172 research outputs found

    A process-based model of conifer forest structure and function with special emphasis on leaf lifespan

    Get PDF
    We describe the University of Sheffield Conifer Model (USCM), a process-based approach for simulating conifer forest carbon, nitrogen, and water fluxes by up-scaling widely applicable relationships between leaf lifespan and function. The USCM is designed to predict and analyze the biogeochemistry and biophysics of conifer forests that dominated the ice-free high-latitude regions under the high pCO2 “greenhouse” world 290–50 Myr ago. It will be of use in future research investigating controls on the contrasting distribution of ancient evergreen and deciduous forests between hemispheres, and their differential feedbacks on polar climate through the exchange of energy and materials with the atmosphere. Emphasis is placed on leaf lifespan because this trait can be determined from the anatomical characteristics of fossil conifer woods and influences a range of ecosystem processes. Extensive testing of simulated net primary production and partitioning, leaf area index, evapotranspiration, nitrogen uptake, and land surface energy partitioning showed close agreement with observations from sites across a wide climatic gradient. This indicates the generic utility of our model, and adequate representation of the key processes involved in forest function using only information on leaf lifespan, climate, and soils

    Global parameterization and validation of a two-leaf light use efficiency model for predicting gross primary production across FLUXNET sites:TL-LUE Parameterization and Validation

    Get PDF
    Light use efficiency (LUE) models are widely used to simulate gross primary production (GPP). However, the treatment of the plant canopy as a big leaf by these models can introduce large uncertainties in simulated GPP. Recently, a two-leaf light use efficiency (TL-LUE) model was developed to simulate GPP separately for sunlit and shaded leaves and has been shown to outperform the big-leaf MOD17 model at six FLUX sites in China. In this study we investigated the performance of the TL-LUE model for a wider range of biomes. For this we optimized the parameters and tested the TL-LUE model using data from 98 FLUXNET sites which are distributed across the globe. The results showed that the TL-LUE model performed in general better than the MOD17 model in simulating 8 day GPP. Optimized maximum light use efficiency of shaded leaves (εmsh) was 2.63 to 4.59 times that of sunlit leaves (εmsu). Generally, the relationships of εmsh and εmsu with εmax were well described by linear equations, indicating the existence of general patterns across biomes. GPP simulated by the TL-LUE model was much less sensitive to biases in the photosynthetically active radiation (PAR) input than the MOD17 model. The results of this study suggest that the proposed TL-LUE model has the potential for simulating regional and global GPP of terrestrial ecosystems, and it is more robust with regard to usual biases in input data than existing approaches which neglect the bimodal within-canopy distribution of PAR

    Spectral Bio-indicator Simulations for Tracking Photosynthetic Activities in a Corn Field

    Get PDF
    Accurate assessment of vegetation canopy optical properties plays a critical role in monitoring natural and managed ecosystems under environmental changes. In this context, radiative transfer (RT) models simulating vegetation canopy reflectance have been demonstrated to be a powerful tool for understanding and estimating spectral bio-indicators. In this study, two narrow band spectroradiometers were utilized to acquire observations over corn canopies for two summers. These in situ spectral data were then used to validate a two-layer Markov chain-based canopy reflectance model for simulating the Photochemical Reflectance Index (PRI), which has been widely used in recent vegetation photosynthetic light use efficiency (LUE) studies. The in situ PRI derived from narrow band hyperspectral reflectance exhibited clear responses to: 1) viewing geometry which affects the asset of light environment; and 2) seasonal variation corresponding to the growth stage. The RT model (ACRM) successfully simulated the responses to the variable viewing geometry. The best simulations were obtained when the model was set to run in the two layer mode using the sunlit leaves as the upper layer and shaded leaves as the lower layer. Simulated PRI values yielded much better correlations to in situ observations when the cornfield was dominated by green foliage during the early growth, vegetative and reproductive stages (r = 0.78 to 0.86) than in the later senescent stage (r = 0.65). Further sensitivity analyses were conducted to show the important influences of leaf area index (LAI) and the sunlit/shaded ratio on PRI observations

    A Novel Diffuse Fraction-Based Two-Leaf Light Use Efficiency Model: An Application Quantifying Photosynthetic Seasonality Across 20 AmeriFlux Flux Tower Sites

    Get PDF
    . Diffuse radiation can increase canopy light use efficiency (LUE). This creates the need to differentiate the effects of direct and diffuse radiation when simulating terrestrial gross primary production (GPP). Here, we present a novel GPP model, the diffuse-fraction-based two-leaf model (DTEC), which includes the leaf response to direct and diffuse radiation, and treats maximum LUE for shaded leaves (εmsh defined as a power function of the diffuse fraction (Df)) and sunlit leaves (εmsu defined as a constant) separately. An Amazonian rainforest site (KM67) was used to calibrate the model by simulating the linear relationship between monthly canopy LUE and Df. This showed a positive response of forest GPP to atmospheric diffuse radiation, and suggested that diffuse radiation was more limiting than global radiation and water availability for Amazon rainforest GPP on a monthly scale. Further evaluation at 20 independent AmeriFlux sites showed that the DTEC model, when driven by monthly meteorological data and MODIS leaf area index (LAI) products, explained 70% of the variability observed in monthly flux tower GPP. This exceeded the 51% accounted for by the MODIS 17A2 big-leaf GPP product. The DTEC model’s explicit accounting for the impacts of diffuse radiation and soil water stress along with its parameterization for C4 and C3 plants was responsible for this difference. The evaluation of DTEC at Amazon rainforest sites demonstrated its potential to capture the unique seasonality of higher GPP during the diffuse radiation-dominated wet season. Our results highlight the importance of diffuse radiation in seasonal GPP simulation

    The global distribution of leaf chlorophyll content

    Get PDF
    Leaf chlorophyll is central to the exchange of carbon, water and energy between the biosphere and the atmosphere, and to the functioning of terrestrial ecosystems. This paper presents the first spatially-continuous view of terrestrial leaf chlorophyll content (ChlLeaf) at the global scale. Weekly maps of ChlLeaf were produced from ENVISAT MERIS full resolution (300 m) satellite data using a two-stage physically-based radiative transfer modelling approach. Firstly, leaf-level reflectance was derived from top-of-canopy satellite reflectance observations using 4-Scale and SAIL canopy radiative transfer models for woody and non-woody vegetation, respectively. Secondly, the modelled leaf-level reflectance was input into the PROSPECT leaf-level radiative transfer model to derive ChlLeaf. The ChlLeaf retrieval algorithm was validated using measured ChlLeaf data from 248 sample measurements at 28 field locations, and covering six plant functional types (PFTs). Modelled results show strong relationships with field measurements, particularly for deciduous broadleaf forests (R2 = 0.67; RMSE = 9.25 μg cm-2; p < 0.001), croplands (R2 = 0.41; RMSE = 13.18 μg cm-2; p < 0.001) and evergreen needleleaf forests (R2 = 0.47; RMSE = 10.63 μg cm-2; p < 0.001). When the modelled results from all PFTs were considered together, the overall relationship with measured ChlLeaf remained good (R2 = 0.47, RMSE = 10.79 μg cm-2; p < 0.001). This result is an improvement on the relationship between measured ChlLeaf and a commonly used chlorophyll-sensitive spectral vegetation index; the MERIS Terrestrial Chlorophyll Index (MTCI; R2 = 0.27, p < 0.001). The global maps show large temporal and spatial variability in ChlLeaf, with evergreen broadleaf forests presenting the highest leaf chlorophyll values, with global annual median values of 54.4 μg cm-2. Distinct seasonal ChlLeaf phenologies are also visible, particularly in deciduous plant forms, associated with budburst and crop growth, and leaf senescence. It is anticipated that this global ChlLeaf product will make an important step towards the explicit consideration of leaf-level biochemistry in terrestrial water, energy and carbon cycle modelling

    Carbon dynamics and management in Canadian boreal forests : triplex-flux model development, validation, and applications

    Get PDF
    La forêt boréale, seconde aire biotique terrestre sur Terre, est actuellement considérée comme un réservoir important de carbone pour l'atmosphère. Les modèles basés sur le processus des écosystèmes terrestres jouent un rôle important dans l'écologie terrestre et dans la gestion des ressources naturelles. Cette thèse examine le développement, la validation et l'application aux pratiques de gestion des forêts d'un tel modèle. Tout d'abord, le module récemment développé d'échange du carbone TRIPLEX-Flux (avec des intervalles de temps d'une demi heure) est utilisé pour simuler les échanges de carbone des écosystèmes d'une forêt au peuplement boréal et mixte de 75 ans dans le nord est de l'Ontario, d'une forêt avec un peuplement d'épinette noire de 110 ans localisée dans le sud de Saskatchewan, et d'une forêt avec un peuplement d'épinette noire de 160 ans située au nord du Manitoba au Canada. Les résultats des échanges nets de l'écosystème (ENE) simulés par TRIPLEX-Flux sur l'année 2004 sont comparés à ceux mesurés par les "tours de mesures de covariance des turbulences" et montrent une bonne correspondance générale entre les simulations du modèle et les observations de terrain. Le coefficient de détermination moyen (R2) est approximativement de 0.77 pour le peuplement mixte boréal, et de 0.62 et 0.65 pour les deux forêts d'épinette noire situées au centre du Canada. Le modèle est capable d'intégrer les variations diurnes de l'échange net de l'écosystème (ENE) de la période de pousse (de mai à août) de 2004 sur les trois sites. Le peuplement boréal mixte ainsi que les peuplements d'épinette noire agissaient tous deux comme des réservoirs de carbone pour l'atmosphère durant la période de pousse de 2004. Cependant le peuplement boréal mixte montre une plus grande productivité de l'écosystème, un plus grand piégeage du carbone ainsi qu'un meilleur taux de carbone utilisé comparé aux peuplements d'épinette noire. L'analyse de la sensibilité a mis en évidence une différence de sensibilité entre le matin et le milieu de journée, ainsi qu'entre une concentration habituelle et une concentration doublée de CO2. De plus, la comparaison de différents algorithmes pour calculer la conductance stomatale a montré que la production nette de l'écosystème (PNE) modélisée, utilisant une itération d'algorithme est conforme avec les résultats utilisant des rapports Ci/Ca constants de 0.74 et de 0.81 respectivement pour les concentrations courantes et doublées de CO2. Une variation des paramètres et des données variables de plus ou moins 10% a entrainé, respectivement pour les concentrations courantes et doublées de CO2, une réponse du modèle inférieure ou égale à 27.6% et à 27.4%. La plupart des paramètres sont plus sensibles en milieu de journée que le matin excepté pour ceux en lien avec la température de l'air, ce qui suggère que la température a des effets considérables sur la sensibilité du modèle pour ces paramètres/variables. L'effet de la température de l'air était plus important dans une atmosphère dont la concentration de CO2 était doublée. En revanche, la sensibilité du modèle au CO2 qui diminuait lorsque la concentration de CO2 était doublée. \ud Sachant que, les incertitudes de prédiction des modèles proviennent majoritairement des hétérogénéités spatio-temporelles au cœur des écosystèmes terrestres, à la suite du développement du modèle et de l'analyse de sa sensibilité, sept sites forestiers à tour de mesures de flux (comportant trois forêts à feuilles caduques, trois forêts tempérées à feuillage persistant et une forêt boréale à feuillage persistant) ont été sélectionnés pour faciliter la compréhension des variations mensuelles des paramètres du modèle. La méthode de Monte Carlo par Markov Chain (MCMC) à été appliquée pour estimer les paramètres clefs de la sensibilité dans le modèle basé sur le processus de l'écosystème, TRIPLEX-Flux. Les quatre paramètres clefs sélectionnés comportent: un taux maximum de carboxylation photosynthétique à 25°C (Vmax), un taux du transport d'un électron (Jmax) saturé en lumière lors du cycle photosynthétique de réduction du carbone, un coefficient de conductance stomatale (m), et un taux de référence de respiration à 10°C (R10). Les mesures de covariance des flux turbulents du CO2 échangé ont été assimilées afin d'optimiser les paramètres pour tous les mois de l'année 2006. Après que l'optimisation et l'ajustement des paramètres ait été réalisée, la prédiction de la production nette de l'écosystème s'est améliorée significativement (d'environ 25%) en comparaison avec les mesures de flux de CO2 réalisés sur les sept sites d'écosystèmes forestiers. Les résultats suggèrent, dans le respect des paramètres sélectionnés, qu'une variabilité plus importante se produit dans les forêts à feuilles larges que dans les forêts d'arbres à aiguilles. De plus, les résultats montrent que l'approche par la fusion des données du modèle incorporant la méthode MCMC peut être utilisée pour estimer les paramètres basés sur les mesures de flux, et que des paramètres saisonniers optimisés peuvent considérablement améliorer la précision d'un modèle d'écosystème lors de la simulation de sa productivité nette et cela pour différents écosystèmes forestiers situés à travers l'Amérique du Nord. Finalement, quelques uns de ces paramètres et algorithmes testés ont été utilisés pour mettre à jour l'ancienne version de TRIPLEX comportant des intervalles de temps mensuels. En outre, le volume d'un peuplement et la quantité de carbone de la biomasse au dessus du sol des forêts d'épinette noire au Québec sont simulés en relation avec un peuplement des âges, cela à des fins de gestion forestière. Ce modèle a été validé en utilisant à la fois une tour de mesure de flux et des données d'un inventaire forestier. Les simulations se sont avérées réussies. Les corrélations entre les données observées et les données simulées (R2) étaient de 0.94, 0.93 et 0.71 respectivement pour le diamètre à l.3 m, la moyenne de la hauteur du peuplement et la productivité nette de l'écosystème. En se basant sur les résultats à long terme de la simulation, il est possible de déterminer l'âge de maturité du carbone du peuplement considéré comme prenant place à l'époque où le peuplement de la forêt prélève le maximum de carbone, avant que la récolte finale ne soit réalisée. Après avoir comparé l'âge de maturité du volume des peuplements considérés (d'environ 65 ans) et l'âge de maturité du carbone des peuplements considérés (d'environ 85 ans), les résultats suggèrent que la récolte d'un même peuplement à son âge de maturité de volume est prématuré. Décaler la récolte d'environ vingt ans et permettre au peuplement considéré d'atteindre l'âge auquel sa maturité du carbone prend place, mènera à la formation d'un réservoir potentiellement important de carbone. Aussi, un nouveau diagramme de la gestion de la densité du carbone du peuplement considéré, basé sur les résultats de la simulation, a été développé pour démontrer quantitativement les relations entre les densités de peuplement, le volume de peuplement et la quantité de carbone de la biomasse au dessus du sol à des stades de développement variés, dans le but d'établir des régimes de gestion de la densité optimaux pour le rendement de volume et le stockage du carbone. \ud ______________________________________________________________________________ \ud MOTS-CLÉS DE L’AUTEUR : écosystème forestier, flux de CO2, production nette de l'écosystème, eddy covariance, TRIPLEX-Flux module, validation d'un modèle, Markov Chain Monte Carlo, estimation des paramètres, assimilation des données, maturité du carbone, diagramme de gestion de la densité de peuplemen

    On the Functional Relationship Between Fluorescence and Photochemical Yields in Complex Evergreen Needleleaf Canopies

    Get PDF
    Recent advancements in understanding remotely sensed solar‐induced chlorophyll fluorescence often suggest a linear relationship with gross primary productivity at large spatial scales. However, the quantum yields of fluorescence and photochemistry are not linearly related, and this relationship is largely driven by irradiance. This raises questions about the mechanistic basis of observed linearity from complex canopies that experience heterogeneous irradiance regimes at subcanopy scales. We present empirical data from two evergreen forest sites that demonstrate a nonlinear relationship between needle‐scale observations of steady‐state fluorescence yield and photochemical yield under ambient irradiance. We show that accounting for subcanopy and diurnal patterns of irradiance can help identify the physiological constraints on needle‐scale fluorescence at 70–80% accuracy. Our findings are placed in the context of how solar‐induced chlorophyll fluorescence observations from spaceborne sensors relate to diurnal variation in canopy‐scale physiology
    corecore