18,049 research outputs found

    Limited Evaluation Cooperative Co-evolutionary Differential Evolution for Large-scale Neuroevolution

    Get PDF
    Many real-world control and classification tasks involve a large number of features. When artificial neural networks (ANNs) are used for modeling these tasks, the network architectures tend to be large. Neuroevolution is an effective approach for optimizing ANNs; however, there are two bottlenecks that make their application challenging in case of high-dimensional networks using direct encoding. First, classic evolutionary algorithms tend not to scale well for searching large parameter spaces; second, the network evaluation over a large number of training instances is in general time-consuming. In this work, we propose an approach called the Limited Evaluation Cooperative Co-evolutionary Differential Evolution algorithm (LECCDE) to optimize high-dimensional ANNs. The proposed method aims to optimize the pre-synaptic weights of each post-synaptic neuron in different subpopulations using a Cooperative Co-evolutionary Differential Evolution algorithm, and employs a limited evaluation scheme where fitness evaluation is performed on a relatively small number of training instances based on fitness inheritance. We test LECCDE on three datasets with various sizes, and our results show that cooperative co-evolution significantly improves the test error comparing to standard Differential Evolution, while the limited evaluation scheme facilitates a significant reduction in computing time

    Optimisation of Mobile Communication Networks - OMCO NET

    Get PDF
    The mini conference “Optimisation of Mobile Communication Networks” focuses on advanced methods for search and optimisation applied to wireless communication networks. It is sponsored by Research & Enterprise Fund Southampton Solent University. The conference strives to widen knowledge on advanced search methods capable of optimisation of wireless communications networks. The aim is to provide a forum for exchange of recent knowledge, new ideas and trends in this progressive and challenging area. The conference will popularise new successful approaches on resolving hard tasks such as minimisation of transmit power, cooperative and optimal routing

    Cooperative Coevolution for Non-Separable Large-Scale Black-Box Optimization: Convergence Analyses and Distributed Accelerations

    Full text link
    Given the ubiquity of non-separable optimization problems in real worlds, in this paper we analyze and extend the large-scale version of the well-known cooperative coevolution (CC), a divide-and-conquer optimization framework, on non-separable functions. First, we reveal empirical reasons of why decomposition-based methods are preferred or not in practice on some non-separable large-scale problems, which have not been clearly pointed out in many previous CC papers. Then, we formalize CC to a continuous game model via simplification, but without losing its essential property. Different from previous evolutionary game theory for CC, our new model provides a much simpler but useful viewpoint to analyze its convergence, since only the pure Nash equilibrium concept is needed and more general fitness landscapes can be explicitly considered. Based on convergence analyses, we propose a hierarchical decomposition strategy for better generalization, as for any decomposition there is a risk of getting trapped into a suboptimal Nash equilibrium. Finally, we use powerful distributed computing to accelerate it under the multi-level learning framework, which combines the fine-tuning ability from decomposition with the invariance property of CMA-ES. Experiments on a set of high-dimensional functions validate both its search performance and scalability (w.r.t. CPU cores) on a clustering computing platform with 400 CPU cores

    Global adaptation in networks of selfish components: emergent associative memory at the system scale

    No full text
    In some circumstances complex adaptive systems composed of numerous self-interested agents can self-organise into structures that enhance global adaptation, efficiency or function. However, the general conditions for such an outcome are poorly understood and present a fundamental open question for domains as varied as ecology, sociology, economics, organismic biology and technological infrastructure design. In contrast, sufficient conditions for artificial neural networks to form structures that perform collective computational processes such as associative memory/recall, classification, generalisation and optimisation, are well-understood. Such global functions within a single agent or organism are not wholly surprising since the mechanisms (e.g. Hebbian learning) that create these neural organisations may be selected for this purpose, but agents in a multi-agent system have no obvious reason to adhere to such a structuring protocol or produce such global behaviours when acting from individual self-interest. However, Hebbian learning is actually a very simple and fully-distributed habituation or positive feedback principle. Here we show that when self-interested agents can modify how they are affected by other agents (e.g. when they can influence which other agents they interact with) then, in adapting these inter-agent relationships to maximise their own utility, they will necessarily alter them in a manner homologous with Hebbian learning. Multi-agent systems with adaptable relationships will thereby exhibit the same system-level behaviours as neural networks under Hebbian learning. For example, improved global efficiency in multi-agent systems can be explained by the inherent ability of associative memory to generalise by idealising stored patterns and/or creating new combinations of sub-patterns. Thus distributed multi-agent systems can spontaneously exhibit adaptive global behaviours in the same sense, and by the same mechanism, as the organisational principles familiar in connectionist models of organismic learning

    Metaheuristic design of feedforward neural networks: a review of two decades of research

    Get PDF
    Over the past two decades, the feedforward neural network (FNN) optimization has been a key interest among the researchers and practitioners of multiple disciplines. The FNN optimization is often viewed from the various perspectives: the optimization of weights, network architecture, activation nodes, learning parameters, learning environment, etc. Researchers adopted such different viewpoints mainly to improve the FNN's generalization ability. The gradient-descent algorithm such as backpropagation has been widely applied to optimize the FNNs. Its success is evident from the FNN's application to numerous real-world problems. However, due to the limitations of the gradient-based optimization methods, the metaheuristic algorithms including the evolutionary algorithms, swarm intelligence, etc., are still being widely explored by the researchers aiming to obtain generalized FNN for a given problem. This article attempts to summarize a broad spectrum of FNN optimization methodologies including conventional and metaheuristic approaches. This article also tries to connect various research directions emerged out of the FNN optimization practices, such as evolving neural network (NN), cooperative coevolution NN, complex-valued NN, deep learning, extreme learning machine, quantum NN, etc. Additionally, it provides interesting research challenges for future research to cope-up with the present information processing era

    Large-scale optimization : combining co-operative coevolution and fitness inheritance

    Get PDF
    Large-scale optimization, here referring mainly to problems with many design parameters remains a serious challenge for optimization algorithms. When the problem at hand does not succumb to analytical treatment (an overwhelmingly common place situation), the engineering and adaptation of stochastic black box optimization methods tends to be a favoured approach, particularly the use of Evolutionary Algorithms (EAs). In this context, many approaches are currently under investigation for accelerating performance on large-scale problems, and we focus on two of those in this research. The first is co-operative co-evolution (CC), where the strategy is to successively optimize only subsets of the design parameters at a time, keeping the remainder fixed, with an organized approach to managing and reconciling these subspace optimization. The second is fitness inheritance (FI), which is essentially a very simple surrogate model strategy, in which, with some probability, the fitness of a solution is simply guessed to be a simple function of the finesses of that solution’s parents. Both CC and FI have been found successful on nontrivial and multiple test cases, and they use fundamentally distinct strategies. In this thesis, we explored the extent to which both of these strategies can be used to provide additional benefits. In addition to combining CC and FI, this thesis also introduces a new FI scheme which further improves the performance of CC-FI. We show that the new algorithm CC-FI is highly effective for solving problems, especially when the new FI scheme is used. In the thesis, we also explored two basic adaptive parameter setting strategies for the FI component. We found that engineering FI (and CC, where it was otherwise not present) into these algorithms led to good performance and results
    corecore