
)

2

+ (
𝑈𝑇1

𝑇1
)

2

+ (
𝑈𝑇2

𝑇2
)

2

+ (
𝑈𝐿

𝐿
)

2

+ (
𝑈𝑟1

𝑟1
)

2

+ (
𝑈𝑟2

𝑟2
)

2

     

         

𝑈𝑘

𝐾
=  √(2

0.1

220
× 100)

2
+ (

0.1

20
× 100)

2
+ (

0.1

60
× 100)

2
+ (

0.1

30
× 100)

2
+ (0.1)2 + (0.1)2 + (0.1)2                                              

                                                                                                              = 0.652%    
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(ii) Specific heat: 

(a)  𝑄𝑐 = �̇�𝐶𝑝(∆𝑡)                                                                                                                                               (A5) 

Heat gained by the fluid (𝑄𝑐) is equal to electrical heat supplied  (𝑄𝑆) 

Then,  𝐶𝑝 =
𝑄𝑆

�̇�(∆𝑡)                                                                                                                                              (A6) 

                      𝑄𝑠 =  
𝑉2

𝑅   

               
𝑈𝑄𝑆

𝑄𝑆
= √(2

𝑈𝑉

𝑉
)

2
+ (

𝑈𝑅

𝑅
)

2
                                                                                                         (A7) 

            By combining all the parameters, the uncertainty of specific heat is   

            
𝑈𝐶𝑝

𝐶𝑝
= √(2

𝑈𝑉

𝑉
)

2

+ (
𝑈𝑅

𝑅
)

2

+ (
𝑈�̇�

�̇�
)

2

+ (
𝑈𝑇1

𝑇1
)

2

+ (
𝑈𝑇2

𝑇2
)

2

     

       =  √(2
0.1

220
× 100)

2

+ (
0.1

20
× 100)

2

+ (
0.1

60
× 100)

2

+ (
0.1

60
× 100)

2

+ (
0.1

30
× 100)

2

          

                                                                                                                       = 0.6505%  
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Highlights 

 Novel rGO/Co3O4 nanocomposite is synthesized and characterized. 

 Increment of 19.14% with 0.2% particle loadings at 60
o
C was obtained for thermal 

conductivity.  

 Increment of 70.83% with 0.2% particle loadings at 60
o
C was obtained for viscosity. 

  A maximum reduction in specific heat is 0.194% at 60℃. 

 Optimal values were found to be at 60 ℃ and 0.056 % of particle loading.  
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