
LARGE-SCALE OPTIMIZATION: COMBINING

CO-OPERATIVE COEVOLUTION AND FITNESS

INHERITANCE

by

Aboubakar Hameed Ali Hameed

Submitted for the degree of

Doctor of Philosophy

Department of Computer Science

School of Mathematical and Computer Sciences

Heriot-Watt University

February, 2019

The copyright in this thesis is owned by the author. Any quotation from the report or use

of any of the information contained in it must acknowledge this report as the source of the

quotation or information.

Abstract

Large-scale optimization, here referring mainly to problems with many design pa-
rameters remains a serious challenge for optimization algorithms. When the prob-
lem at hand does not succumb to analytical treatment (an overwhelmingly common-
place situation), the engineering and adaptation of stochastic black box optimization
methods tends to be a favoured approach, particularly the use of Evolutionary Al-
gorithms (EAs). In this context, many approaches are currently under investigation
for accelerating performance on large-scale problems, and we focus on two of those
in this research.
The first is co-operative co-evolution (CC), where the strategy is to successively op-
timize only subsets of the design parameters at a time, keeping the remainder fixed,
with an organized approach to managing and reconciling these subspace optimiza-
tion.
The second is fitness inheritance (FI), which is essentially a very simple surrogate
model strategy, in which, with some probability, the fitness of a solution is simply
guessed to be a simple function of the finesses of that solution’s parents. Both CC
and FI have been found successful on nontrivial and multiple test cases, and they
use fundamentally distinct strategies.
In this thesis, we explored the extent to which both of these strategies can be used
to provide additional benefits. In addition to combining CC and FI, this thesis also
introduces a new FI scheme which further improves the performance of CC-FI. We
show that the new algorithm CC-FI is highly effective for solving problems, espe-
cially when the new FI scheme is used.
In the thesis, we also explored two basic adaptive parameter setting strategies for
the FI component. We found that engineering FI (and CC, where it was otherwise
not present) into these algorithms led to good performance and results.

Acknowledgements

I would like to thank my supervisor prof David Corne for his continued encourage-
ment, guidance and advice in every stage of my PhD. Without his help this thesis
could not finished.Also I would like to thank my wife and children for their support
and love!

i

Contents

1 Introduction 1

1.1 Optimization . 2

1.2 Summary . 5

1.3 Thesis Contributions . 6

1.4 Thesis Structure . 7

1.5 Thesis Publications . 8

2 Background 9

2.1 Evolutionary Algorithms . 9

2.1.1 Outline of evolutionary algorithm 10

2.1.2 Parents selection methods . 14

2.1.3 Generate offspring . 17

2.2 Approaches To Improve Evolutionary Algorithms 21

2.3 Co-evolution . 26

2.3.1 Competitive coevolution . 26

2.3.2 Cooperative coevolution . 27

2.4 Evaluation Is Expensive . 29

2.5 Fitness Inheritance . 29

2.6 Evolution Strategies . 32

2.6.1 Self-adaptation . 33

2.6.2 Survival selection . 37

2.7 Differential Evolution (DE) . 37

2.7.1 Classical differential evolution: 37

2.7.2 Differential evolution with neighbourhood search (NSDE) . . . 39

ii

2.7.3 Self-adaptive differential evolution (SADE) 40

2.7.4 Self-adaptive differential evolution with neighbourhood search

(SaNSDE) . 41

2.8 Related Work . 42

2.9 Summary . 47

3 Co-operative Coevolution with Fitness Inheritance for Large-Scale

Optimization 48

3.1 CCEA-FI Algorithm . 49

3.2 Fitness Inheritance Approaches . 50

3.3 Evaluating CCEA-FI . 52

3.3.1 Experiment study 1 . 52

3.3.2 Experiment study 2 . 66

3.4 Discussion and Conclusions . 68

4 Engineering Fitness Inheritance and Co-operative Evolution into

SaNSDE with one key improvement on FI 70

4.1 Overview . 70

4.2 The key improvement on FI . 71

4.3 Evaluating CCDE-FI and CCDE-nFI 71

4.4 Discussion and Conclusions . 76

5 Engineering Adaptive CC AND FI INTO State-of-the-Art Opti-

mizers DECC-DML 78

5.1 Overview . 78

5.2 Evaluating DECC-DML-aFI . 80

5.3 Discussion and Conclusions . 85

6 Conclusions and Future Work 86

6.1 Summary . 86

6.2 Contributions . 89

6.3 Future Work . 90

iii

Appendix A More results of CCEA-FI, CCEA and EA-FI perfor-

mance on Rastrigin, Schwefel, Rosenbrock and Ackley functions

from chapter 3 92

Appendix B More results of chapter 4 shows the performance of

(SaNSDE) with normal CC-FI algorithm and with key improve-

ment on FI CC-nFI on each of the ten CEC’2005 functions on

D500 and D1000 108

Appendix C Full codes of the experimental results summarised here

are provided at http://is.gd/cceafi. 119

Bibliography 120

iv

 http://is.gd/cceafi.

List of Tables

2.1 Genotype and phenotype mapping . 11

3.1 Functions . 52

3.2 Mean results on 4 functions, 50D, 105 evaluation CC methods use

contiguous grouping. 54

3.3 Comparisons between random and contiguous grouping using CCEA-

FI on 4 functions 50D, 105 evaluations. 55

3.4 Mean results on 4 functions, 100D, 105 evaluation CC methods use

contiguous grouping. 57

3.5 Summarise previous figures by the best mean results so far by the 4

algorithms on 4 functions by 100D, 105 evaluations by random and

contiguous grouping. 60

3.6 Summarise previous figures by the best mean Results of CCEA over

CCEA-FI on 4 functions by 500D, 2.5 × 106 fitness evaluations, CC

variants use random grouping. 63

3.7 Summarise previous figures by the best mean Results of CCEA over

CCEA-FI on 4 functions by 1000D, 5 × 106 fitness evaluations, CC

variants use random grouping . 65

3.8 Rastrigin function 50D, CCEA-FI over CCEA for speedup obtainable 68

4.1 Functions . 72

4.2 Mean results of CCDE-FI over CCDE-nFI on 10 functions by 500D,

2.5 × 106 fitness evaluations, CC variants use random grouping and

FI 90%. 73

v

4.3 Mean results of CCDE-FI over CCDE-nFI on 10 functions by 1000D,

5× 106 fitness evaluations, CC variants use random grouping and FI

90%. 73

4.4 Comparing CCDE-NFI (with FI at 90%)with descendants of SANSDE

. 74

4.5 The P-values results of, CCDE-FI Vs CCDE-nFI on ten functions by

Mann-Whitney U Test at 500D, 2.5× 106 fitness evaluations, FI=90%. 75

5.1 Engineering simple adaptive FI into DECC-DML 82

5.2 Engineering simple adaptive FI into DECC-DML 83

5.3 The P-values results of, DECC-DML Vs DECC-DML-aFI method (A

and B) on 20 functions by Mann-Whitney U Test at 1000D. 84

A.1 EA and FI (EA-FI) by 105 functions evaluations, D20 92

A.2 Random grouping CC and FI (CCEA-FI) by 105 functions evalua-

tions, D20 . 93

A.3 EA and fitness inheritance(EA-FI) by 105 functions evaluations, D100 93

A.4 Contiguous grouping CC and fitness inheritance by 105 functions eval-

uations, D100 . 93

A.5 Random grouping CC and fitness inheritance by 105 functions evalu-

ations, D100 . 94

A.6 Contiguous grouping CC and fitness inheritance by 5× 104 functions

evaluations, D100 . 94

A.7 Contiguous grouping CC and fitness inheritance by 5× 104 functions

evaluations, D50 . 94

A.8 Contiguous grouping CC and fitness inheritance by 105 functions eval-

uations, D50 . 95

A.9 Random grouping CC and fitness inheritance by 2.5 × 106 functions

evaluations, D500 . 95

A.10 Random grouping CC and fitness inheritance by 5 × 106 functions

evaluations, D1000 . 95

A.11 EA and FI (EA-FI) by 105 functions evaluations, D20 96

vi

A.12 Random grouping CC and FI (CCEA-FI) by 105 functions evalua-

tions, D20 . 96

A.13 EA and fitness inheritance (EA-FI) by 105 functions evaluations, D100 96

A.14 Contiguous grouping CC and fitness inheritance by 105 functions eval-

uated, D100 . 97

A.15 Random grouping CC and fitness inheritance by 105 functions evalu-

ations, D100 . 97

A.16 Contiguous grouping CC and fitness inheritance by 5× 104 functions

evaluations, D100 . 98

A.17 Contiguous grouping CC and fitness inheritance by 105 functions eval-

uations, D50 . 98

A.18 Contiguous grouping CC and fitness inheritance by 5× 104 functions

evaluations, D50 . 99

A.19 Random grouping CC and fitness inheritance by 2.5 × 106 functions

evaluations, D500 . 99

A.20 Random grouping CC and fitness inheritance by 5 × 106 functions

evaluations, D1000 . 99

A.21 EA and FI (EA-FI) by 105 functions evaluations, D20 100

A.22 Random grouping CC and FI (CCEA-FI) by 105 functions evalua-

tions, D20 . 100

A.23 EA and fitness inheritance (EA-FI) by 105 functions evaluations, D100100

A.24 Contiguous grouping CC and fitness inheritance by 105 functions eval-

uations, D100 . 101

A.25 Random grouping CC and fitness inheritance by 105 functions evalu-

ations, D100 . 101

A.26 Contiguous grouping CC and fitness inheritance by 5× 104 functions

evaluations, D50 . 101

A.27 Contiguous grouping CC and fitness inheritance by 5× 104 functions

evaluations, D100 . 102

vii

A.28 Contiguous grouping CC and fitness inheritance by 105 functions eval-

uations, D50 . 102

A.29 Random grouping CC and fitness inheritance by 2.5 × 106 functions

evaluations, D500 . 102

A.30 Random grouping CC and fitness inheritance by 5 × 106 functions

evaluations, D1000 . 103

A.31 EA and FI (EA-FI) by 105 functions evaluations, D20 103

A.32 Random grouping CC and FI (CCEA-FI) by 105 functions evalua-

tions, D20 . 103

A.33 EA and fitness inheritance(EA-FI) by 105 functions evaluations, D100 104

A.34 Contiguous grouping CC and fitness inheritance by 105 functions eval-

uations, D100 . 105

A.35 Random grouping CC and fitness inheritance by 105 functions evalu-

ations, D100 . 105

A.36 Contiguous grouping CC and fitness inheritance by 105 functions eval-

uations, D50 . 106

A.37 Contiguous grouping CC and fitness inheritance by 5× 104 functions

evaluations, D100 . 106

A.38 Contiguous grouping CC and fitness inheritance by 5× 104 functions

evaluations, D50 . 106

A.39 Random grouping CC and fitness inheritance by 2.5 × 106 functions

evaluations, D500 . 107

A.40 Random grouping CC and fitness inheritance by 5 × 106 functions

evaluations, D1000 . 107

B.1 SaNSDE without key improvement on FI CCDE-FI, D500, by 2.5 ×

106 function evaluations . 108

B.2 SaNSDE with a key improvement on FI CCDE-nFI, D500, by 2.5×106

function evaluations . 109

B.3 SaNSDE without key improvement on FI CCDE-FI, D500, by 2.5 ×

106 function evaluations . 109

viii

B.4 SaNSDE with key improvement on FI CCDE-nFI, D500, by 2.5×106

function evaluations . 110

B.5 SaNSDE without key improvement on FI CCDE-FI, D500, by 2.5 ×

106 function evaluations . 110

B.6 SaNSDE with a key improvement on FI CCDE-nFI, D500, by 2.5×106

function evaluations . 110

B.7 SaNSDE without a key improvement on FI CCDE-FI, D500, by 2.5×

106 function evaluations . 111

B.8 SaNSDE with a key improvement on FI CCDE-nFI, D500, by 2.5×106

function evaluations . 111

B.9 SaNSDE without a key improvement on FI CCDE-FI, D500, by 2.5×

106 function evaluations . 111

B.10 SaNSDE with a key improvement on FI CCDE-nFI, D 500, by 2.5×

106 function evaluations . 112

B.11 SaNSDE without a key improvement on FI CCDE-FI, D500, by 2.5×

106 function evaluations . 112

B.12 SaNSDE with a key improvement on FI CCDE-nFI, D500, by 2.5×106

function evaluations . 112

B.13 SaNSDE without a key improvement on FI CCDE-FI, D500, by 2.5×

106 function evaluations . 113

B.14 SaNSDE with a key improvement on FI CCDE-nFI, D500, by 2.5×106

function evaluations . 113

B.15 SaNSDE with a key improvement on FI CCDE-nFI, D1000, by 5×106

function evaluations . 113

B.16 SaNSDE without a key improvement on FI CCDE-FI, D1000, by

5× 106 function evaluations . 114

B.17 SaNSDE without a key improvement on FI CCDE-FI, D1000, by

5× 106 function evaluations . 114

B.18 SaNSDE with a key improvement on FI CCDE-nFI, D1000, by 5×106

function evaluations . 115

ix

B.19 SaNSDE without a key improvement on FI CCDE-FI, D1000, by

5× 106 function evaluations . 115

B.20 SaNSDE with a key improvement on FI CCDE-nFI, D1000, by 5×106

function evaluations . 115

B.21 SaNSDE without a key improvement on FI CCDE-FI, D1000, by

5× 106 function evaluations . 116

B.22 SaNSDE with a key improvement on FI CCDE-nFI, D1000, by 5×106

function evaluations . 116

B.23 SaNSDE without a key improvement on FI CCDE-FI, D1000, by

5× 106 function evaluations . 116

B.24 SaNSDE with a key improvement on FI CCDE-nFI, D1000, by 5×106

function evaluations . 117

B.25 SaNSDE without a key improvement on FI CCDE-FI, D1000, by

5× 106 function evaluations . 117

B.26 SaNSDE with a key improvement on FI CCDE-nFI, D1000, by 5×106

function evaluations . 117

B.27 SaNSDE without a key improvement on FI CCDE-FI, D1000, by

5× 106 function evaluations . 118

B.28 SaNSDE with a key improvement on FI CCDE-nFI, D1000, by 5×106

function evaluations . 118

x

List of Figures

1.1 Travel salesman problem. 3

2.1 Roulette wheel selection. 15

2.2 Rank selection. 16

2.3 Tournament selection. 17

2.4 One point crossover. 18

2.5 Multi point crossover. 19

2.6 Uniform crossover. 19

2.7 Processing in CCEA. 28

3.1 Testing different methods of FI on RASTRIGIN, 100D, 5× 104 eval-

uations. 51

3.2 Landscapes [109]. 53

3.3 Results on Rastrigin, 20D, 105 evaluations, and CC methods use ran-

dom grouping. 55

3.4 Results on Schwefel, 20D, 105 evaluations, and CC methods use ran-

dom grouping. 55

3.5 Results on Rosenbrock, 20D, 105 evaluations, and CC methods use

random grouping. 56

3.6 Results on Ackley, 20D, 105 evaluations, and CC methods use random

grouping. 56

3.7 Results on Rastrigin, 100D, 105 evaluations, and CC methods use

random grouping. 58

3.8 Results on Schwefel, 100D, 105 evaluations, CC methods use random

grouping. 58

xi

3.9 Results on Rosenbrock, 100D, 105 evaluations, CC methods use ran-

dom grouping. 59

3.10 Results on Ackley, 100D, 105 evaluations, CC variants use random

grouping. 59

3.11 Best, mean and worst (of 20) results on Rastrigin, 500D, 2.5 × 106

fitness evaluations, showing CCEA and CCEA-FI results; CC variants

use random grouping. 61

3.12 Best, mean and worst (of 20) results on Schwefel,500D, 2.5×106 fitness

evaluations, showing CCEA and CCEA-FI results; CC variants use

random grouping. 61

3.13 Log values of best, mean and worst (of 20) results on Rosenbrock,

500D, 2.5 × 106 fitness evaluations, showing CCEA and CCEA-FI

results; CC uses random grouping . 62

3.14 Best, mean and worst (of 20) results on Ackley, 500D, 2.5×106 fitness

evaluations, showing CCEA and CCEA-FI results; CC variants use

random grouping. 62

3.15 Best, mean and worst (of 20) results on Rastrigin, 1000D, 5 × 106

fitness evaluations, showing CCEA and CCEA-FI results; CC variants

use random grouping. 63

3.16 Best, mean and worst (of 20) results on Schwefel, 1000D, 5×106 fitness

evaluations, showing CCEA and CCEA-FI results; CC variants use

random grouping. 64

3.17 Log values of best, mean and worst (of 20) results on Rosenbrock,

1000D, 5 × 106 fitness evaluations, showing CCEA and CCEA-FI

results; CC variants use random grouping. 64

3.18 Best, mean and worst (of 20) results on Ackley, 1000D, 5×106 fitness

evaluations, showing CCEA and CCEA-FI results; CC variants use

random grouping. 65

3.19 Mean results on bin-packing problem, showing EA, EA-FI, CCEA

and CCEA-FI, 104 evaluations, CC methods use contiguous grouping 67

xii

List of Algorithms

1 Evolutionary algorithm . 11

2 The original CC framework . 27

3 Pseudo code of fitness inheritance . 31

4 Pseudo code of evolution strategy . 33

5 The basic structure of CCEA-FI . 50

6 The basic structure of DECC-DML-aFI 80

xiii

Chapter 1

Introduction

Large-scale problems are a set of challenges that still face EA researchers. The

usual meaning of large-scale, in this context, is an optimization problem with a

reasonably (or unreasonably) large number of decision parameters [12]. Another

common meaning of large scale, and a closely-related challenge, refers to problems

where the processor time requirement for evaluating a single solution is very high.

The challenge for the algorithm design community in large scale optimization

is to find search strategies that provide sufficiently good solutions in as small as

possible a number of fitness evaluations. In those cases where the computational

time-complexity of the fitness function is high, the need to make progress in re-

duced numbers of evaluations is obvious. On the other hand, when the number of

parameters is high, the issue tends to be different: in these circumstances, standard

algorithms tend to converge prematurely [3, 55], long before effecting a suitably

extensive exploration of the parameter space; the challenge therefore becomes that

of making the most of the available fitness evaluations, to achieve a better level of

exploration in the available time.

Evolutionary Algorithms (EAs) are one of the well-known optimization approaches

[91] which are very successful in general, but will face difficulties in solving these

kind of problems.

Large scale problems naturally tend to require high processing speed and sig-

nificant memory requirements. In general, for hard optimization problems, there is

no guarantee for finding the optimal solution in a given or finite amount of time;

1

Chapter 1: Introduction

for large scale problems, this is even more true, and we are that much more likely

to return poor solutions; in solving complex optimization problems, if the diversity

mechanism does not work properly, for example, EAs often prematurely converge

into local optima [83].

Many approaches are under investigation in the research domain to solve large

scale problems. Two of the most effective of these approaches were adopted in this

thesis: co-operative co-evolution (CC) and fitness inheritance (FI). In particular,

the work described in this thesis was the first to combine these two approaches.

1.1 Optimization

Optimization problems are tasks in which there can be a huge number of potential

solutions, and our job is to search this set of possible solutions to find the best one,

or to find one as good as possible, in a reasonable time. It is a common task in many

disciplines such as science, agriculture, engineering and even in our daily life. When

we are thinking to enhance our way to go to work, select a line at the supermarket,

or deciding our holiday traveling package, we are facing optimization problems.

As an example of a more topical type of optimization problem faced in industry,

we can point to agriculture, and the task of finding the most economical and effective

schedule for irrigation and fertilization that maximises the farmer’s profits [31]. Or,

when mechanical engineers try to design a new engine with high performance and

low cost, this is an optimisation problem. Also when engineers trying to maximize

the load of a robot which can lift a heavy load, this is an optimisation problem [114].

In most optimization problems we cannot solve the problem in one step. There-

fore, we should follow some process or model in order to guide us through the

problem solving process. The process of the solution is divided into many stages

[15]. These stages are usually defining and recognising the problem, formulating

solution models, and then evaluating and implementing solutions.

There are many common optimization problems that can be solved by using EAs.

The traveling salesman problem is one of the most well known of these common

problems. It is a classical problem known to be an NP-hard problem. It can be

2

Chapter 1: Introduction

described as follows: given a list of cities with their distance between each pair

of the cities, there are hundreds of paths to visit these cities but the problem is

finding the shortest path or round trip that involves all of cities in it by starting and

returning to the same city, at the same time ensuring that each city will be visited

only once [53].

For Example: See the following set of cities as in figure 1.1: The problem is to

find a minimal route by passing all cities in turn. For example the first route is

{ABCDEA} and the second route is {ABCEDA}. We pass through all the cities

with a total length of 18 in the first route, and a total length of 27 by the second

route. A possible simple EA for solving the TSP is the Hillclimbing algorithm; this

EA starts with an initial random solution route, for instance {ABCEDA}, then we

find out its fitness value, and this becomes our current solution. The Hillclimbing

algorithm then repeatedly mutates the current solution to a mutant solution which

represents a potential new path. Whenever the mutant is better than the current

solution, it becomes the new current solution.

Figure 1.1: Travel salesman problem.

Bin packing problem: The bin-packing problem is another common example of

an optimization problem. The bin packing problem (BPP) is a class of NP-hard

problem [34] and the standard BPP is as follows: given a set of items with sizes

3

Chapter 1: Introduction

between 0 and 1, these items should be packed into a minimum number of bins.

Each bin must not contain items with total size more than 1 [27]. In the early

1970s, Johnson created the problem definition of bin packing problem together with

Granham [39, 40]. They explored solving problems in this area by using approxi-

mation algorithms and heuristics. Among these algorithms in the early works is the

first fit (FF) algorithm which is still often used for solving bin packing problems.

The (FF) algorithm steps are: According to a given ordered list of the items,

each item is packed into the first existing bin where it can fit. If the item does not

fit any existing bin, a new bin will be opened for this item. Another optimisation

algorithm is the Best Fit (BF), it works the same as FF but the different in the BF

algorithm is the item is packed into the most full bin first if it fits. If the items in

the list are ordered by decreasing sizes, both algorithms (FF and BF) are named as

first fit decreasing (FFD) and best fit decreasing (BFD). The time required for the

algorithms is O(n log n) [13].

Here we consider the following problem definition : “There are a set of N items,

and each item has a given weight. Also, each item has a given type (there are T

different types of item). The items have to be arranged into C containers, in such a

way that the total weight of each container is as similar as possible. However there

are constraints involving the types. The fitness function is (heaviest container -

lightest container) + (pairs × TW)” [22]. The experimental results of our algorithm

CCEA-FI on this problem are presented in section 3.3.2.

Also, optimization problems can be large scale which become difficult for a simple

evolutionary algorithm. An example of such problem is a very-large Neural Networks

due to the high dimension of their input space (tens of thousands of weights), these

large nets become infeasible using direct encoding that map genes one to one to

network components [51]. On the other hand, sometimes the problem does not

have particularly many parameters, but takes a long time simply to evaluate the

fitness of a single solution. For instance, if we have an optimization task in which

computational fluid dynamics code must be run to evaluate a single solution [107,

4

Chapter 1: Introduction

130], or indeed any type of fine-grained simulation.

Despite these difficulties, research in this area continues to develop better meth-

ods, especially for large scale problems. Several interesting and effective approaches

are now available for large-scale optimizaton, such as Cooperative coevolution (CC)

which can be integrated into other algorithms in order to improve the performance,

and which seems to work well by helping the algorithm better guide its parameter

changes in response to fitness values, it makes better use of each fitness evaluation.

Another such method is fitness inheritance (FI), which works in a completely dif-

ferent way, by simply estimating fitness in some cases (rather than, for example,

running the full fitness function which may be computationally expensive). In this

research we focus on combining CC and FI, and see to what extent this improves

on the individual components.

1.2 Summary

EAs have been successfully and extensively used to solve many optimization prob-

lems in recent years [91]. However, we still have immense amounts to learn about

how to engineer an EA to do well on a given problem class, and one of the more

urgent challenges for EAs is that of large-scale problems. By large-scale, we mainly

refer to optimization problems with a relatively large number of decision parameters

[12]. A related challenge is that of problems where the time complexity of evaluating

a single solution is high. In both cases (and in cases which combine the two), the

challenge is to find strategies for evolutionary search that enable good enough solu-

tions to be found in a smaller number of fitness evaluations than would be needed

by a conventional EA. When the time-complexity of the fitness function is high, the

need for progress in fewer evaluations is obvious. When the number of parameters

is high, the issue tends to be that conventional EAs converge long before achieving

a suitably rich exploration of the parameter space, and we must somehow achieve a

better level of exploration in the available time.

In this thesis we look in particular at two quite different strategies that are both

effective. The first of these, currently under investigation within the EA community,

5

Chapter 1: Introduction

is the strategy of co-operative co-evolution (CC).

Meanwhile, second strategy is fitness inheritance (FI) is a quite different strat-

egy aimed at reducing need for expensive fitness function evaluations. The thesis

also investigations the difficulty of FI and why in some functions (FI) is not really

effective, and often led to very poor performance in some fitness inheritance propor-

tioncyan for example (70, 80, 90%) [2, 93]. A new model and scheme are designed

based on analysis in this thesis for FI to overcome these difficulties. Some popular

benchmark functions are chosen to demonstrate our new algorithm CC-FI.

1.3 Thesis Contributions

The main contributions are as follows:

1. A combination of Cooperative Coevolution framework CC and Fitness Inher-

itance FI, called CC-FI, is developed, and a simple EA is used here as sub-

components optimizer. The performance of our new algorithm CC-FI tested

on well-known 4 functions Rastrigin, Schwefel, Rosenbrock and Ackley. The

raw findings indeed suggest that CC-FI generally achieves significantly better

performance than either a CC-based EA without FI (CCEA), or an EA with

FI but without CC (EA-FI).

2. We explore the high-performance techniques Self-Adaptive Neighbourhood

Search Differential Evolution (SaNSDE) with our (CC-FI) algorithm in the

field of large-scale optimization instead of EA. We implemented SaNSDE from

the description in the literature, and engineered CC+FI into it, using the same

CC+FI framework as in our algorithm in the previous contribution, but with

one key improvement on FI as it loses its performance at high levels of inheri-

tance, especially on high dimensional problems. The results conclude that the

new approach to combining CC and FI involving the key improvement in FI

(nFI) represents a recommended algorithm-enhancement strategy.

3. Two simple adaptive schemes for FI are investigated in the CC-FI context, and

engineering these new schemes (CC-aFI) into DECC-DML algorithm [71]. We

6

Chapter 1: Introduction

noticed that the mechanisms in the original DECC-DML source code associ-

ated with calculating and updating the delta value, incorporated some calls to

function evaluations that were not accounted for in the total which counted

towards algorithm termination. Therefore, we corrected the version of DECC-

DML andcyan it was then compared with our algorithm DECC-DML-aFI. The

comparison was over the CEC 2010 large scale global optimization test suite

of 20 test functions on 1000 dimensions.

1.4 Thesis Structure

This thesis consists of six chapters, including this introduction chapter. The remain-

ing five chapters are organised as follows:

Chapter 2 presents the background required to develop an efficient combina-

tion of CC and FI for large-scale optimisation problems, outlining the evolutionary

algorithm and co-evolution in general and co-operative coevolution in particular. In

addition, it describes why evaluation is sometimes expensive and how FI could be an

alternative approach to reduce this expense. It also discusses differential evaluation

and its various applications. The chapter ends with a review of the related work on

large-scale optimisation.

Chapter 3 explains in detail a combination of co-operative coevolution (CC)

and fitness inheritance (FI) and how the use of both of these strategies can provide

additional benefits. We combined CC and FI into a straightforward algorithm over

the basic EA and called the result CCEA-FI. This chapter describes the pseudo-code

of the CCEA-FI algorithm. It also reports the results of evaluating the CCEA-FI

algorithm on the well-known functions Rastringin, Schwefel, Ackley and Rosenbrock.

The second part of this chapter discusses the testing of our algorithm on numerical

problems (bin packing problems).

Chapter 4 presents the extent to which CC and FI provide added value when

engineered together in the context of more sophisticated, the so-called state-of-the-

art, algorithms instead of using a basic EA as discussed in Chapter 3. Self-adaptive

neighbourhood search differential evolution (SaNSDE) with our (CC-FI) algorithm

7

Chapter 1: Introduction

was explored in the field of large-scale optimisation with a key improvement on FI,

as it often loses its efficiency when increasing its proportion.

Chapter 5 discusses the design of two simple adaptation schemes were designed

for the FI key parameters in the context of a further investigation into engineering

CC and FI to another sophisticated state-of-the-art algorithm. In this case, the

algorithm of choice was DECC-DML [71].

Chapter 6 concludes our work in this thesis. First, we summarise the work that

we have done on our combination of CC and FI. Second, it presents a list of the

contributions that we have achieved during the development of the CC-FI algorithm.

Finally, we suggest future work directions.

1.5 Thesis Publications

1. A. Hameed, D. Corne, D. Morgan, and A. Waldock. Large-scale optimization:

Are co-operative co-evolution and fitness inheritance additive? In Computa-

tional Intelligence (UKCI), 2013 13th UK Workshop on, pages 104111, Sept

2013.

2. Hameed, A.; Kononova, A.; Corne, D., Engineering Fitness Inheritance and

Co-operative Evolution Into State-of-the-Art Optimizers, in Computational

Intelligence, 2015 IEEE Symposium Series on , vol., no., pp.1695-1702, 7-10

Dec. 2015.

8

Chapter 2

Background

In this chapter we outline the basic idea of evolutionary algorithms, and then illus-

trate the concept of Co-evolution in general terms. Also in this chapter we introduce

the key concept of Cooperative Coevolution, and discuss its variants and successful

applications as a promising technique to solve large-scale optimization problems.

Among these introductory descriptions, we highlight the issue of fitness evaluation,

since this is a key issue and motivator for the techniques explored in this thesis;

hence we explain how sometimes evaluation is expensive and the time required to

evaluate a single solution becomes too high. Such situations motivate the need to

explore alternative approaches, which reduce this expense, and this leads us to a dis-

cussion of fitness inheritance, which has a different approach (from CC) to speeding

up black box optimization and reducing the need for expensive fitness evaluations.

In this chapter we also introduce differential evolution and its variants, which is

another algorithm that plays a part in later chapters. At the end of this chapter, we

cover related work in the general field of methods to solve large-scale optimization

problems.

2.1 Evolutionary Algorithms

In the biological world, evolution is a process by which individuals will develop and

change in the population, generation by generation, according to the principle of

survival of the fittest [28, 49]. Evolutionary algorithms (EA) can be regarded as

9

Chapter 2: Background

loosely simulating the process of natural evolution, and they have been successfully

applied to numerous optimization problems. Evolutionary algorithms are a collec-

tion of techniques that is also often generally called Evolutionary Computation (EC).

EC’s family of algorithms has four well-known classes: evolutionary strategies [1],

evolutionary programming [19], genetic algorithms [116] and genetic programming

[19].

2.1.1 Outline of evolutionary algorithm

EAs normally start with a population of individuals, each individual in the popula-

tion referred to as a solution. During the operation of an EA, each individual will

be updated, with the overal aim of improving the solutions of the entire population

via a combination of operations known as recombination, mutation, selection and

replacement. These operations will repeat in each generation until a terminating

criterion is met, also the quality of each individual in the population will be eval-

uated by applying the fitness function to that individual. When the algorithm has

terminated, the process typically returns the best solution (in terms of the values

returned by the fitness function) that was found during the process. A standard

schema for an EA algorithm is shown here in pseudocode 1.

The most important operations in EA as shown in Algorithm 1 are:

• Initialization

• Evaluate function (fitness function)

• Select parents

• Generate offspring (Mutation and Recombination)

• Select survivors

• Termination

• Initialisation: In this operation, the algorithm will initialise a collection of

individuals, called the population, by following a predefined encoding scheme.

10

Chapter 2: Background

Algorithm 1 Evolutionary algorithm
1: Initialize population of individuals
2: Evaluate population
3: repeat
4: Select parents from population
5: Generate offspring from parents
6: Evaluate offspring
7: Select survivors for new population
8: until Terminating criteria is met.

Initialisation might be randomly generated or by using heuristic strategies [19].

According to the problem, the number of the parameters in each individual

is set manually and called the dimension of the problem. Moreover, we man-

ually set the number of the individuals to be generated which is often called

population size.

• Evaluation: Each problem has a fitness function designed for building a solu-

tion (by interpreting the encoded form of the solution) and then evaluating the

quality of the solution. In general, the encoded form of the solutions is called

a genotype, in this thesis, where we mainly deal with numerical optimization,

the genotype is simply a vector of real numbers. In many applications, the

genotype is itself a convenient encoded form of the real solution being rep-

resented (the phenotype). The fitness function therefore needs to begin by

decoding the genotype to form the phenotype, before the phenotype can be

evaluated [116]. After that the fitness function will provide an actual quality

value for each individual in order to make an accurate assessment of each in-

dividual and help the algorithm to rank the population from the best to the

worst candidates. An example of genotype and phenotype mapping in Table

2.1.

Genotype =⇒ Phenotype
100 101 110 4 5 6

Table 2.1: Genotype and phenotype mapping

• Select parents: This is an important operation in evolutionary algorithms.

To generate potentially high quality new solutions (offspring) from so-called

11

Chapter 2: Background

parent individuals, it is useful to prefer that higher-quality individuals have a

better a chance of being parents; this is achieved by a selection mechanism.

There are different types of selection mechanisms in EA used to select those

parents in order to generate offspring, such as, roulette wheel selection [6],

tournament selections [65], rank selection [118], and truncation selection [18].

more details of these selections are in the next section.

• Generate offspring (mutation and recombination): Mutation is the

most popular genetic operation in evolutionary algorithms, which changes the

data (genes) of the vector to produce a new vector. For example, if the data

of the vector is binary, mutation can simply choose a random element of the

solution and change it from zero to one or from one to zero. In the case of

real-valued solution vectors, the change could be by a randomly generated

new parameter value from the problem domain. This random value could

come from a uniform or non-uniform distribution, both of which are widely

used. In this thesis, we typically use mutation on real-valued vectors, and we

generate a new gene for the parent by adding a random value from a Gaussian

distribution to the parent gene to produce a new child as in equation 2.1.

X ′i = Xi + σ.N(0, 1) (2.1)

Recombination or crossover is also another common genetic operation which

occurs between two or more vectors in order to create a new vector or candidate

solution. There are different types of crossover techniques such as one point

crossover and two or more points crossover. Basically, the crossover role is

to take the traits from parents and pass it to the next generation. This is

in contrast to mutation, which essentially randomly generates new traits, or

new variants of existing traits that their parents do not currently have. More

details about mutation and crossover techniques are illustrated in section 2.1.3

• Select survivors : Selection of survivors is also called the replacement strat-

egy. This refers to the process by which individuals with higher fitness will

12

Chapter 2: Background

be preferred to take part in the next generation. In some EAs, this process

simply involves ranking the previous population and new individuals by fit-

ness, and choosing the best P of these (where P is population size) to be the

next generation. In other EAs, this process could involve using the parent

selection mechanism P times (on the combination of previous population and

new individuals) to choose the P individuals for the next generation. There

are several other mechanisms.

• Termination : In most EAs, termination occurs after a predefined maximum

number of fitness evaluations, or a predefined maximum number of generations.

Other termination conditions are possible. For example, there may be a target

value of fitness quality, or a known fitness quality value which cannot be bet-

tered. Termination can be set to happen when such a fitness value is reached;

however with such a stopping condition there is no guarantee that this solution

will be found and the algorithm may never stop. Therefore, the most common

termination conditions usedcyan in experiments are a predefined number of

function evaluations to terminate the evolutionary cycle.

• Limitations of evolutionary algorithms: Many benefits and successes of

EAs have been recorded in the general enterprise of applying them to solv-

ing optimization problems. Typically we see that EAs provide better solutions

than previous methods. However, these improvements and successes could still

be quite suboptimal, and considerably worse than the best solutions achiev-

able. This is especially the case when we consider problems with a high number

of dimensions. When EAs produce poor solutions, this is cyan often because

of “premature convergence”; this occurs when the evolution process has stag-

nated, in the sense that all solutions in the population have become the same,

or very similar to each other, and the operators are unable to discover better

solutions in the vicinity of the current population. Such issues can be con-

trolled to some extent by choosing good parameters and appropriate selection

methods, and so on. However, these issues are also the motivation for a wide

range of new EA mechanisms and operations.

13

Chapter 2: Background

2.1.2 Parents selection methods

In genetic algorithms, selection is a very important part of the process since their

convergence is affected significantly. The basic idea behind the selection methods is:

the better an individual’s fitness value, the larger chance of its mating and survival

to generate offspring [56]. Broadly speaking, the role of the selection method is to

ensure that new offspring, which might become members of the next generation, are

produced by good quality parents [89]. The most common and well-known selection

methods in EAs include roulette wheel, rank, steady state and tournament selection.

Fitness proportionate selection:

Fitness Proportionate Selection is one of the most common methods of parent selec-

tion. In this method, each individual of the population can become a parent with

a probability proportional to its fitness value. Therefore, fitter individuals have

a greater chance of mating and propagating their features to the next generation.

Therefore, such a selection technique applies a selection weight to the more fit indi-

viduals in the population, introducing better individuals over time. Roulette wheel

selection (described next) is the most common selection method used for implement-

ing Fitness Proportionate [66].

Roulette wheel selection:

In this method parents are selected based on their fitness. Therefore, the roulette

wheel is divided into sectors. Every sector represents a chromosome with size pro-

portional to its fitness value. The probability Pi of select an individual is depend

on its fitness value as in equation 2.2

Pi =
fi∑N
i=1 fi

(2.2)

Where fi is the fitness values of the individuals and i=(1,2,3..N) where fi >0

and N is the population size [56]. This method has a problem when there is a

big difference between the fitness values of the chromosomes. For example, if one

chromosome has 90% and others have 5% or less the last one has a very limited

chance to be selected as shown in figure 2.1.

14

Chapter 2: Background

Figure 2.1: Roulette wheel selection.

Rank selection:

This straightforward idea was introduced by Baker [8]. The idea is to sort the pop-

ulation from the best to the worst, then a rank number is given to each chromosome

based on their ranking position. The worst fitness values takes rank 1 and the next

one takes rank 2 and so on, until the best fitness takes rank N where N is the num-

ber of chromosomes in the population. All parents get a different probability to be

selected even if they have the same fitness value [16]. By using this selection method,

we can solve a number of problems faced by straightforward Roulette Wheel Selec-

tion in certain scenarios; figure 2.2 illustrates this by showing the difference before

and after rank selection.

Stochastic universal sampling (SUS):

Stochastic Universal Sampling is a method which is similar to Roulette wheel se-

lection; it is a sampling algorithm with zero bias and minimum spread which was

introduced by [9]. It uses many equally-spaced pointers and spins the wheel once, in-

stead of using just one pointer and spinning the wheel multiple times. The distance

between each pointer is 1/N, where N is the number of pointers [74]. By having N

pointers then each single spin has N winners instead of one.

Steady state selection:

15

Chapter 2: Background

Figure 2.2: Rank selection.

Steady-state selection can be seen as a combined parent selection and survivor se-

lection strategy, where the majority of solutions stay in the population from gener-

ation to generation, with only a small number being introduced and removed. In a

steady-state approach, a small number of individual solutions in each generation are

selected for creating new offspring, and at the same time a small number are chosen

for replacement by the newly created offspring [110].

Tournament selection:

Tournament selection is a simple and effective approach widely used as a GA selec-

tion method [64]. In tournament selection, K individuals from the population are

randomly chosen, and then, the best individual from these N (the one that has the

best fitness value) will become a parent. K is the selection pressure, or tournament

size, that can be easily adjusted. For example, if the tournament size is 1, then this

method corresponds to random selection; if the tournament size is high, then there

16

Chapter 2: Background

is a strong pressure towards selecting only the fittest individuals.

figure 2.3 shows an example of the process of tournament selection. Here, K=

3; therefore, A, E, and T were randomly selected with the values of 4, 5, and 7,

respectively. Then, the one with the best fitness value was selected as the winner,

which was A in this example (with the best fitness value) in the case of minimisation.

Figure 2.3: Tournament selection.

Elitism:

The combined effect of selection and the other operators tended to lead to improved

fitness from generation to generation. However, despite this, depending on the

survivor selection scheme, it was possible that the best-so-far candidates in the

population get lost. If elitism were used, the best chromosomes would have always

been retained to stay in the next generation. Elitism has generally been found to

speed up the improvement process and increase the performance of GAs [26, 133].

2.1.3 Generate offspring

In GAs, the contents of the population from generation to generation are strongly

influenced by each of the operators. Broadly speaking, we can say that the selec-

tion mechanism influences the speed of improvement in average fitness, while the

mutation and crossover mechanisms influence the balance between exploration and

exploitation. In GAs, crossover generating offspring with more than one parent is

17

Chapter 2: Background

the primary tool for generating new offspring, while mutation plays a secondary

role. Meanwhile, in evolutionary strategies, mutation is the primary mechanism for

generating new offspring offspring [104].

Crossover operators are analogous to reproduction and biological mating. In a

crossover operation, more than one parent is selected and one or more offspring

are generated by using the genetic material of the parents. There are a variety

of well-known and very generic schemes for the crossover operator, and the EA

designer often chooses to implement a problem-specific crossover operator according

to the requirements of the problem being addressed, and the genotype-to-phenotype

encoding in use. In the following, we explain some of the generic approaches [17].

One Point Crossover : In this technique, a random crossover point is chosen

to divide the chromosome into two parts, and then, the two parts of its two parents

are swapped to get new offspring, as shown in Figure 2.4 [17].

In this technique, a random crossover point is chosen to divide the chromosome

into two parts and then the two parts of its two parents are swapped to get new

offspring as shown in figure 2.4 [17].

Figure 2.4: One point crossover.

Multi Point Crossover : In a multi-point crossover, many points are chosen to

divide the chromosome into several segments, and these segments are swapped to

produce the new offspring, as shown in Figure 2.5 [17].

Uniform Crossover : In a uniform crossover, chromosomes are not divided into

segments; rather, each gene is treated separately. In this method, a coin is flipped

18

Chapter 2: Background

Figure 2.5: Multi point crossover.

(metaphorically) for each gene, to determine which parent will be used to provide

the value for that gene in the offspring. We can also bias the coin towards one of

the parents in order to have more genetic material in the child from that parent.

The below figure in 2.6 depicts a typical example of this operation [17].

Figure 2.6: Uniform crossover.

Arithmetic Crossover : In the arithmetic crossover operation, two parents are

selected and linearly combined to produce two new offspring; we usually use this

crossover method in the case of real-value encodings, according to the following

equations:

Child1 = (a× Parent1) + ((1− a)× Parent2)

Child2 = ((1− a)× Parent1) + (a× Parent2)

where a is a random weighting number in the range [0,1] [119, 102].

Three Parent Crossover : There are many ways in which crossover operators can

be defined to use more than two parents. One such common method is as follows.

Three parents are selected, and then, each gene from the first parent is compared

with the same gene (same index) from the second parent. If both these genes are the

same, then the gene is copied to the offspring in the same position. Otherwise, the

19

Chapter 2: Background

equivalent gene from the third parent is copied into the offspring at this position.

This crossover is often used for binary-encoded problems [102].

Order Crossover (OX): Thus far, we have presented examples of operators that

are suitable for k-ary encoding; this is where a solution is represented by a vector

of numbers, and each gene in the solution can be any number from a pre-specified

range. However, in many applications it is more suitable for the solution vector

to be a permutation, or some other structure which is not k-ary. In such cases,

we need to design different operators, which preserve the correctness of solutions.

Here is an example of a crossover operator that is commonly used for permutation

representations. This is Order Crossover (OX), first proposed by [24], extending the

modified crossover of Davis [97]. First, we generate two random crossover points

to be used in both the parents. Then, the offspring is created by copying the seg-

ment between these two points from the first parent directly to the first offspring.

Then, the remaining positions in the offspring are filled by starting from the second

crossover point in the second parent and copying the remaining unused numbers

from the second parent to the first child. When we reach the end of the parent, we

continue from position 1. See example below:

Parent1: 9 0 | 5 3 4 | 3 8 7

Parent2: 1 9 | 2 3 6 | 5 7 8

stage1: . . 5 3 4 . . .

stage2: 2 6 ’5 3 4’ 7 8 1

Mutation: This is a vital operator, used in all forms of EA. Its chief role is

accepted to be the maintenance of genetic diversity from one generation to the next.

A mutation operator involves a single parent solution and usually involves making

a small change (e.g. a change to just one of the genes) [68]. Some commonly used

mutation operators are as follows:

Bit-Flip Mutation: Bit-flip mutation is normally used when the solutions are

encoded as binary strings. This operator simply works by choosing a gene at random

and then flipping it (from 0 to 1 or from 1 to 0) to produce a new child [103].

20

Chapter 2: Background

Swap mutation: Swap mutation is commonly used when the encoding is a per-

mutation. In this operator, two different gene positions are randomly chosen, and

then, the values at these two positions are swapped [103].

Uniform Mutation: This mutation strategy works by changing the chosen gene

value with a new uniform random value from the boundary specified by the user.

This mutation operator is normally used in the case of integer- or real-value-encoded

chromosomes [103].

Reversing Mutation: In this operation, we choose a starting position at random,

and then, the sequence of genes following this position is reversed. This is more

commonly used for binary-encoded chromosomes [103].

Inversion Mutation: In this mutation operation, two positions are chosen at ran-

dom, and the sequence of genes between them is reversed to create a new offspring.

This operator is used in the case of permutation encodings [103].

Creep Mutation: This operator is suitable for real-valued solution vectors. We

select a gene at random, and change its value by adding a random new value, usually

small, so that the gene value creeps either upwards or downwards, but respecting

the upper and lower bounds [103].

2.2 Approaches To Improve Evolutionary Algorithms

EAs have been used successfully in many applications. However, this success is

counterbalanced by some limitations when they are applied to large and complex

problems. One of these limitations is that the process becomes very time-consuming,

since each generation has to implement fitness evaluations on every member in the

population; when the fitness evaluation process is costly in time, this means that it

may not be possible to reach good solutions on larger-scale problems in reasonable

time. Premature convergence is another well-known example of the limitations of

EAs; at the early stage of the traditional EA process, the population diversity may

decrease, and become stagnant, leading to little or no further improvement despite

the time available. Research have attempted to address these issues by focusing

21

Chapter 2: Background

on implementation of new methods in order to improve the traditional EA. More

specifically, below we list some of these weak points in EAs, indicating the attempts

that have been made to address them:

Convergence speed : One of the greatest challenges associated with genetic algo-

rithm design is accomplishing efficiency with regards to the space and time required

for devising solutions of an adequate standard. With real-world applications, the

function evaluation aspect of ancyan algorithm can represent a substantial drain on

time. For instance, those tasked with developing contemporary engineering systems

normally make use of costly computer analysis and simulation programs involving

execution times that last anywhere between a few hours and several days just for one

function evaluation alone [41]. These programs include but are not limited to finite

element analysis (FEA), computational fluid dynamics (CFD), heat transfer and ve-

hicle dynamic simulations. The speed of a genetic algorithm search can be increased

[37] when using the following: hybridization in addition to parallelization [20], time

utilization [36], and evaluation relaxation (function approximation). Observable in-

creases in the search speed of genetic algorithms can be achieved through the use

of local search techniques as well, which employ domain-specific knowledge [111],

[52]. With hybrid optimization, it is possible to attain the best of both schemes

[59], which explains why the popularity of genetic hybrids is growing in relation

to resolving real-world issues. Varying search techniques have been combined with

genetic algorithms in order to do so [78, 120, 128].

The issue of diversity : The issue of diversity is particularly pertinent in Evo-

lutionary Computation given that a premature diversity loss has the potential to

result in premature convergence of the algorithm into parts of the search space

where it is hard or impossible for the operators to find any escape towards better

solutions. Further, a number of algorithms may not be capable of generating new

genotypes even though diversity is high, meaning that they subsequently stagnate.

One of many approaches to improving the management of diversity is the use of

Memetic Algorithms. Memetic algorithms are essentially hybrid search techniques

that are either population-based [29] or neighborhood-based (LS) [46]. Commonly

22

Chapter 2: Background

used population-based techniques are Genetic Algorithms and other Evolutionary

Algorithms. Popular local search methods used in memetic algorithms are Tabu

Search and Simulated Annealing (SA). The fundamental logic underpinning an MA

is the combination of population-based and local-based search techniques in a way

that helps get the benefits of both methods. That is, the exploration power of a

population based method, coupled with the exploitation power of a local search

method.

Fitness function estimation: If the fitness evaluation function is costly in terms

of time, or costly in other cyanways, these issues can potentially be resolved through

the use of approximate function evaluation methods. This means replacing the fit-

ness function with a faster and/or cheaper alternative. This alternative will almost

certainly provide estimates of the real fitness. However, empirical experience has

shown that this approach can be used effectively to make the search faster, simulta-

neously avoiding any detrimental impacts on the overall effectiveness of the search.

The reason for this is that genetic algorithms are characterized by a large degree of

robustness, in that they can accomplish convergence even in the presence of noise

resulting from approximation. Cheaper approximate fitness assignment takes the

place of more expensive accurate fitness evaluation; this involves a chromosome’s

fitness being guessed, for example, based on the fitness of its parents. Alternatively,

function approximation can be used, which involves an alternate or simpler function

taking the place of the full fitness function. Jin [48] conducted a broad survey on

fitness approximation techniques. The choice of the right approximation model to

precede the real function is paramount if the optimization issue at hand is to be re-

solved both effectively and efficiently. Neural network models have popularly been

used in function approximation [54].

Population size: With traditional EAs, population size is determined by users to a

defined value at the outset of the search and does not change at any point during the

run. The need to set this parameter value from the beginning raises some issues. On

one hand, if the population size is not large enough, the algorithm can prematurely

converge, and fail to achieve solutions that are of an adequate quality. On the other

23

Chapter 2: Background

hand, if the population size is excessively large, then the algorithm uses too many

computational resources and will progress too slowly. Unfortunately, setting this

parameter appropriately is quite challenging. Experts have demonstrated, in both

empirical and theoretical terms, that a one-size-fits-all approach does not work in

this respect. Rather, the best population size is determined on a case-by-case basis,

influenced by the individual problem to be resolved. Additionally, many researchers

and practitioners suggest that the best approach is setting the parameters differently

at varying stages of the run. A common proposition in this respect is that the

parameters should match the size and complexity of the problem at hand. Yet,

making such a judgement is challenging in itself for real-world issues, which simply

makes defining population size even more difficult. In order to sidestep this, some

users turn to standard settings (50-100 individuals), using estimated numbers, or a

trial-and-error approach testing different population sizes and choosing the one that

is optimal. A substantial part of this is down to chance, and the probability that a

user will select an inappropriate population size is high. For this reason, Smith and

Smuda [101] made an attempt to apply the population sizing theory developed by

Goldberg et al. [38] in a practical setting, combining the equation associated with

their theory in the genetic algorithm. The rationale behind this was to take away the

parameters, instead beginning with the population size in the first instance, given

that evidence demonstrates that the genetic algorithm had no issues in relation to

other parameters. The researchers thus proposed an algorithm for autonomously

adjusting the population size progressively throughout the run.

Optimizing the controlparameters: With EAs, one of the primary components

in working out the balance between exploration and exploitation is the appropriate

setting of control parameters. Alternative methods can be employed to monitor the

way in which an EA is currently operating (e.g. the rate of improvement in average

fitness from generation to generation) so as to change control parameters accordingly

to optimise search performance. Fuzzy logic is capable of representing knowledge

in non-exact ways, meaning that it can be employed for the purpose of reasoning

on knowledge that is ambiguous or is not fully understood. This means that fuzzy

24

Chapter 2: Background

logic is a good option for adapting control parameters. It has permitted studies

on methods of improving performance and the quality of solutions [88]. Moreover,

it has been employed to combine the various heuristics and methods of seasoned

experts into fuzzy logic models so as to adapt control parameters. The objective of

this is usually to sidestep detrimental effects, including premature convergence, and

to make the convergence of the genetic algorithm faster [44]. The optimization of

a neural network can be achieved using a genetic algorithm in a multitude of ways.

Further, it is capable of being applied to adjust the neural network weights [11, 67],

topology [5], and learning rules [33].

Large-scale optimization: A range of real-world issues originating in different

disciplines represent large-scale optimization tasks. Several different evolutionary

algorithms have been designed to address such challenges, but the performance of

these systems usually worsens as the size of the challenge becomes more significant.

Cooperative Coevolution (CC), which takes a divide-and conquer approach, has been

incorporated into EAs to cope with larger dimensional problems. CC, first developed

by Potter and De Jong [77], breaks a problem into smaller segments, each tackled

by a separate EA. The researchers first incorporated CC into GA by breaking down

an n-dimensional problem into n 1-D mini-problems for function optimization, the

results of which demonstrated better performance than the GA without CC. Liu et

al. [58] later attempted to tackle large-scale optimization issues using CC.

Approaches such as adaptive operators, adaptive population size, memetic al-

gorithms, and other hybrid algorithms, all have their contribution in improving

the performance of EAs in some cases. However, they all continue to face restric-

tions and limitations especially with large scale optimization problems. Therefore,

research continues to develop and test variants of these approaches and new ap-

proaches to try to address the challenge of large-scale problems. One of the more

promising threads of this reseach seems to be the use of CC, mentioned above. In-

corporating CC into EAs seems to be reliably more effective than using the basic

EA alone. Another, but quite different technique that seems to be reliably effective

when used, is the use of fitness inheritance. We discuss both of these next in further

25

Chapter 2: Background

detail.

2.3 Co-evolution

As discussed above, since traditional EAs have some limitations when coping with

high-dimensional problems, many researchers have started to give co-evolution more

attention, since studies show far suggest that it can often offer performance advan-

tages. Basically, coevolution involves combining two or more populations which

evolve separately, but in which individuals from one population have some influence

on the evolution in the other population [80, 112]. The way that evolution in two

(or more) co-evolving populations affect each other is normally by way of the fit-

ness function. If we have two evolving populations, A and B, then the fitness of

an individual in population A will be affected by population B because population

B provides aspects of the environment in which the individuals in population A

are measured (and vice versa). For example, an individual in population A may

represent some of the parameters of a function that needs to be minimized, while

population B may influence other parameters of that function. There are two dif-

ferent type of coevolution, competitive and cooperative, which handle this influence

in different ways. More details of these methods are provided next.

2.3.1 Competitive coevolution

Hillis [45] was the first to propose the idea of competitive coevolution. The idea of

competitive coevolution is to approach a problem by using two populations. One

population is a population of candidate solutions, in the normal way; the other pop-

ulation, called the test population, provides tests and challenges to the candidates in

the solution population. The idea is that, as solutions evolve to be better, the tests

evolve alongside to provide harder challenges. Several models have been designed for

the detailed interaction between the solution and test populations [25, 4, 129, 90, 99].

In standard competitive coevolution, each individual in the solution population rep-

resents a complete solution; meanwhile, each solution in the test population is a

standalone test. To calculate the fitness of an arbitrary individual in the solution

26

Chapter 2: Background

population, a number of tests from the test population are randomly chosen, and

the fitness of the solution is calculated on the basis of its performance across those

tests. After every individual in the solution population is evaluated, we can now

evaluate the fitness of ancyan individual in the test population. This is done by

considering the average fitnesses of the solution individuals that encountered each

test. Individual tests that tended to provide a greater challenge (and hence reduced

the average fitness of solutions) will be higher fitness in the test population.

2.3.2 Cooperative coevolution

Potter and DeJong [77] introduced the concept of cooperative co-evolution (CC)

within the EA community. Their initial work found the idea promising, particularly

for separable problems with independent components. However, the success of the

original approach on non-separable problems is somewhat limited [122]. The basic

idea of CC is to solve a large-scale (many dimensions) optimization problem by

first decomposing it into several smaller sub-problems; second solving each of the

sub-problems; third constructing a solution to the larger problem by combining the

solutions to the smaller ones from other sub-components see figure 2.7 and algorithm

2.

Algorithm 2 The original CC framework
1: Decompose the decision vector into m lower dimensional subcomponents.
2: Set i = 1 to start a new cycle.
3: Optimize the ith subcomponent with a certain EA for a predefined number of

fitness evaluations (FEs).
4: if i < m then
5: i++, and go to Step 3.
6: end if
7: Stop if halting criteria are satisfied; otherwise go to Step 2 for the next cycle

A common-sense arrangement was made to periodically update these fixed val-

ues, making use of best-so-far solutions from other sub problems. Many variations

on this idea have since been explored. In general, any CC approach tends to be con-

figured to evolve solutions to sub-problems one after another, each time using the

best parameter values for the previous sub-problem when moving on to the next. In

a sensibly configured CCEA, there are mechanisms for more sophisticated interac-

27

Chapter 2: Background

Figure 2.7: Processing in CCEA.

tion between sub-problems. For example, sub-problems might be solved in parallel,

and there might then be brief spells of whole-problem evolution, or hill-climbing,

rooted in the best parameters found from the sub-problems so far.

In the original framework [77] (and in the majority of subsequent research), the

decomposition into sub-problems is cyansimply affected by a partitioning of the

decision variable space. For example, if we need to optimize a function of 1,000

variables, v1,v2,...,v1000, then we can decompose this into two smaller problems:

the first sub problem only considers variables 1—500; and the second only considers

variables 501—1000. In the above example, when optimizing the first sub problem,

the quality of solutions can only be estimated by assuming a reference set of fixed

values for variables 501—1000. Similarly, when optimizing the second sub-problem,

there needs to be a reference fixed set of values for variables 1—500. Typically, these

reference sets may start at random, but be updated as the algorithm runs via the

occasional evaluation of a judiciously composed full solution. The initialization and

updating of these reference sets is a key dimension of variation among the literature

of CC variants, along with other key aspects such as the details of decomposition

and its adaptation. In this thesis, three strategies are used in the CC component

28

Chapter 2: Background

as the decompose strategy: contiguous, random and delta grouping. More details

about each of these are provided in later sections.

2.4 Evaluation Is Expensive

Evaluation of fitness is a central aspect of all algorithms in evolutionary computation;

evaluation is used to find the quality of a solution, and/or to compare the quality of

two solutions, for example to distinguish a new solution (child) from a current one

(its parent) in order to decide who will continue for the next generation. In some

situations, and especially in large-scale problems, the evaluation process might be

very expensive; in other words, simply to evaluate the quality of a single solution

might take seconds or minutes of time on a processor.

For example, in co-operative co-evolutionary algorithms, when the problem is

decomposed to sub problems, each sub problem is tackled via a dedicated popula-

tion, and each single candidate solution in every population needs to have its fitness

assessed. The standard way to do this is to form temporary complete solutions by

combining an individual solution to a subproblem with other parts from other sub-

populations, and then evaluating the complete solution. The fitness of a subproblem

individual is a function of the fitness of the complete solutions that it has contributed

to in this way. In this way, co-operative coevolution certainly does not reduce, and

probably increases, the number of fitness evaluations required to perform well on

the problem at hand. The challenge therefore becomes that of making the most of

the available fitness evaluations. Also, another challenge for the algorithm design

community is to find search strategies that provide sufficiently good solutions in as

small as possible a number of fitness evaluations in general.

2.5 Fitness Inheritance

Fitness Inheritance (FI) is an entirely different approach to speeding up black box

optimization, introduced by Smith, Dike and Stegmann [100]. FI tries to cut down

on the need for real function evaluations, by making a proportion of evaluations

29

Chapter 2: Background

estimates, based on parents’ fitnesses. The approach can be seen as a variation on a

surrogate model based EA. In a surrogate model approach, a model of fitness (the

surrogate is learned while the algorithm is running, and used some proportion of

the time in place of the full fitness function, to provide a fast estimate. In fitness

inheritance, this surrogate model approximation to fitness is formed by inheriting

fitness values from one or more of an individual’s parents [100, 2].

Fitness inheritance (FI) refers to the simple idea of making a fast estimate of an

individual’s fitness, rather than performing an accurate evaluation. FI can be po-

tentially be deployed in any ’black box’ algorithm context. Where c is an individual

in the population, and eval(c) represents the evaluation of its fitness in the context

of pseudocode, then we can affect the deployment of FI simply by replacing eval(c)

with: With prob. PFI, run inherit(c) Otherwise run eval(c). The outline of fitness

inheritance is as in algorithm 3.

However, sometimes care needs to be taken about the context of the evaluation.

In the majority of cases, this means that we should ensure two things: (i) the

initial population is always evaluated with eval, and (ii) updating of the ’best so far’

solution, and similar book-keeping, are done on the basis of fitness values returned

by eval. With the latter protections in place, we can then replace a proportion

PFI of evaluations with fast inherited estimates. There are three commonly used

approaches to producing an inherited fitness [32]. Where ch is the child of parents

p1 and p2, and where fx represents the stored value of the previous evaluation of x

(whether real or inherited), these are:

• Averaged inheritance : in which the estimate of the child’s fitness is sim-

plycyan the mean of its parents fitnesses:

inherit(ch) =
(fp1 + fp2)

2

• Weighted inheritance : this is in the spirit of averaged inheritance, but

introduces weights according to the child’s different similarities to its two par-

ents:

inherit(ch) =

{
(wp1.fp1 + wp2.fp2)

wp1 + wp1
Where,

30

Chapter 2: Background

wpi = w(x, xpi) = 1− d(xh, xpi)

(d(xU , xL)
and d(xi, xj) is the Euclidean.

• Parental inheritance : this is an extreme version of weighted inheritance,

in which the entire current population P is used to estimate the fitness of ch:

inherit(ch) =

∑
wp.fp∑
w.p

How weights are calculated in the latter two approaches depends on the algorithm

and encoding context, but the overall idea is to guess the child’s fitness by appealing

to a very simple linear approximation to the fitness landscape that is either based

solely on the parents, or based on the entire population. Naturally, also, the obvious

variations can be made to calculate inherited fitness for children of just one parent,

or of more than two parents.

Algorithm 3 Pseudo code of fitness inheritance
1: pi refers to inheritance proportion.
2: NG refers to number of generation.
3: Initialize Population (P).
4: Evaluate (P).
5: t=0.
6: while t < NG do
7: Select s∗ individuals from P at random to be inheritance,according to pi.
8: Evaluate (P − s∗) individuals in P by eval(c).
9: Evaluate s∗ individuals in P by inherit(c).

10: t= t + 1.
11: end while

As previously indicated, Smith, Dike and Stegmann [100] originated the concept

of fitness inheritance (FI), at the same time introducing the first of the two simple

inheritance schemes above. In the original work,cyan Smith et al. evaluated the

concept on two problems. The first of these was the well-known (and these days very

little used) ONEMAX test problem, in which the objective is simply to maximize

the total number of 1s in a binary chromosome. Their second choice of test case

was somewhat more interesting, being a realistic aircraft routing problem. On both

problems they found impressive performance from FI. In [93], Sastry, Pelikan and

Goldberg made some headway into a theoretical understanding of FI, untangling the

relationship between population size and the fitness inheritance proportion on the

ONEMAX landscape. Their conclusions, as regards separable landscapes, were that

31

Chapter 2: Background

FI could lead to significant efficiency enhancements, halving the required number

of function evaluations, and yielding speed-ups of between 1.75-fold and 2.25-fold.

Pelikan and Sastry [73] went on to find even more impressive speedups (e.g. 30-fold)

when using FI in other cyanapplication and this has also been found in many other

studies [87, 63, 92, 132, 10].

Although little work so far has combined FI with CC (we only know of [42]), FI

is increasingly being explored outside the region of standard EAs, and being applied

to nonstandard applications. For example in [35], FI is used as an essential tool

for reducing a number of fitness evaluations when solving a problem of constructing

robust continuous multi-objective test functions with various noise-induced features

capable of uncovering truly capacity of the tested algorithms. Meanwhile, a modi-

fication of FI where fitness of a solution is based on its positional relationship with

other particles has also demonstrated its benefits when used in PSO [76], typically

suffering from overwhelmingly high number of fitness evaluations needed to find

acceptable solution.

2.6 Evolution Strategies

Evolution strategies (ES), introduced by Rechenberg and Schwefel in the middle of

the 20th Century [86, 96, 14], is an important subfamily of EC algorithms. We briefly

review and describe ES here because it is a core algorithm at the heart of certain

parts of the research in this thesis, specifically the algorithms we use for comparison.

The paramount aspect setting ES apart from all other types of EC is the fact that

the main strategy parameters have the capability of self-adaptation. The power

of self-adaptation is such that the parameters which determine the evolutionary

performance are not fixed and are instead subject to variation during the time

the algorithm runs. Essentially, when an ES is operating, the strategy parameters

and the solution parameters (i.e. the components of solutions) are subject to co-

evolution. Prior to moving onto any more detailed discussion of this, it is prudent

to first consider the details of a simple two member ES for the optimisation issue in

relation to decreasing an n-dimensional function. The essence of this ES is offered

32

Chapter 2: Background

below as Algorithm 4:

Algorithm 4 Pseudo code of evolution strategy
1: t = 0.
2: Produce an initial point (x1

t, ..., xn
t) ∈ R

3: repeat
4: Draw zi from a normal distribution N(0, σ), for all i ∈ (1, . . . , n).
5: yi = xi + zi for all i ∈ (1, ..., n).
6: if (f(xt) ≤ f(yt)) then
7: xt+1 = xt

8: else
9: xt+1 = yt.

10: end if.
11: Set t = t + 1.
12: until Termination condition is satisfied.

Thus, it is possible that by looking at this basic algorithm, the basic principles

and components of ES can be identified. To start with, on the whole, ES is employed

for the purposes of real parameter optimisation. It works directly on the phenotype

area that represents the real valued vectors. It is possible to describe the issue here

as an objective function; namely, Rn → R. Further to this, the mutation operator is

the primary operation used to generate a new child. Because a present solution xt

manifesting as a vector with n length, the another new candidate xt+1 is introduced

through adding a new random number zi for i ∈ (1,, n) to every one of the n

elements. A distribution, whether it is Gaussian or normal, is employed with zero

mean and standard deviation σ for the purposes of producing the random numbers.

σ is also referred to as the mutation step size.

2.6.1 Self-adaptation

As was noted previously, the key aspect of ES is the capability of self-adaptation,

which is shown in two ways. For the representation, each component of ES is made

up of two pieces, the first of which is the object parameters (x1, ..., xn) which stand

for the component itself, and the second of which is the strategy parameters which

consist of two lots of values σ and α. The former of these are the mutation step

sizes and normally their number nσ are 1 or n, and α are interactions between the

step sizes employed for all variables. Thus, the common depiction of components in

33

Chapter 2: Background

ES is as follows:

x1, ..., xn, σ1, ..., σn, α1, ..., αn

The mutation operator is the other element where the self-adaptation capability

can be depicted. This is the conversion of the strategy parameters for the mutation

occurring throughout the runs of ES. On the whole, in the research to date, there

have been two key methods of executing this self-adaptation. The first of these is the

covariance matrix adaptation, which ascertains the mutation probability distribu-

tion. Second is the application of self-adaptive control parameters methods [86, 95].

The strategy parameters are clearly coded at the same time as the decision variables

and they are updated by making use of an already established framework of rules in

relation to updates applicable to individual generations. There are essentially three

varying implementations, which are as follows:

1. Uncorrelated mutation with one step size, (Isotropic Self-Adaptation):

In this instance of uncorrelated mutation with one step size, homogeneous dis-

tribution is employed in order to mutate each xi, meaning that there is a lone

strategy parameter σ in each element. This σ is mutated every time step by

increasing its number by a term of (eΓ ∗ Γ) , Γ is a random variable drawn on

each occasion from a standard distribution with mean 0 and standard devia-

tion τ . The mutation mechanism is therefore represented by these formulas:

σ
′
= σ.eΓ.N(0,1) (2.3)

x
′

i = xi + σ
′
Ni(0, 1) (2.4)

Equation 2.3, N(0, 1) shows a draw from the standard distribution, but Equa-

tion 2.4 Ni(0, 1) shows an individual draw from the standard distribution for

all variables i. Users can set the proportionality constant Γ, which is an exter-

nal parameter. Normally, it is inversely proportional to the square root of the

problem size, Γ α 1/
√

n. The parameter Γ can be viewed as a sort of learning

rate [7], The justifications for mutating σ by multiplying with a variable with

34

Chapter 2: Background

a log-normal distribution are: there should be more modifications of a smaller

size than a larger size; standard deviations must be higher than 0.0; the me-

dian should be 1.0; on average, mutation should be neutral, which necessitates

the same probability of pulling a particular value and its reciprocal value for

all values. Using this implementation, the representation for each component

takes the form x1, ..., xn,σ.

2. Uncorrelated mutation with n step sizes,(Non-Isotropic Self-Adaptation)):

The justification for employing n step sizes is the desire to handle dimensions

in a non-homogeneous way. Specifically, it is anticipated that varying step

sizes are utilised for individual dimensions i ∈ (1, . . . , n). This is due to the

challenge presented if the fitness landscape does not have the same slopes for

all directions on every axis. So, every basic chromosome x1, ..., xn is extended

with n varying step sizes, one per dimension. The altered mutation mechanism

now looks like this:

σ
′

i = σi.e
τ
′
.N(0,1)+τ.Ni(0,1) (2.5)

x
′

i = xi + σ
′

i.Ni(0, 1) (2.6)

where τ α 1/
√

2n, and τ
′
α 1/

√
2
√
n, the sum of two normally distributed

variables is also normally distributed, meaning that the resulting distribution

is still lognormal. The justification for this, based on concepts, is that the

common base mutation leaves the potential open for a complete shift in the

mutability, ensuring the protection of the degrees of freedom, at the same time

as the coordinate-specific offers the choice to employ varying mutation strate-

gies in varying directions. In this implementation, the component is shown as

(x1, ..., xn, σ1, ..., σn)

3. Correlated mutations: The justification for correlated mutations is to

35

Chapter 2: Background

permit the variable vector to take whichever direction by rotating them with

a rotation covariance matrix C. It is the mutation step sizes and the angles

between the dimensions which determine the entries of this matrix. Thus, the

entry of the covariance matrix is cij(i 6=j) = 1/2(σ2
i -σ2

j) tan (2αij), if there is

link between the i and j dimensions. The mechanism is now as follows:

σ
′

i = σi.e
τ
′
.N(0,1)+τ.Ni(0,1) (2.7)

α
′

j = αj + β.N(0, 1) (2.8)

x
′
= x+N(0, 1) (2.9)

Where τ α 1/
√

2n, and τ ′
α 1/

√
2
√
n. The parameter β is fixed as 0.0873 (or 5°).

The σi are mutated in exactly the same fashion as they were previously in Equation

2.5, the αj are mutated with a supplement, usually distribution variation, which

is not that dissimilar to the mutation of object variables. The mutation of object

variables x now occurs by joining the variance taken from an n-dimensional normal

distribution with covariance matrix C.

In correlated self-adaptation, as well as n mutation strengths, at best n.(n-1)/2

covariance α are part of every stand-alone solution. Therefore, altogether there are

n.(n+1)/2 strategy parameters which have to be updated for the individual solutions.

This means that this form of self-adaptive ES has the capability to acclimatize to

problems characterised by correlated decision variables x. With correlated problems,

in order for there to be a disconnect between the objective function and the new

coordinate system, it is important to locate all pair-wise coordinate rotations in

addition to the spread of solutions in all rotated coordinate systems. In this way,

the component takes its general form. In the past, no crossover operators are used in

ES, but all types of real coded crossover operators can be used to kit out ES. Parent

selection in ES is unaffected by the fitness values. If a parent is required, then it

36

Chapter 2: Background

is selected at random alongside uniform distribution from the entire population at

present. This selection is a key influence bettering the average quality of the entire

present population. It seems that this selection is unable to perform this function

itself, and this is instead completed by the survival selection in ES.

2.6.2 Survival selection

In ES, two survivor selection schemes exist, following creating λ products and work-

ing out their fitness values, the optimum µ of them are selected in a deterministic

way, from only the products, known as (µ, λ) selection, or from the combination

of parents and products, known as (µ+λ) selection. Both the (µ, λ) and (µ +λ)

selection methods operate deterministically and are founded on rank as opposed to

the absolute fitness values. The selection method normally employed in evolution

strategies is (µ, λ) selection, which is viewed as preferable for a number of reasons:

The (µ,λ) selection gets rid of all parents and (small) local optima can therefore be

left, meaning that it is beneficial is the instance of multimodal landscapes. If there

is no fixed fitness function, but alterations in time, the (µ + λ) selection maintains

outdated solutions, so its ability to follow the moving optimum to a high standard

is compromised. (µ + λ) selection negatively impacts the self-adaptation mecha-

nism in terms of strategy parameters to operate well, because misadapted strategy

parameters can remain for many generations when a component is characterised by

good object variables and bad strategy parameters.

With ES, the pressure present in relation to selection is usually very elevated,

which can be explained by the fact that theλ value for offspring is far greater than

the µ value for parents. Normally, 1/7 ratio is the optimal.

2.7 Differential Evolution (DE)

2.7.1 Classical differential evolution:

DE was proposed by Storn and Price [106]; it is simple but has been effective and

efficient in both real-world problems and benchmark functions [105]. The idea be-

37

Chapter 2: Background

hind DE was to develop a new mutation method by adding a weighted difference

between two individuals into the third. Then, the crossover operation and selection

will work between these mutated individuals and the corresponding individuals from

the previous generation xi to generate a new trial child x′i. The classical DE has

two important control parameters, namely the scaling factor (F) and the crossover

rate (CR), which were always constant. Therefore, considerable research has been

conducted in an attempt to improve the classical DE by introducing a self-adaptive

strategy to adapt these parameters (CR and F). According to [106], DE can be

described as follows:

1. Mutations:

vi = xi1 + F.(xi2 − xi3) (2.10)

where the vectors xi are individuals and the candidate solutions in DE’s pop-

ulation (NP) and each vector consists of the D-dimensional parameter, i = 1,

2, ..., NP, and in each index i, we need three other indexes, i1, i2, i3, which are

randomly different chosen and different from i. The scale factor F is a real

number and is often set to 0.5.

2. Crossover : The crossover here will build a new trial candidate by the equa-

tion 2.11 and pass it to the selection method to decide whether it should

become a part of the new generation.

Tri(j) =

 vi(j), if Ui(0, 1) ≤ CR or j = randj

xi(j), otherwise
(2.11)

randj is a randomly chosen index from vi(j) to ensure that the trial vector does

not duplicate the original vector xi(j). Ui (0,1) refers to a uniform random

number generator between [0, 1].

3. Selection: By using this equation, DE can provide a successful offspring for

38

Chapter 2: Background

the next generation.

x′i =

 Tri, if f(Tri) < f(xi)

xi , otherwise
(2.12)

In DE, there are five mutations schemes, but only two of them are used often

(2.13), (2.15) because of their greater effectiveness and performance [79, 123].

vi = xi1 + F.(xi2 − xi3) (2.13)

vi = xbest + F.(xi1 − xi2) (2.14)

vi = xi + F.(xbest − xi) + F.(xi1 − xi2) (2.15)

vi = xbest + F.(xi1 − xi2) + F.(xi3 − xi4) (2.16)

vi = xi1 + F.(xi2 − xi3) + F.(xi4 − xi5) (2.17)

2.7.2 Differential evolution with neighbourhood search (NSDE)

Neighbourhood search (NS) has been used successfully in combination with evo-

lutionary programming (EP) to improve performance [126]. As the evolutionary

processing in both EP and DE might be similar, in [124], the researchers proposed

a new idea by combining NS with DE (NSDE). The experimental results in [124]

showed that NSDE is better than and superior to DE. NSDE is similar to DE, but

instead of the scale factor F remaining constant in the DE mutation, in NSDE, F

will be replaced by the following equation (2.18):

Fi =

 Ni(0.5, 0.5), if Ui(0, 1) < fp

δi , otherwise
(2.18)

39

Chapter 2: Background

where Ni (0.5,0.5) refers to a Gaussian random with a mean of 0.5 and a standard

deviation of 0.5 and δi is a Cauchy random number with a scale parameter of 1.

Often in NSDE, fp is set to 0.5.

2.7.3 Self-adaptive differential evolution (SADE)

SaDE was introduced in [82] to evolve and adopt the two best mutation strategies

in DE equations (2.13), (2.15) by using the self-adapted control parameter (P) as in

equation (2.19). During the evolution in SaDE, the scale factor F and the crossover

rate CR are adjusted automatically. SaDE has been shown to be more effective than

DE in terms of performance [82].

Vi =

 Eq4 , if Ui(0, 1) < fp

Eq6 , otherwise
(2.19)

Here, in equation (2.19), P will be initially set to 0.5. Then, in the evaluation of all

the offspring that go to the next generation by using both equations (2.13), (2.15),

are recorded as ns1 and ns2. nf1 and nf2 record the number of candidates rejected

by both the equations, respectively. After 50 generations in SaDE, P is updated

according to equation (2.20) and the values of ns1, ns2, nf1, and nf2 are reset.

P =
Ns1.(ns2 + nf2)

Ns2.(ns1 + nf1) +Ns1.(ns2 + nf2)
(2.20)

In the SaDE the scale factor F will be a Gaussian random number of 0.5 mean and,

standard deviation 0.3, as (2.21):

F = Ni(0.5, 0.3) (2.21)

SaDE also evolves and self-adapts the important value of the crossover rate CR

rather than using a constant value of 0.5, as in equation (2.14). Each individual in

the population assigns a value of CR, as in (2.22).

CRi = Ni(CRm, 0.3) (2.22)

40

Chapter 2: Background

After every five generations in SaDE, a new value of CRi in each individual in the

population is updated according to equation (2.22). However, in each generation,

the best value of CR that allows the offspring to enter the new generation in a array

is recorded as CRRec. Here, CRm is initially equal to 0.5. After 25 generations, the

value of CRm is updated according to (2.23).

CRm =
1

CRRec

CRRec∑
i=1

CRRec(i) (2.23)

2.7.4 Self-adaptive differential evolution with neighbourhood

search (SaNSDE)

If we compare the performance of Sa and NS separately over DE, we find that both

have good effects and success with DE (SaDE and NSDE); therefore, in [123], to

benefit from these advantages, the researchers combined these two algorithms as

SaNSDE. SaNSDE is similar to SaDE except for some of the steps to update the

values of F and CRm. Therefore, first, the scale factor F or the equation (2.21)

should be replaced with (2.24).

Fi =

 Ni(0.5, 0.3) , if Ui(0, 1) < fp

δi , otherwise
(2.24)

fp here would be self-adapted as in SaDE in equation (2.20). Second, the crossover

rate CR is similar to the SaDE strategy, but we also record the different weighted

fitness values between the new offspring and its parent in the array (FRec) by the

successfully recorded CR rate.

Hence, the equation (2.23) is changed to 2.25:

CRm =
1

CRRec

CRRec∑
i=1

Wi × CRRec(i) (2.25)

Wi =
FRec(i)∑FRec

i=1 FRec(i)
(2.26)

41

Chapter 2: Background

2.8 Related Work

A considerable amount of research has been devoted to the challenge of large-scale

optimisation, particularly in the promising area of co-operative coevolution. Many

researchers have investigated the variations on the basic CC framework. Here, we

review the prominent and relevant previous work on the following:

1. Non-separable problems: The original CC framework on non-separable

problems is somewhat limited [122], because parameters interact with each

other. In natural genetics [81], when two genes represent a feature at phe-

notype level then they are non-separable genes and they interact with each

other. Also, if when the activation of one gene affects the activation of an-

other gene, then these two genes are again said to interact with each other.

Also [117, 50, 23] if two genes interact, the term epistasis is used to refer

to that interaction. In genetic algorithms, this interaction between variables

is also referred to as linkage between them [116, 117] Therefore, much work

has been done trying to investigate interacting parameters in CC, and in par-

ticular aiming to ensure that interacting parameters are placed together in

the same subcomponent in CC to share information. Yang, Tang and Yao

[122] proposed their variant, DECC-G, in which the groups of parameters

within a sub-problem adapted over time, in attempt to maximize the extent

to which interacting parameters were present in the same sub-problem. This

led to improved performance on non-separable problems, when compared to

the standard framework.

Cao et al. [21], also focus on non-separable problems in large scale optimization

problems. In their work they tried to shed light on cases where the variables

are fully non-separable, since the classical CC algorithms are ineffective in

this scenario. They propose a new effective CC framework named CC-GLS

with a new decomposition method called Sequential Sliding Window. They

used this decomposition strategy when integrating global search algorithm Self

adaptive Differential Evolution with Neighborhood Search (SaNSDE) and local

search traditional Solis andWets’ algorithm (SW).the results of their algorithm

42

Chapter 2: Background

CC-GLS when compared with other algorithms used different decomposition

method such as random grouping suggests it is a promising framework, espe-

cially for large scale fully non-separable problems.

Also correlation identification grouping was used in CC in [108] in order to

improve CC ’s ability to deal with non-separable problems; they used correla-

tion identification grouping to capture the interactions between variables, and

group closely correlated variables together into co-evolving subsets; these sub-

sets were naturally self-adapting in size as the interactions between variables

changed during the course of an algorithm run.

2. Large scale optimization:

Ye et al. [127], focus on the subcomponent optimizer in the CC framework

in order to improve performance on large scale optimization problems. They

proposed a new Hybrid adaptive optimization method by taking two very ef-

ficient differential evolution algorithms, JADE and SaNSDE, and making a

hybrid of these two algorithms which they named HACC-D. At the begin of

the evaluation process, the initial population is evolved with these two algo-

rithms (JADE and SaNSDE) separately with an appropriate number of fitness

function evaluations, then the algorithn which performs more effectively in this

initial phase will be chosen to be the optimizer in this subcomponent for the

rest of the evaluation process. Their results confirmed that the HACC-D al-

gorithm is able to benefit from the advantages of the two algorithms SaNSDE

and JADE. Regarding convergence speed and diversity in the population on

large scale optimization, X. Zhang, W. N. Chen and J. Zhang [131] proposed a

dynamic competitive swarm optimizer (DCSO) based on entropy of the pop-

ulation. In their work they divided the population into two sub-populations,

one with the best fitness values and the other with the worst fitness values,

dynamically at an early stagy of the evaluation process. The idea is that the

worse sub-group will learn from the best sub-group. Their results for DCSO

showed better and faster convergence speed when compared with competitive

swarm optimizer (CSO). Min Han and Jianchao Fan [43] also tried to improve

43

Chapter 2: Background

the performance of particle swarm optimization (PSO) on large scale optimiza-

tion by combining it with dynamic neighbourhood topology (DNT). Their al-

gorithms PSO-DNT will divide the whole swarm into sub-swarms adaptively

without decomposing. The dynamic neighbourhood topology DNT will assist

the particles share the information from the neighbourhood particles, their

results suggested that the proposed algorithm PSO-DNT has a good perfor-

mance compared with PSO alone in solving a benchmark test functions. S.

Mahdavi, S. Rahnamayan and K. Deb [60] tried to improve CC’s performance

on large scale non-separable problems by looking at the influence of the pop-

ulation initialization. Three strategies are used to initialize the population in

this work, centre-based, hybrid random-centre normal distribution and central

golden region. These strategies provide better solutions when using a centre

point-based sampling method. The centre-point method was proposed by Rah-

namayan and Wang [84], which is showing that the probability of closeness to

an unknown solution for the centre point is significantly higher than any other

points in the search space. Therefore, their results confirm that the new algo-

rithm improves the performance of CC on the majority of the non-separable

benchmark functions they tested. S. Mahdavi, M. E. Shiri and S. Rahnamayan

[61] proposed a new decomposition method to recognise those variables. Their

decomposition method was based on High Dimensional Model Representation

(HDMR) to discover and group separable and non-separable variables before

applying the optimization. They used their RBF-HDMR model in [98] to

see the effect of the two variables. Their algorithm DM-HDMR (decomposi-

tion method based on High Dimensional Model Representation) results sug-

gested, when applied on CEC’2010 benchmarks functions and compared with

state-of-the-art algorithms, that DM-HDMR can efficiently solve large-scale

optimization problems.

Yang et al. [121], proposed a new technique for Differential evolution called

multiple parents guided (MPGDE) algorithms, instead of using just one parent

as in the original DE variants. In their work they made an archive to reserve

44

Chapter 2: Background

the failed tried individuals during the evaluation process, because failed tried

parents may nevertheless contain useful information; these parents are updated

with a method called niching to preserve diversity. In order to direct individ-

uals from the populations and the archive, a multiple top ranked selection

strategy is used, where both individuals from the archive and the population

are able to participate. They found that their algorithm was statistically supe-

rior to the compared state-of-the-art algorithms on most of the 20 CEC’2010

benchmark functions on large scale optimization.

3. Decomposition strategies:

Omidvar et al. [69] introduced a new decomposition strategy called Differ-

ential Grouping. This method aimed to group any interacting variables into

the same sub-component. The algorithm applies an interaction test between

all pairs of genes in the chromosome, and then places all interacting variables

together in the same subcomponent. In contrast, if no interacting variables

are detected then they will treat the variables as a separable problem. Their

results using CEC’2010 benchmark functions shows that this automatic way of

decomposing an optimization problem has the ability of grouping interacting

variables with great accuracy on the majority of functions. In further work

on differential grouping C. Peng and Q. Hui [75], they made some compar-

ison between two decomposition strategies, random and differential grouping

methods in CC. Their results show that after some improvement with differ-

ential grouping the speed of the approach is doubled, in terms of the number

of evaluations required to meet the same fitness level. An example of CC in

use in the context of Differential Evolution is provided by Trunfio [113], who

investigated the use of several variants of search space decomposition in paral-

lel during short learning phases, allowing adapting the size of subcomponents

during the CC search. Meanwhile, Sayed et al. [94] proposed a technique for

the identification of variable interaction aimed at limiting the number of in-

terdependent variables among decomposed problems, a common theme in CC

research also echoed in [71] in which they try to group interacting variables

45

Chapter 2: Background

into several subcomponents, especially for non-separable problems by Sayed

et al particular technique, related to the concept of separability and based

on random resampling and propagation of variable partitions, is reported to

improve the ability of the decomposition-based optimization models in scaling

up to 1000 dimensions.

Another effective decomposition scheme is proposed in Mei, Li and Yao [62],

which is designed especially for the large-scale capacitated arc routing prob-

lem. In this scheme, route information about the best-so-far solution is ac-

tively employed in constructing the following decomposition to guarantee the

non-decreasing quality of the decomposition. Differentiation between a vast

number of possible decomposition is made based on special distances between

the solutions which allow efficient identification of promising regions of the

search. Liu et al. [57], tried to explore the relationships between search algo-

rithms and grouping strategies in CC. From their comprehensive experiments,

they aimed to shed light on the balance between the contribution of the algo-

rithm itself and the contribution of the decomposition strategy (e.g. maybe

a good decomposition strategy could make up for a poor algorithm). Overall

they found that the quality of the algorithm was more important e.g. some

good decomposition strategies failed to achieve better results when combined

with less effective search algorithms.

Van den Bergh and Engelbrecht [115], who explored CC under the framework

of particle swarm optimization (PSO). In their case, parameters were randomly

assigned to sub-problems (this is also the case in [85]). In such random assign-

ment, each sub-problem comprises a random selection of parameters scattered

across the decision parameter vector, and this random assignment may change

in every cycle of the algorithm. Among other key algorithm strategy choices

in CC is the question of how, for any given sub-problem, to choose the refer-

ence set of fixed parameters those are not included in that sub-problem. The

most common approach, naturally enough, is to use the best-so-far complete

solution, updating these reference sets whenever a new best-so-far is found.

46

Chapter 2: Background

M. El-Abd [30] started from [69], and proposed hybrid cooperative co-evolution

(hCC). Since we can group the interacting variables in one subcomponent and

also group the non-interacting variables together in a different subcomponent,

as in [69], he chose from the literature two distinct algorithms to be the opti-

mizers for the groups, one for separable groups (artificial bee colony (ABC)),

and Self-adaptive differential evolution with neighbourhood search (SaNSDE)

for the non-separable groups. The results on CEC’10 benchmarks functions

show that hCC has promising performance on different classes of the functions.

2.9 Summary

In this chapter, the key concepts related to the cooperative coevolution framework

were introduced and explored. The chapter began by explaining evolutionary algo-

rithms in general and its importance and success in solving optimization problems,

and also discussed the challenges when facing large scale problems. The main steps

of the standard co-evolution approach were presented. Moreover, we discussed the

topic of expensive fitness evaluation, and approaches to address this, especially fit-

ness inheritance. New approaches involving co-operative coevolution (CC) and fit-

ness inheritace (FI) are the focus of the research described in later chapters in this

thesis. However, our experiments and comparisons also involve other algorithms,

particularly evolution strategies and differential evolution. Therefore this chapter

also introduced and described the latter algorithms.

47

Chapter 3

Co-operative Coevolution with

Fitness Inheritance for Large-Scale

Optimization

In this chapter, we introduce a combination of Cooperative Coevolution (CC) and

Fitness Inheritance (FI) and investigate its performance. Both CC and FI have been

found to be successful on nontrivial and multiple test cases, and they use fundamen-

tally distinct strategies. In this chapter, we explore the extent to which using both

of these strategies at once provides an additional benefit. We combined CC and FI

into a straightforward algorithm that we called CCEA-FI, which incorporates those

design aspects of both of these strategies that seem effective (from the available

literature so far), while being relatively free of additional parameters or complex-

ity. CCEA-FI uses FI with averaged inheritance and CC with random parameter

grouping and non-random grouping (contiguous grouping) schemes. The results of

CCEA-FI were compared with those of both CCEA alone and the basic EA, on 20D,

50D, 100D, 500D, and 1000D. Moreover, the three FI approaches were compared on

the Rastrigin function with 50D and 100D. The second part of this chapter discusses

the testing of our algorithm on non-function optimisation; therefore, we chose bin

packing problems as a candidate. A Mann-Whitney U test was used to test for

significant differences between the algorithms considered in this chapter.

48

Chapter 3: Co-operative Coevolution with Fitness Inheritance for Large-Scale
Optimization

3.1 CCEA-FI Algorithm

The proposed algorithm and its testing, discussed in the next section, were aimed

at accelerating performance on large-scale problems; comparisons with other algo-

rithms were also made. In this section, we will describe our algorithm CCEA-FI

step by step.

Step (0): parameter settings: set values for population size, set fe which refers

to the number of function evaluations, set pi (refers to inheritance proportion). Set

K (indicate the number of subpopulations).

Step (1): Generate a population of candidates on D dimensions with population

size in the space and evaluate this population. Each candidate parameters Xi is

initialized with a random value depend on the range of the function (from x to y).

Step (2): Update B which is the best or fittest member of the population.

Step (3): Terminate if a total of function evaluations have been done.

Step (4): partition the D dimensions into k subpopulation (P1,.., PK) where

each subpopulation will evolve D/K parameters.

Step (5): for each sub population, j in 1,.., K.

• Initialize the sub population pj and

• Run select s∗ individuals from pj sub population at random to be inheritance

according to inheritance proportion pi.

• Evolve sub population Pj and evaluate Pj−s∗ individuals in Pj by simulation

and evaluate s∗ individuals in Pj by inheritance.

• Until Ns real evaluations have elapsed.

• Update best-so-far B.

Step (6) Return to 4.

Our algorithm basically is as in Algorithm 5, in each subpopulation randomly

will choose individuals to be inheritance in each generation this means that every

individual has the same chance in the subpopulation to be evaluated by fitness

function or inheritance by surrogate modelling fitness inheritance. The number of

49

Chapter 3: Co-operative Coevolution with Fitness Inheritance for Large-Scale
Optimization

Algorithm 5 The basic structure of CCEA-FI
1: Initialize Population P.
2: Evaluate all N members of P, and let B be the best member of the population

(breaking ties randomly)
3: repeat
4: Partition the D dimensions randomly into K sub-populations, P1,.., PD

where each sub-population Pj will evolve D/K parameters
5: for j in 1, .., K do
6: repeat
7: initialize sub-population Pj as N
8: evolve sub-population Pj using FI with inheritance Pi
9: until NS real evaluations have elapsed

10: end for
11: Update best-so-far B
12: return to 4
13: until a total of FE function evaluations have been done

the individuals chosen for their fitness to be inherited is controlled by the inheritance

proportion Pi.

3.2 Fitness Inheritance Approaches

In some preliminary investigation, a comparison has been done on fitness inheritance

approaches to decide which method should be used in our work. From the literature

[32, 10] they found that averaged inheritance is more effective when compared with

other methods. With this in mind, we decided to make some simple comparative

tests between this and two other common methods. The average, weighted and

parental fitness inheritance methods were there implemented and tested with basic

CCEA-FI with non-random grouping scheme on 100 dimensions on the Rastrigin

function.

1. Parameter settings:

We test the three methods average, weighted and parental fitness inheritance

on Rastrigin function, We used a population size of 100, and ran experiments

20 times independently, continuing for 50,000 function evaluations. We fixed K

(number of subpopulations) at 2, and experimented with a range of FI values

from 0 to 80%. The EA used in this part is a steady-state, replace-worst with

binary tournament selection.

50

Chapter 3: Co-operative Coevolution with Fitness Inheritance for Large-Scale
Optimization

2. Summary : From figure 3.1 we can confirm the results of [32, 10] which found

average fitness inheritance to perform well. Our test was on the Rastrigin

function; it is clear that the averaged inheritance is better than weighted

and parental inheritance on this problem. Therefore, we decided to use this

method for testing our algorithm on the 4 functions which are commonly used

in CCEAs, separable problems Rastringin and Schwefel and non-separable

problems Ackley and Rosenbrock, to see the effect of our algorithm CCEA-FI.

Figure 3.1: Testing different methods of FI on RASTRIGIN, 100D, 5× 104 evalua-
tions.

51

Chapter 3: Co-operative Coevolution with Fitness Inheritance for Large-Scale
Optimization

3.3 Evaluating CCEA-FI

3.3.1 Experiment study 1

This section describes the experimental results of our algorithm CCEA-FI with

comparison between EA, FI and CCEA over CCEA-FI. We first combined FI with

the basic performance of CC framework scheme so that we could sample the de-

gree to which CCEA-FI performance, therefore, random scheme technique were also

used and compared with continuous grouping method to overcome the drawbacks

of CCEA-FI.

1. Test functions: In order to test CCEA-FI, we used the same four test func-

tions that were used in [85], and we use (as in [85]) their 50-dimensional and

100-dimensional variants, and perform further experiments on their 20D, 500D

and 1000D variants. For convenience these functions are defined below, where

n is the number of parameters as in table 3.1 and landscapes of these functions

are designed in [109] as in figure 3.2 .

Name Functions Type parameters xi
in the range

RASTRIGIN f(x) =
∑n

i=1[x2
i − 10 cos(2πxi) + 10] Separable −5.12 ≤ xi ≥ 5.12

SCHWEFEL f(x) = 418.9829n−
∑n

i=1(xi sin(
√
|xi|) Separable −500 ≤ xi ≥ 500

ROSENBROCK f(x) =
∑n−1

i=1 [100(xi+1 − x2
i)

2 + (xi − 1)2]
non

separable −30 ≤ xi ≥ 30

ACKLEY
f(x) = −20 exp(−0.2

√
1

n

∑n
i=1 x

2
i)−

exp(
1

n

∑n
i=1 cos(2πxi)) + 20− e

non
separable −32 ≤ xi ≥ 32

Table 3.1: Functions

2. Further details of algorithm and baseline experiments: We used a pop-

ulation size of 100, and ran experiments (all repeated 20 times independently)

on each of the four functions at 20D, 50D, 100D, 500D and 1000D, continuing

for 105 evaluations (20D, 50D and 100D), 2.5 × 106 evaluations (500D) and

5× 106 evaluations (1000D). In all of the experiments reported here, we fixed

K (number of subpopulations) at 2, and experiment with a range of FI values

from 0 (plain CCEA) to 90 %.

52

Chapter 3: Co-operative Coevolution with Fitness Inheritance for Large-Scale
Optimization

Figure 3.2: Landscapes [109].

53

Chapter 3: Co-operative Coevolution with Fitness Inheritance for Large-Scale
Optimization

Functions EA CCEA CCEA-FI
Rastrigin 36.7854 1.5050 0.1425
Schwefel 169.4754 11.7503 0.8203

Rosenbrock 331.0421 283.5972 171.5593
Ackley 2.8829 0.5720 0.1201

Table 3.2: Mean results on 4 functions, 50D, 105 evaluation CC methods use con-
tiguous grouping.

3. Results: We first focus on visualizing the benefits of both CCEA-FI over

both CCEA alone and the basic EA, by looking at experiments comparing EA,

CCEA, and CCEA-FI on 50D and 100D versions of the functions at 105 (total,

real) fitness evaluations. These experiments use basic contiguous grouping

in the CC cases i.e. the parameters 1-50 comprised one sub-population and

parameters 51-100 comprised the other. In the tables and figures below we also

will see the difference between the random and contiguous grouping schemes

on 50D and 100D. The results of the basic contiguous grouping are on the 4

functions, as in table 3.2 provide the mean of 20 runs for Rastrigin, Schwefel,

Rosenbrock and Ackley respectively.

Table 3.2 shows the results of the four functions with the 50D cases, in which

CCEA without FI seems a considerable improvement on the EA alone; while CCEA-

FI provides further significant improvement on the all functions (we only show the

single parameter that gave the best mean result in our CCEA-FI). Our full results

are detailed at appendix A. We can see that CCEA-FI variants provide better results

than CCEA alone. However the Rosenbrock function continues to show distinctly

unusual behaviour, and we see that clearly when we increase the dimension for

example 100D, 500D and 1000D.

We now show results using random grouping in the CC methods on 20D and 50D,

also we making a comparison between random and contiguous grouping results from

our algorithm CCEA-FI on the 4 functions on 50D with the same experiment setting.

Figures 3.3 to 3.6, show that CCEA-FI combination can provided a better results

comparing to either CCEA or EA-FI alone on 4 functions even of lower dimension

20D.

In the table 3.3 we only show the single parameter that gave the best mean result

54

Chapter 3: Co-operative Coevolution with Fitness Inheritance for Large-Scale
Optimization

Figure 3.3: Results on Rastrigin, 20D, 105 evaluations, and CC methods use random
grouping.

Figure 3.4: Results on Schwefel, 20D, 105 evaluations, and CC methods use random
grouping.

Functions CCEA-FI Contiguous G CCEA-FI Random G
Rastrigin 0.142510258 0.015302448
Schwefel 0.820364663 0.075102988

Rosenbrock 171.5593012 87.06613618
Ackley 0.120186142 0.035319179

Table 3.3: Comparisons between random and contiguous grouping using CCEA-FI
on 4 functions 50D, 105 evaluations.

55

Chapter 3: Co-operative Coevolution with Fitness Inheritance for Large-Scale
Optimization

Figure 3.5: Results on Rosenbrock, 20D, 105 evaluations, and CC methods use
random grouping.

Figure 3.6: Results on Ackley, 20D, 105 evaluations, and CC methods use random
grouping.

56

Chapter 3: Co-operative Coevolution with Fitness Inheritance for Large-Scale
Optimization

Functions EA CCEA CCEA-FI
Rastrigin 70.79572794 9.261418907 1.075074564
Schwefel 1154.523561 92.64353015 7.426763263

Rosenbrock 22242.34955 1167.323001 516.4006409
Ackley 4.440522724 1.415020322 0.318114575

Table 3.4: Mean results on 4 functions, 100D, 105 evaluation CC methods use con-
tiguous grouping.

in our CCEA-FI with either contiguous grouping or random grouping. We find from

table 3.3 and figures 3.3 to 3.6 that CCEA-FI seems to be highly effective, especially

when a random grouping scheme is used in the CC component in both 20D and 50D

on the 4 functions.

Table 3.4 also provides the mean of 20 runs for Rastrigin, Schwefel, Rosenbrock

and Ackley respectively, but now for 100D with 105 evaluations. In the case using

contiguous grouping, again we only show the single parameter of FI percentage that

gave the best mean result in our CCEA-FI.

From figures and tables on dimensions 20D, 50D and 100D show the results

in which CCEA without FI seems a considerable improvement on the EA alone,

while CCEA-FI provides further significant improvement, especially at higher rates

of fitness inheritance.

The main exception to this pattern is the results on the Rosenbrock function,

which we visualize in figures, again for the 100D, 105 evaluations case. Again we

see the significant improvement of CCEA over EA, and further improvement as we

start to introduce FI. However on the Rosenbrock problem, FI values above 50% led

to very poor performance on 100D.

We now show results using random grouping in the CC methods on the 100D

functions, this time omitting the EA results, which were always considerably worse,

but including the results for EA-FI (i.e. using fitness-inheritance, but not involving

co-evolution). As before, we show the CCEA-FI results for a variety of FI parame-

ters ranging between 10% and 90%, but for EA-FI we only show the single parameter

that gave the best mean result in our EA-FI experiments, our full results are de-

tailed at appendix A. Hence, these plots indicate, for the 100D cases, the relative

performances of CC, FI, and the CC-FI combination, with the basic EA omitted but

57

Chapter 3: Co-operative Coevolution with Fitness Inheritance for Large-Scale
Optimization

clearly understood to be considerably worse than any of the combinations shown.

As we can see in figures 3.7 - 3.10, the CCEA-FI combination can always yield

results that are superior to either CC or FI alone. As ever, the Rosenbrock function

provides some anomalous signals, but still showing CCEA-FI better than either CC

or FI alone for 7 of the 9 CCEA-FI parameterisations.

We can now consider table 3.5 which summarises the previous figures by taking

the best mean results from each algorithm (we only show the single parameter that

gave the best mean result in CCEA-FI or EA-FI). It is clear that the CCEA-FI

Figure 3.7: Results on Rastrigin, 100D, 105 evaluations, and CC methods use ran-
dom grouping.

Figure 3.8: Results on Schwefel, 100D, 105 evaluations, CC methods use random
grouping.

58

Chapter 3: Co-operative Coevolution with Fitness Inheritance for Large-Scale
Optimization

Figure 3.9: Results on Rosenbrock, 100D, 105 evaluations, CC methods use random
grouping.

Figure 3.10: Results on Ackley, 100D, 105 evaluations, CC variants use random
grouping.

59

Chapter 3: Co-operative Coevolution with Fitness Inheritance for Large-Scale
Optimization

Functions EA-FI CCEA-FI
Contiguous G

CCEA
Random G

CCEA-FI
Random G

Rastrigin 1.279083727 1.075074564 1.004464035 0.030195445
Schwefel 6.743000336 7.426763263 4.381846259 0.177473264

Rosenbrock 459.6672477 516.4006409 331.9520982 215.0991237
Ackley 0.293446274 0.318114575 0.247710572 0.031163218

Table 3.5: Summarise previous figures by the best mean results so far by the 4 algo-
rithms on 4 functions by 100D, 105 evaluations by random and contiguous grouping.

combination can always yield results that are superior by using random grouping

in CC instead of contiguous grouping. In the table 3.5 the letter G in for example

(CCEA-Random G) indicates grouping.

We now turn our attention to the 500D and 1000D test cases. In these cases, the

better CCEA-FI results were obtained for lower percentages of fitness inheritance.

So we take this opportunity to limit the presentation of CCEA-FI variants to 10%–

50%, and are therefore able to fit in the best and worst of 20 runs in addition to

the mean results. In all of these cases, the results for EA-FI (i.e. without CC) were

always significantly worse than the CCEA-FI variants, and so are omitted from these

plots.

As with the 1000D cases, we can see that CCEA-FI variants provide better results

than CCEA alone. However the Rosenbrock function continues to show distinctly

unusual behaviour, and we see that only the 10% case shows a better mean for

CCEA-FI over CCEA, although all of the CCEA-FI cases for Rosenbrock show a

better best of 20 result than CCEA alone. Note that the Rosenbrock plot shows the

log values of the results.

Now we can consider table 3.6 which summarises the previous figures by looking

the best mean results from each algorithm on 500D (we only show the single param-

eter that gave the best mean result in CCEA-FI). It is clear that CCEA has worse

performance than CCEA-FI on the 4 functions.

Finally we show the results on 1000D versions of the test functions. Our display

of results in these cases matches the display for 500D cases, i.e. we show only CCEA

and CCEAFI, with log values shown for the Rosenbrock function.

Again, particularly by inspection of Figures 3.7 - 3.18, we can see that CCEA-FI

60

Chapter 3: Co-operative Coevolution with Fitness Inheritance for Large-Scale
Optimization

Figure 3.11: Best, mean and worst (of 20) results on Rastrigin, 500D, 2.5 × 106

fitness evaluations, showing CCEA and CCEA-FI results; CC variants use random
grouping.

Figure 3.12: Best, mean and worst (of 20) results on Schwefel,500D, 2.5 × 106

fitness evaluations, showing CCEA and CCEA-FI results; CC variants use random
grouping.

61

Chapter 3: Co-operative Coevolution with Fitness Inheritance for Large-Scale
Optimization

Figure 3.13: Log values of best, mean and worst (of 20) results on Rosenbrock,
500D, 2.5× 106 fitness evaluations, showing CCEA and CCEA-FI results; CC uses
random grouping

Figure 3.14: Best, mean and worst (of 20) results on Ackley, 500D, 2.5 × 106 fit-
ness evaluations, showing CCEA and CCEA-FI results; CC variants use random
grouping.

62

Chapter 3: Co-operative Coevolution with Fitness Inheritance for Large-Scale
Optimization

Functions CCEA CCEA-FI
Rastrigin 0.03484 0.0009383
Schwefel 0.0807805 0.011004

Rosenbrock 1011.82936 491.0903324
Ackley 0.01263579 0.002049139

Table 3.6: Summarise previous figures by the best mean Results of CCEA over
CCEA-FI on 4 functions by 500D, 2.5 × 106 fitness evaluations, CC variants use
random grouping.

provides considerable gains in solution quality over CCEA alone. In the Rosenbrock

case, Figure 3.13 and 3.17, this is clearly the case when we look at the best of 20

results, indicating that CCEA-FI enables the EA to access superior results more

readily than CCEA alone, but clearly with a high variance which dampens the

quality of the mean performance of the CCEA-FI variants. The CCEA-FI variants

with best performance on the 500D and 1000D tests are invariably those with FI

percentages at 10%–30%, with 10% usually leading to the best mean result, but best

result often appearing at 20% or 30%. This is in contrast to the results for 100D,

where (with random grouping), better results were obtained for 30%–60% FI. We

can also report that on 50D cases the best results were in the region of 60%–80%

FI.

We now consider table 3.7, which summarises the previous figures by taking the

Figure 3.15: Best, mean and worst (of 20) results on Rastrigin, 1000D, 5 × 106

fitness evaluations, showing CCEA and CCEA-FI results; CC variants use random
grouping.

63

Chapter 3: Co-operative Coevolution with Fitness Inheritance for Large-Scale
Optimization

Figure 3.16: Best, mean and worst (of 20) results on Schwefel, 1000D, 5 × 106

fitness evaluations, showing CCEA and CCEA-FI results; CC variants use random
grouping.

Figure 3.17: Log values of best, mean and worst (of 20) results on Rosenbrock,
1000D, 5×106 fitness evaluations, showing CCEA and CCEA-FI results; CC variants
use random grouping.

64

Chapter 3: Co-operative Coevolution with Fitness Inheritance for Large-Scale
Optimization

Figure 3.18: Best, mean and worst (of 20) results on Ackley, 1000D, 5 × 106 fit-
ness evaluations, showing CCEA and CCEA-FI results; CC variants use random
grouping.

best mean results from each algorithm on 1000D (we only show the single parameter

that gave the best mean result in CCEA-FI). CCEA-FI gives better fitness values

than CCEA alone for the most part. However on the Rosenbrock problem, FI

values above 10% led to very poor performance on 1000D. In the next chapter we

will investigate why FI provides worse performance when increasing the percentage

especially on high dimension.

Functions CCEA CCEA-FI
Rastrigin 0.02804 0.0008791
Schwefel 0.0904649 0.01710602

Rosenbrock 848.396831 1476.675499
Ackley 0.008642917 0.001462057

Table 3.7: Summarise previous figures by the best mean Results of CCEA over
CCEA-FI on 4 functions by 1000D, 5 × 106 fitness evaluations, CC variants use
random grouping

Finally, we summarise the results of statistical tests associated with the experi-

ments on numerical optimization in the bulk of this chapter. For all statistical tests,

we use the well-known Mann-Whitney U test based on 20 runs of each algorithm

compared; we set in most cases, a confidence level of 95%. For independent pairwise

comparisons, we ran 20 runs each on a pair of problems from Rastrigin, Schwefel,

Rosenbrock and Ackley respectively, at 100D and with a population size of 100,

65

Chapter 3: Co-operative Coevolution with Fitness Inheritance for Large-Scale
Optimization

continuing for 100,000 evaluations; in all of the experiments reported here, we fixed

K (number of subpopulations) at 2.

One-tailed Mann-Whitney U test were applied on these results to determine whether

there were any significant differences in the means. For all problems, we found that

the means were significantly different at the 95% confidence level (p<0.05), indicat-

ing that CCEA-FI performs significantly better than EA-FI and CCEA.

3.3.2 Experiment study 2

This section again describes the experimental results of our algorithm CCEA-FI

with comparison between EA, FI and CCEA over CCEA-FI. However this time

we test on a combinatorial problem, therefore providing a very different context

to numerical function optimization, and therefore providing a different context to

validate the effectiveness of combining CC and FI. The combinatorial problem we

look at is the standard bin-packing problem.

1. Test functions and problem definition:

There are a set of N items, and each item has a given weight. Also, each

item has a given type (there are T different types of item). The items have

to be arranged into C containers, in such a way that the total weight of each

container is as similar as possible. However there are constraints involving the

types. In this assignment, there will always be 5 types, and the constraints

are: items of type i and i+1 cannot be in the same container. The fitness

function is (heaviest container - lightest container) + (pairs × TW). In this

work, TW set to 10.

We get the data from [22], in which column 1 just gives an item ID, column 2

gives that item’s weight, and column 3 gives its type. (These data are for a 500-

item problem with 5 types, and they need to be packed into a varied number

of containers. In all cases we need to minimise the fitness function described

previously i.e. the difference between the heaviest and lightest containers,

with penalties added for any invalid pair of items. In this experiment study,

we compare EA, EA with FI, CCEA and our algorithm CCEA-FI

66

Chapter 3: Co-operative Coevolution with Fitness Inheritance for Large-Scale
Optimization

2. Further details of algorithm and baseline experiments:

We implement a steady-state EA with a single-gene new-allele mutation using

binary tournament selection and replace-worst. We run this EA for 10,000

evaluations by 10 times independently and the result of a set of 10 runs will

be a set of 3 numbers: the best, worst, and mean. We set the number of

containers to be 50. 2 subpopulations were used in CC with population size

100. The proportion of fitness inheritance has been used between 0-80%. Also

we use contiguous grouping in CC as the decomposition strategy.

3. Results: The experimental results are summarized and are listed in figure

3.19. From this experiment results we can see that CCEA-FI outperforms the

normal EA and also CCEA. From this experimental study the combination

can provided a better results that are superior to either CCEA or EAFI alone.

Mann-Whitney U test (one-tailed) with confidence level 95% (significant level

by p<0.05) was applied on the Bin-packing problem results. The results of this test

suggested that the results of CCEA-FI is significantly better than EA alone, EA-FI

and CCEA with (p<0.05).

Figure 3.19: Mean results on bin-packing problem, showing EA, EA-FI, CCEA and
CCEA-FI, 104 evaluations, CC methods use contiguous grouping

67

Chapter 3: Co-operative Coevolution with Fitness Inheritance for Large-Scale
Optimization

3.4 Discussion and Conclusions

The idea we explore in this chapter is to combine the two distinct strategies involved

in co-operative co-evolution and fitness inheritance. Our approach has been to de-

sign a simple algorithm that combines the two strategies (CCEA-FI) and evaluate

them on the same set of test functions that were explored in a fairly recent con-

tribution to the co-evolution literature [85]. In addition we examined performance

on 500D and 1000D versions of these test functions. Also in this chapter we exam-

ined our algorithm on Bin-packing problems and the raw findings indeed suggest

that CCEA-FI generally achieves significantly better performance than either a CC-

based EA without FI, or an EA with FI but without CC. In almost every cases

Bin-Packing problem and benchmark function, in the benchmark function the best

values over 20 runs for best, worst and mean were obtained with CCEA-FI. Only

the Rosenbrock function presented anomalous results, showing higher sensitivity to

the fitness inheritance percentage parameter, but still generally showing better re-

sults than CCEA alone for one or more CCEA-FI parameterisation at 50D-500D,

and better best of 20 results at 1000D.

Considering the speedup obtainable by using CCEA-FI compared to CCEA, a

general inspection of the results tables (table 3.8 example) suggests that, on both

the 50D and 100D versions, the best CCEA-FI results at 50,000 function evaluations

were close to the results of CCEA alone at 100,000 evaluations on the corresponding

problem. For example, the best mean result recorded by CCEA on the 50D Rastrigin

function at 100,000 evaluations is bested by CCEA-FI at 10 or 20% inheritance at

50,000 evaluations.

No. fitness function evaluations CCEA CCEA-FI-10%
105 Best 1.178716287 0.148440435

Worst 2.036865564 0.529611689
Mean 1.505050576 0.305271656

5×104 Best 2.299901201 1.013566337
Worst 7.042936060 2.697007697
Mean 4.47448432 1.649593208

Table 3.8: Rastrigin function 50D, CCEA-FI over CCEA for speedup obtainable

68

Chapter 3: Co-operative Coevolution with Fitness Inheritance for Large-Scale
Optimization

Finally, in this chapter we have investigated the additionality of fitness inheri-

tance in the context of a co-operative coevolution algorithm, and demonstrated that

this approach certainly promises further investigation. We note that state of the art

results in this context seem at the moment to arise from the use of sophisticated and

self-adaptive versions of differential evolution in combination with a CC approach

(e.g. [122]). Such strategies are entirely amenable to the incorporation of FI, and

in the next chapters we explore this idea, as well as investigate why FI reduced its

performance at high levels of inheritance especially on high dimensions.

69

Chapter 4

Engineering Fitness Inheritance and

Co-operative Evolution into SaNSDE

with one key improvement on FI

4.1 Overview

The previous chapter has shown that combining CC with fitness inheritance (FI), a

technique heretofore rarely explored in the context of large-scale optimization, can

reliably lead to better performance. However that work was done in the context of

a simple underlying EA (allowing us to be more confident that the benefits were

due primarily to the combination of CC and FI). Here we explore the extent to

which CC and FI provides added value when engineered together in the context

of more sophisticated, so-called state of the art underlying algorithms, pre-adorned

with a variety of additional enhancements. In this chapter we explore the high-

performance techniques Self-Adaptive Neighbourhood Search Differential Evolution

(SaNSDE) with our (CC-FI) algorithm in the field of large-scale optimization.

SaNSDE is a sophisticated black box optimization algorithm with a strong per-

formance profile, which, arguably can still be considered among the state of the art,

and we took it as a candidate for the engineering into it of both CC and FI. It turns

out, as it happens, that it is not easy to find a state of the art algorithm that does

not already have CC installed, so SaNSDE was a good choice for us in this respect.

70

Chapter 4: Engineering Fitness Inheritance and Co-operative Evolution into
SaNSDE with one key improvement on FI

We implemented SaNSDE from the description in the literature, and engineered

CC+FI into it, using the same CC+FI framework as in our algorithm in the previous

chapter, but with one key improvement as below on FI.

4.2 The key improvement on FI

The improvement was simply to ensure that in the steps of CC where a best from

each subpopulation is chosen to populate new reference sets, these were constrained

to be chosen on the basis of real evaluations (although not actually requiring ad-

ditional real evaluations). Preliminary tests showed that this led to significant im-

provement in results at high levels of the fitness inheritance proportion (as is intu-

itively reasonable). The lack of this strategy in FI is presumably an explanation for

reduced performance at high levels of inheritance especially on high dimension as

seen in the previous chapter, [32], and also in [42], in which, although not involving

CC, use us made occasionally of the best so far irrespective of how its fitness was

calculated. We denote our engineered version of SaNSDE as CCDE-FI and with

the key improvement on FI as CCDE-nFI as we make comparison between them (

CCDE-FI and CCDE-nFI) before starting compare CCDE-nFI with DECC-G and

JACC-G algorithms.

4.3 Evaluating CCDE-FI and CCDE-nFI

1. Test Functions : The choice of test functions is the suite used in Yang Tang

and Yao [122], which enables the maximal comparisons we can make with

previously published results for DECC-G and JACC-G. We use (as in [122])

their 500-dimensional and 1000-dimensional variants. For convenience these

functions are defined below in table 4.1.

2. Further Details of Algorithm and Baseline Experiments: Matching

the key experimental variables with those reported in association with the

comparative results, The results in each case(CCDE-FI and CCDE-nFI) are

the means of 20 independent runs and for 2,500,000 function evaluations (real,

71

Chapter 4: Engineering Fitness Inheritance and Co-operative Evolution into
SaNSDE with one key improvement on FI

Name Functions FMin
parameters xi
in the range

F1 f(x) =
∑n

i=1 x
2
i 0 −100 ≤ xi ≥ 100

F2 f(x) =
∑n

i=1 |xi|+
∏n

i=1 |xi| 0 −10 ≤ xi ≥ 10
F3 f(x) =

∑n
i=1(
∑n

j=1 xi)
2 0 −100 ≤ xi ≥ 100

F4 f(x) = max{|xi|, 1 ≤ i ≥ n} 0 −100 ≤ xi ≥ 100

F5 f(x) =
∑n−1

i=1 [100(xi+1 − x2
i)

2 + (xi − 1)2] 0 −30 ≤ xi ≥ 30
F6 f(x) =

∑n
i=1(xi + 0.5)2 0 −100 ≤ xi ≥ 100

F7 f(x) =
∑n

i=1 ix
4
i + random[0, 1] 0 −128 ≤ xi ≥ 128

F8 f(x) =
∑n

i=1−xi sin(
√
|xi|) -12569.5 −500 ≤ xi ≥ 500

F9 f(x) =
∑n

i=1[x2
i − 10 cos(2πxi) + 10] 0 −5.12 ≤ xi ≥ 5.12

F10
f(x) = −20 exp(−0.2

√
1

n

∑n
i=1 x

2
i)−

exp(
1

n

∑n
i=1 cos(2πxi)) + 20− e

0 −32 ≤ xi ≥ 32

Table 4.1: Functions

not inherited) for 500D cases, and for 5,000,000 function evaluations in the

1000D cases. The population size was 100, and the sub-problems (in the

context of CC) were always of dimension 100 (hence, 5 sub-problems in the

500D cases, and 10 sub-problems in the 1000D cases) and experiment with a

range of FI values from 0 to 90%.

3. Results: The first of the comparative algorithms was CC-FI over CC-nFI with

SaNSDE on 500D and 1000D in this context, and the results are presented in

Tables (4.2 and 4.3).

The second of the comparative algorithms was DECC-G [122], which super-

sedes SaNSDE in this context, being a version of SaNSDE that has been

independently configured with CC. The other was JACC-G [125], which fur-

ther improves on DECC-G via developments in the area of its embedded DE

algorithm; the results of this comparison are presented in Table 4.4.

The first comparison has been done to see how the new (FI) strategy impacts

on the results from 10-90% results graphed in appendix B, we here present

only 90% of FI of both algorithms.

We compare the 90% of FI and nFI on SaNSDE algorithm, the means results

of these two algorithms (CCDE-FI and CCDE-nFI) as shown in the tables

(4.2 and 4.3). The tables (4.2 and 4.3) are shown the influence of the new

72

Chapter 4: Engineering Fitness Inheritance and Co-operative Evolution into
SaNSDE with one key improvement on FI

Functions CCDE-FI CCDE-nFI
F1 3.48E-160 7.6E-313
F2 1.54E-66 2.15E-297
F3 8.74644E+12 0.00E+00
F4 77.41334984 39.8203829
F5 587238.3914 296.503831
F6 0.00E+00 0.00E+00
F7 5767.215732 1.56E-03
F10 1.15E-11 5.07E-14

Table 4.2: Mean results of CCDE-FI over CCDE-nFI on 10 functions by 500D,
2.5× 106 fitness evaluations, CC variants use random grouping and FI 90%.

Functions CCDE-FI CCDE-nFI
F1 3.34E-120 8.73E-123
F3 1.43218E+14 0.00E+00
F4 90.036168 81.09686156
F5 302315.1696 923.1656446
F6 0.00E+00 0.00E+00
F7 47087.25953 4.62E-03
F10 3.49E-13 1.05E-13

Table 4.3: Mean results of CCDE-FI over CCDE-nFI on 10 functions by 1000D,
5× 106 fitness evaluations, CC variants use random grouping and FI 90%.

scheme in FI with CC (CCDE-nFI) over (CCDE-FI) on the dimension D500

and D1000 more details of the best, worst and mean are present in appendix

B.

We first note that for functions F8 and F9 (results not displayed here), we can

reliably obtain the optimum solution without FI, in other words with only CC and

SaNSDE, on both dimensions D500 and D1000.

From these tables (4.2 and 4.3) it is clear that CCDE-nFI provides considerable

gains in solution quality over CCDE-FI. We can see the effect particularly on F5

(Rosenbrock function). It is also clear that the best mean results were generally

obtained from CCDE-nFI, which led to significantly improved results on both di-

mensions (D500, D1000). It is worth noting that even with standard non-improved

FI with CCDE (CCDE-FI), we see improved results with increasing levels of FI,

however these are outperformed by the use of nFI in CCDE-nFI.

In our second set of comparative tests, we compare our CCFI engineered version

of SaNSDE with two other state of the art algorithms. The first of these comparative

73

Chapter 4: Engineering Fitness Inheritance and Co-operative Evolution into
SaNSDE with one key improvement on FI

Functions D DECC-G JACC-G CCDE-nFI
F1 500 6.33 e-27 - 7.6e-313

1000 2.17e-25 2.7e-80 8.73e-123
F2 500 5.95e-15 - 2.15e-297

1000 5.37e-14 2.3e-20 INF
F3 500 6.17e-25 - 0.00e+00

1000 3.71e-23 2.4e-10 0.00e+00
F4 500 4.58e-05 - 3.9e+01

1000 1.01e-01 8.0e-05 8.11e+01
F5 500 4.92e+02 - 2.97e+02

1000 9.87e+02 9.83e+02 9.23e+02
F6 500 0.00e00 - 0.00e+00

1000 0.00e00 0.00e00 0.00e00
F7 500 1.50e-03 - 1.56e-03

1000 8.40e-03 1.2e-03 4.62e-03
F8 500 -209491 - -209491

1000 -418983 -418983 -418983
F9 500 0.00e00 - 0.00e00

1000 3.55e-16 0.00e00 0.00e00
F10 500 9.13e-14 - 5.07e-14

1000 2.22e-13 1.4e-14 1.05e-13

Table 4.4: Comparing CCDE-NFI (with FI at 90%)with descendants of SANSDE

algorithms is DECC-G [122], which can be regarded as superseding SaNSDE in this

context, being a version of SaNSDE that has independently been configured with

CC. The second is JACC-G [125], which further improves on the DECC-G algorithm

in certain contexts. The results of comparing these with our CCDE-nFI algorithm

with FI at 90% are presented in table 4.4

We show and compare only the results for CCDEnFI using 90% fitness inheri-

tance. This achieves better or equivalent mean performance than DECC-G on 8 of

the 10 500D cases (winning 5, losing 2), and 8 of the 10 1000D cases (winning 6,

losing 2). Meanwhile, it performs better or equivalently to JACC-G on 7 of the 10

1000D test cases (winning 4, losing 3). Comparative 500D results were not available

for JACC-G.

There is not enough evidence comparing with single runs of both algorithms

JACC-G and DECC-G to claim superiority of CCDEnFI at a high level of confidence

with statistical tests. However, we can conclude that simply engineering CC and

FI into a sophisticated algorithm (such as SaNSDE) in a straightforward way, is

able to provide potentially superior results, and at least competitive results, to

74

Chapter 4: Engineering Fitness Inheritance and Co-operative Evolution into
SaNSDE with one key improvement on FI

Functions
CCDE-FI

Vs
CCDE-nFI

F1 P-value 0.49202
F2 P-value 0.49202
F3 P-value 0.00212
F4 P-value 0.00187
F5 P-value <0.00001
F6 P-value -
F7 P-value <0.00001
F8 P-value -
F9 P-value -
F10 P-value 0.49202

Table 4.5: The P-values results of, CCDE-FI Vs CCDE-nFI on ten functions by
Mann-Whitney U Test at 500D, 2.5× 106 fitness evaluations, FI=90%.

those available via a suite of alternative sophistications, such as those incorporated

beyond SaNSDE in each of DECC-G and JACC-G.

From the previous experiment results on 10 functions by our algorithms CCDE-

FI and CCDE-nFI, we took the results of each single ran at 90% FI of both algo-

rithms on 500D and used here in statistic test (Mann-Whitney U Test) as presented

in table 4.5.

Mann-Whitney U Test (one-tailed) with confidence level 95% (significant level

by p<0.05) was applied on the results for each of the ten functions to determine

whether there is a statistically significant difference between the results of the two

algorithms on the same function.

In table 4.5, we can see the results of the statistical tests comparing the two

algorithms on each function; the key result in each case is the p-value. The obtained

p-values suggest that there is a statistically significant difference between the two

algorithms on four functions, (F3, F4, F5 and F7) which corresponds to the new

proposed method on FI having significantly improved performance over CCDE-FI

on these functions. Meanwhile, for the three other functions (F1, F2 and F10) there

is no statistically significant difference between these three algorithms because p-

value >0.05. The ’-’symbol indicates the results of both algorithms on the functions

are exactly the same which prevents us from make the test as in functions F6, F8

and F9.

75

Chapter 4: Engineering Fitness Inheritance and Co-operative Evolution into
SaNSDE with one key improvement on FI

4.4 Discussion and Conclusions

The previous chapter had suggested promise for using both cooperative coevolution

(CC) and fitness inheritance (FI) in the design of a black box optimization algorithm

(especially with large-scale problems in mind). Essentially, that work had shown

that the strategy of combining CC and FI works well, providing independent and

additional improvements, in the case where the underlying EA being engineered was

otherwise a straightforward algorithm.

In this chapter, however, we further explored the strategy of combining CC and

FI by jumping in at the deep end by seeing if combining these strategies could lead

to any advancement for algorithms that were already state of the art, in the sense

that they already comprise a variety of sophisticated mechanisms that boost their

performance.

The question (perhaps rationalized a little after the fact) is not Can CC+FI

improve a state of the art algorithm (which does not already use both)?, we would

a priori not hold out high expectations that this is possible, because state of the

art algorithms tend to incorporate a complex cookbook of mechanisms that would

likely be perturbed by significant additional mechanisms such as either CC, FI or

both. Instead, the question is, given that we already know CC+FI can improve

a straightforward algorithm: Can CC and FI be engineered into arbitrary black

box optimization algorithms, without doing harm? (Alternatively: if the algorithm

contains either CC or FI already, can we engineer the other one into it without doing

harm?). If the answer to that was positive, it would suggest that adding CC and

FI to simpler algorithms would lead to improvements, and adding them to state of

the art algorithms would leave their overall performance profile unchanged. This

is precisely what you want if, beforehand, you do not actually know where your

algorithm sits in the virtual algorithm league table.

In that sense, we would tentatively conclude that the new approach to combining

CC and FI explored here (involving the key improvement in FI (nFI)) represents a

recommended algorithm-enhancement strategy and turns out that CCDE-nFI out-

performed our implementation of unadorned SaNSDE with high statistical confi-

76

Chapter 4: Engineering Fitness Inheritance and Co-operative Evolution into
SaNSDE with one key improvement on FI

dence at most levels of the FI proportion

Finally, the performance of CCDE-nFI with lower levels of fitness inheritance

was generally similar to that shown for 90%, although lower levels (10% – 40%)

occasionally showed reduced (and highly problem-dependent) performance. Obvi-

ously, to achieve candidacy as a usable algorithm, CCDEnFI (or, the engineering

of CC and FI into an algorithm in general) needs to either come along with good

guidelines for setting the fitness inheritance parameter, or there needs to be a viable

adaptive approach for FI. The latter notion is investigated in the next chapter.

77

Chapter 5

Engineering Adaptive CC AND FI

INTO State-of-the-Art Optimizers

DECC-DML

5.1 Overview

So far, we have investigated the combination of CC and FI in the last chapters and

herein, without the intention of declaring a new algorithm, but with the intention

of exploring their potential as adornments to arbitrary black box algorithms. Nev-

ertheless, to be deployable and proposable an algorithm that incorporates both CC

and FI must come along with either a good set of fixed parameters, or with an adap-

tation scheme for its key parameters. The single key parameter that looms large

in this respect is the fitness inheritance proportion (often abbreviated as FI, at the

risk of overloading that term). In this chapter we take a first step at investigating

adaptive schemes for it in the CC-FI context.

Two simple first-cut adaptive approaches were designed as follows:

Method A: In this approach, the performance of 10%, 20%, and so on, up to 90%

FI are sampled in the first batch of evaluations, with each being the sole setting

for a duration of FI test evaluations (hence 9xFItest evaluations are devoted to this

sampling process). The value of FI that performed best in this early sampling is

78

Chapter 5: Engineering Adaptive CC AND FI INTO State-of-the-Art Optimizers
DECC-DML

then used for the remainder of the run.

Method B: This begins in the same way as method A. However the sampling

process is repeated every EPOCH evaluations. After a set of EPOCH evaluations

is completed, the sampling process is repeated (consuming 9xFItest evaluations),

and the best FI from that most recent sampling is then used for a further (EPOCH

-9xFItest) evaluations; this process is repeated until termination.

Our adaptive schemes were tested in the context of a further investigation into

engineering CC and FI to a sophisticated state of the art algorithm. In this case, the

algorithm of choice was DECC-DML [71]; DECC-DML is a further co-operative co-

evolution approach based on DE, which improves on the previous random grouping

method for constructing CC sub problems, aimed at being more effective at identify-

ing interacting variables, which are then best treated within the same sub-problem.

DECC-DML and its available results provide a further opportunity for us to

test the engineering of combined CC and FI. However, a slight drawback which has

turned out not easy to avoid in the context of current large-scale optimization re-

search is the fact that DECC-DML already incorporates CC. Nevertheless, the spirit

of investigation remains in that we are exploring the capability of combinations of

CC and FI, especially in the context of already-sophisticated methods. We therefore

soldiered on, and proceeded by retaining DECC-DML’s existing (and quite sophis-

ticated) variant of the CC mechanism, and engineered our adaptive versions of FI

into the existing DECC-DML code (which the authors had made available). Then

we a developed a variant of DECC-DML called DECC-DML-aFI.

In DECC-DML, subcomponents sizes are also self-adaptive, by checking the fit-

ness of the individuals if no improvement then will choose different decomposer from

S which is, a set of predetermined decomposers. S = 50, 100, 200, 250, instead of

using fixed size. Also, DECC-DML [71] used delta grouping as a decomposition

strategy which was shown to outperform random grouping, they used delta group-

ing by trying to improve the interval of non-separate problems. In delta grouping

variables are sorted based on the average dimension-wise displacement of the sample

points over the entire population between two consecutive cycles. Then, after the

79

Chapter 5: Engineering Adaptive CC AND FI INTO State-of-the-Art Optimizers
DECC-DML

decision variables are sorted, they are grouped into k sub groups of size s.

Algorithm 6 The basic structure of DECC-DML-aFI
1: Set i=1 to start a new cycle.
2: Initialize the ∆ vector to zero. This means only for the first cycle. So the

variables will preserve their original order.
3: repeat
4: Divide the decision variables into subcomponent here self-adapts subcompo-

nent sizes, using the techniques used in DECC-ML [70].
5: Optimize the ith subcomponent with a certain EA using FI as it also here

self-adaptive as Method A or B.
6: if i < m then
7: i++, and go to Step 5.
8: else
9: Construct the ∆ vector using Equation (5.1).

10: Sort the decision variables based on the magnitude of their corresponding
delta value.

11: end if.
12: Go to Step 4 for the next cycle .
13: until a total of FE function evaluations have been done

The ∆ vector represented as ∆ ={δ̄1,δ̄2..δ̄n} where n is referring to the number

of dimensions and each element in this vector is calculated as the following equation

(5.1):

δ̄i =

∑pz
i=1 δij
pz

, i∈ (1,.., n). (5.1)

Where Pz is the population size, and δi,j referring the delta value of the jth

individual on the ith dimension.

5.2 Evaluating DECC-DML-aFI

1. Test Functions: The latter was done, and the resulting DECC-DML-aFI al-

gorithm was compared with DECC-DML over the CEC 2010 large scale global

optimization test suite of 20 test functions 1000D [71]. Following preliminary

investigation, the method A and B parameters FI test and EPOCH (only in

method B) were set to 100 and 300,000 respectively.

2. Further Details of Algorithm and Baseline Experiments:

Tables 5.1, 5.2 summarizes the results. The results in each case are the best,

80

Chapter 5: Engineering Adaptive CC AND FI INTO State-of-the-Art Optimizers
DECC-DML

median, worst, mean, p-value and standard deviation of 25 independent runs,

each of which continued for a maximum of 3,000,000 real evaluations. The

population size is set to 50, the size of subcomponents S = {50, 100, 200, 250},

and fitness inheritance FI= 10%,..90%. DECC-DML source code in Matlab, as

presumably deployed in [71] was obtained from Xiaodong Li’s website [72]. We

engineered the inclusion of FI directly into this version. However, we noticed

that the mechanisms in the original DECC-DML source code associated with

calculating and updating the delta value, incorporated some calls to function

evaluations that were not accounted for in the total which counted towards

algorithm termination.

3. Results: The results for the DECC-DML algorithm shown in Table 5.1 and

5.2 are therefore from our own runs with the corrected version of the source

code, ensuring comparison on an equal basis in terms of real function evalua-

tions. In the tables 5.1 and 5.2, the best mean result for any given function

is highlighted in bold, while underline is used to indicate with of the two

adaptation methods achieved the best mean (independent of whether either

achieved overall best mean for that function). Analysis of Table 5.1 shows that

the laurels are shared quite equally between the three approaches. Original

DECC-DML has 7 wins, compared with 7 wins for DECC-DML-aFI Method

B, and 6 wins for the Method A version. Similarly, both Method A and Method

B show a complementary performance profile over the 20 functions.

Mann-Whitney U Test (one-tailed) with confidence level 95% (significant level

by p<0.05) was applied to determine if these algorithms results are significantly dif-

ferent from each other. According to the P-values from table 5.3 by the algorithms

DECC-DML vs (DECC-aFI method A and method B), these differences are signif-

icant on 17 functions of the 20 functions while these differences are not significant

on 3 functions F5, F8 and F13 with (P>0.05).

81

Chapter 5: Engineering Adaptive CC AND FI INTO State-of-the-Art Optimizers
DECC-DML

Functions Corrected,
DECC-DML

DECC-DML-aFI
Method A

DECC-DML-aFI
Method B

Best 2.10E-08 1.91E-09 1.45E-09
Median 7.88E-08 2.79E-08 1.70E-08

F1 Worst 1.63E-07 9.57E-08 4.37E-08
Mean 8.68625e-08 2.94803e-08 1.876923e-08
St.Dve 4.67534e-08 2.39913e-08 1.13908e-08
Best 1.02E+03 1.02E+03 1.03E+03

Median 1.10E+03 1.13E+03 1.13E+03
F2 Worst 1.18E+03 1.19E+03 1.19E+03

Mean 1.091e+3 1.1209e+03 1.12580e+03
St.Dve 2.8947e+01 4.501e+01 4.326e+01
Best 1.14E-07 2.06E-08 5.68E-08

Median 2.02E-07 1.23E-07 8.59E-08
F3 Worst 2.47E-07 2.50E-07 1.36E-07

Mean 1.94621e-07 1.23452e-07 9.007184e-08
St.Dve 2.97274e-08 6.69694E-08 2.24766e-08
Best 3.36E+12 1.70E+12 2.93E+12

Median 6.79E+12 5.38E+12 5.56E+12
F4 Worst 9.41E+12 1.18E+13 8.78E+12

Mean 6.68762e+12 5.56665e+12 5.78655e+12
St.Dve 1.61611e+12 2.32989e+12 1.98951e+12
Best 1.43E+08 1.89E+08 1.54E+08

Median 2.38E+08 2.71E+08 2.82E+08
F5 Worst 5.47E+08 5.11E+08 4.10E+08

Mean 2.82387e+08 2.97985e+08 2.84147e+08
St.Dve 1.0612e+08 8.0744e+07 6.4545e+07
Best 1.70E-05 2.08E-06 1.75E-06

Median 5.66E-05 1.56E+06 4.80E-06
F6 Worst 2.32E+06 2.94E+06 3.26E+06

Mean 9.2674e+04 1.09202e+06 6.37554e+05
St.Dve 4.54008e+05 1.093741e+06 1.051391e+06
Best 1.22E+08 7.43E+07 1.30E+08

Median 2.32E+08 1.64E+08 3.70E+08
F7 Worst 4.30E+08 3.10E+08 1.13E+09

Mean 2.31131e+08 1.65121e+08 4.10521e+08
St.Dve 7.32581e+07 5.61666e+07 1.99737e+08
Best 3.13E+07 2.44E+07 3.35E+07

Median 9.91E+07 1.04E+08 1.32E+08
F8 Worst 1.78E+08 1.66E+08 1.75E+08

Mean 9.34754e+07 9.36069e+07 1.16837e+08
St.Dve 4.81367e+07 4.45266e+07 4.38386e+07
Best 1.14E+08 1.00E+08 1.06E+08

Median 1.33E+08 1.26E+08 1.27E+08
F9 Worst 1.58E+08 1.61E+08 1.56E+08

Mean 1.3458e+08 1.27753e+08 1.25674e+08
St.Dve 1.1019e+07 1.5981e+07 1.1204e+07
Best 1.22E+04 1.21E+04 1.27E+04

Median 1.25E+04 1.26E+04 1.32E+04
F10 Worst 1.38E+04 1.32E+04 1.38E+04

Mean 1.2646e+04 1.26387e+04 1.32528e+04
St.Dve 3.93e+02 2.83e+02 2.44e+02

Table 5.1: Engineering simple adaptive FI into DECC-DML

82

Chapter 5: Engineering Adaptive CC AND FI INTO State-of-the-Art Optimizers
DECC-DML

Functions Corrected,
DECC-DML

DECC-DML-aFI
Method A

DECC-DML-aFI
Method B

Best 3.98E-06 9.28E-07 1.57E-06
Median 5.91E-06 3.35E-06 2.34E-06

F11 Worst 1.15E+02 9.00E-05 1.46E-05
Mean 4.61e+00 6.86595e-06 3.226461e-06
St.Dve 2.25e+01 1.71E-05 2.77971E-06
Best 3.51E+06 3.85E+06 4.33E+06

Median 4.00E+06 4.09E+06 4.83E+06
F12 Worst 4.33E+06 4.41E+06 5.84E+06

Mean 3.97037e+06 4.09242e+06 4.86637e+06
St.Dve 2.42e+05 1.50e+05 3.46e+05
Best 7.08E+02 5.49E+02 7.37E+02

Median 1.08E+03 1.06E+03 1.08E+03
F13 Worst 4.48E+03 2.28E+03 2.45E+03

Mean 1.320e+03 1.15158e+03 1.27881e+03
St.Dve 7.83e+02 4.23e+02 4.54e+02
Best 3.49E+08 3.76E+08 3.55E+08

Median 4.35E+08 4.15E+08 4.15E+08
F14 Worst 4.96E+08 4.59E+08 5.05E+08

Mean 4.31999e+08 4.18162e+08 4.1924e+08
St.Dve 3.40e+07 2.42e+07 3.28e+07
Best 1.49E+04 1.47E+04 1.56E+04

Median 1.57E+04 1.55E+04 1.62E+04
F15 Worst 1.64E+04 1.61E+04 1.69E+04

Mean 1.5586e+04 1.55049e+04 1.62337e+04
St.Dve 3.81e+02 3.77e+02 3.67e+02
Best 2.59E-05 3.15E-06 1.17E-05

Median 5.25E-05 6.07E-05 3.68E-05
F16 Worst 4.27E+02 4.26E+02 2.61E-04

Mean 3.41033e+01 1.71398e+01 5.378018e-05
St.Dve 1.15e+02 8.34e+01 5.26922E-05
Best 6.35E+06 6.31E+06 7.41E+06

Median 7.00E+06 7.08E+06 8.41E+06
F17 Worst 7.65E+06 8.11E+06 9.21E+06

Mean 7.04423e+06 7.14235e+06 8.36006e+06
St.Dve 3.72e+05 4.27e+05 5.14e+05
Best 1.46E+03 1.45E+03 1.65E+03

Median 7.47E+03 2.38E+03 2.54E+03
F18 Worst 1.89E+04 1.62E+04 1.58E+04

Mean 7.95526e+03 3.97663e+03 3.90853e+03
St.Dve 5.362e+03 3.651e+03 3.81e+03
Best 1.36E+07 1.47E+07 1.77E+07

Median 1.70E+07 1.71E+07 2.13E+07
F19 Worst 1.93E+07 2.04E+07 2.56E+07

Mean 1.783e+07 1.73677e+07 2.16407e+07
St.Dve 1.52e+06 1.25e+06 1.96e+06
Best 9.82E+02 9.82E+02 9.81E+02

Median 9.84E+02 1.04E+03 9.83E+02
F20 Worst 1.04E+03 1.14E+03 1.14E+03

Mean 9.944e+02 1.0201e+03 1.00183e+03
St.Dve 2.21e+01 4.25e+01 3.71e+01

Table 5.2: Engineering simple adaptive FI into DECC-DML

83

Chapter 5: Engineering Adaptive CC AND FI INTO State-of-the-Art Optimizers
DECC-DML

Functions
DECC-DML

Vs
Method A

DECC-DML
Vs

Method B
F1 P-value <0.00001 <0.00001
F2 P-value 0.00714 0.00048
F3 P-value 0.0001 <0.00001
F4 P-value 0.01923 0.05262
F5 P-value 0.14007 0.2451
F6 P-value 0.46812 0.00317
F7 P-value 0.00097 <0.00001
F8 P-value 0.46812 0.0548
F9 P-value 0.0505 0.00402
F10 P-value 0.33724 <0.00001
F11 P-value <0.00001 <0.00001
F12 P-value 0.04746 <0.00001
F13 P-value 0.25463 0.25463
F14 P-value 0.04551 0.06552
F15 P-value 0.30854 <0.00001
F16 P-value 0.13786 0.00427
F17 P-value 0.26435 <0.00001
F18 P-value 0.00289 0.00187
F19 P-value 0.15625 <0.00001
F20 P-value 0.02743 0.20897

Table 5.3: The P-values results of, DECC-DML Vs DECC-DML-aFI method (A
and B) on 20 functions by Mann-Whitney U Test at 1000D.

84

Chapter 5: Engineering Adaptive CC AND FI INTO State-of-the-Art Optimizers
DECC-DML

5.3 Discussion and Conclusions

Our results suggest that, at best, we can say that the engineering of FI into DECC-

DML (via either of the two adaptive methods) has adjusted its overall performance

profile, while not providing an overall improvement to its performance, as estimated

over this particular function suite. It is also clear that this engineering has not

provided any overall detriment to performance.

Isolating each DECC-DML-aFI method and comparing that with DECC-DML,

we note that Method A achieves a better mean value on 13 of the 20 functions,

while Method B achieves a better mean on 9 of the 20 functions. If we consider

these success rates against expectations according to cumulative binomial probabil-

ity (assuming null hypothesis of a success rate of 0.5 in each case), we note that

13 or more wins can be expected to occur with probability 0.132, while 9 wins (or

equivalently, 11 wins for DECC-DML) can be expected with probability 0.411. This

further confirms that the engineering of FI into the algorithm has not caused any

overall loss in performance, but has clearly changed the performance profile in a way

we have yet to fully understand.

85

Chapter 6

Conclusions and Future Work

6.1 Summary

This research proposed a combination of the cooperative coevolution framework

CC and fitness inheritance FI for large scale optimization. Experimental results

showed that the developed algorithm CC-FI explored here (involving the amended

and adapted FI) represents a recommended algorithm-enhancement strategy, this

technique or the combination could be useful for many algorithms. Even if the

algorithm contains either CC or FI already, we can engineer the other one into it

without doing harm. In other words, if this technique did not improve the overall

performance profile, we expect that at worst it would not harm performance.

Initially, we combined CC and FI into a straightforward algorithm that we call

CC-FI. Both CC and FI have been found successful on nontrivial and multiple test

cases, and they use fundamentally distinct strategies. We explore the extent to which

employing both of these strategies at once provides additional benefit. We first fo-

cused on visualising the benefit of our algorithms CC-FI over both CCEA alone

and the basic EA. These comparison were done on well-known functions Rastrigin,

Schwefel, Rosenbrock and Ackley function on several dimension. The raw findings

results and statistical evidence indeed suggest that CCEA-FI generally achieves sig-

nificantly better performance than either a CC-based EA without FI, or an EA with

FI but without CC especially when we swap the basic contiguous grouping method

with random grouping that is used in the CC cases. Only the Rosenbrock function

86

Chapter 6: Conclusions and Future Work

presented anomalous results, showing higher sensitivity to the fitness inheritance

percentage parameter and with 10% FI usually leading to the best mean result,

however, still generally showing better results than CCEA alone. This initial work

was done with a simple EA, to allow us to be more confident that the benefits were

due primarily to the combination of CC and FI.

The second developed idea is to replace the simple EA with more sophisticated,

so called state of the art algorithm in order to explore the extent to which CC and

FI provided added value when engineered together in this context. To that end, we

explore SaNSDE, which is a sophisticated black box optimization algorithm with a

strong performance profile, which, arguably can still be considered among the state

of the art, and we took it as a candidate for the engineering into it of both CC

and FI. It turns out, as it happens, that it is not easy to find a state of the art

algorithm that does not already have CC installed, so SaNSDE was a good choice

for us in this respect. Before we implemented SaNSDE from the description in the

literature, and engineered CC+FI into it, we make one key improvement on FI as

anomalous results came from the Rosenbrock function from our first developed idea,

which showed high sensitivity to the fitness inheritance proportion parameter. The

key improvement was simply to ensure that in the steps of CC where a best from

each subpopulation is chosen to populate new reference sets, these were constrained

to be chosen on the basis of real evaluations of the fitness value from candidates; this

prevented choosing a best candidate from among those solutions who had inherited

their fitness values during the evaluation process. The results showed that the key

improvement on FI led to significant improvement in results at high levels of the

fitness inheritance proportion. We denote our engineered version of SaNSDE and

CC-nFI as CCDEnFI and tested it on test functions is the suite used in Yang Tang

and Yao [122], on 500-dimensional and 1000-dimensional variants. The results indi-

cate that the new approach to combining CC and FI involving the key improvement

in FI (nFI)) represents a recommended algorithm-enhancement strategy and turns

out that CCDE-nFI outperformed our implementation of unadorned SaNSDE with

high statistical confidence at most levels of the FI proportion.

87

Chapter 6: Conclusions and Future Work

Our last chapter investigated how to improve our algorithm in terms of adapting

the CC-FI parameters, especially here the FI parameters as these were set manually

(fitness inheritance proportion) in the previous chapters. This investigation was

aimed at making our algorithms more readily deployable, reducing the need for pre-

liminary parameter studies. To be more deployable, an algorithm must come with

either a robust set of fixed parameter that work well over a very wide range of cases,

or with an adaptation scheme for its key parameters. In this context, we investigate

adaptive schemes for FI in CC-FI. Two simple adaptive methods were designed and

tested in the context as well as a further investigation into engineering CC and FI

to a sophisticated state of the art algorithm. In this case, the algorithm of choice

was DECC-DML [28] as its all parameters are self-adaptive including the number of

subcomponents in each evaluation. We engineered our adaptive versions of FI into

the existing DECC-DML which already have CC installed. In fact, the available

code and results from Xiaodong Li’s website [85] provide a further opportunity for

us to test the engineering of combined CC and FI into an existing algorithm. During

our experiments we noticed that the mechanisms in the original DECC-DML source

code associated with calculating and updating the delta value, incorporated some

calls to function evaluations that were not accounted for in the total which counted

towards algorithm termination. Therefore, we corrected the version of the MAT-

LAB source code ensuring comparison on an equal basis in terms of real function

evaluations. The corrected results of DECC-DML were compared with our denote

algorithm DECC-DML-aFI. The comparison was over the CEC 2010 large scale

global optimization test suite of 20 test functions on 1000 dimensions. The results

suggests that, engineering of FI into DECC-DML (via either of the two adaptive

methods) has adjusted its overall performance profile, while not providing an over-

all improvement to its performance, as estimated over this particular function suite.

However, this also provided another confirmation that the engineering of FI into the

algorithm has not caused any overall loss in performance.

Overall we can conclude that:

• Engineering CC and FI into a good algorithm may well lead to improved

88

Chapter 6: Conclusions and Future Work

performance, and is unlikely to lead to reduced performance.

• Engineering CC and FI into a sophisticated, state of the art algorithm (or

engineering FI into a state of the art algorithm that already includes CC)

may also lead to improvement, and will likely not lead to detriment. However,

the more state of the art the original algorithm is, the more the exercise may

provide diminishing returns.

6.2 Contributions

The contribution of this thesis can be restated again with some explanation as stated

in chapter 1 section 1.2:

• Contribution 1 was explored in chapter 3, where a combination of Cooper-

ative Coevolution framework CC and Fitness Inheritance FI, called CC-FI, is

developed, and a simple EA is used here as subcomponents optimizer. The

performance of our new algorithm CC-FI tested on well-known 4 functions

Rastrigin, Schwefel, Rosenbrock and Ackley. The experiment indeed suggest

that CC-FI generally achieves significantly better performance over either a

CC-based EA without FI (CCEA), or an EA with FI but without CC (EA-FI),

especially when a random grouping scheme is used in the CC component.

• Contribution 2 was explored in chapter 4, where Self-Adaptive Neighbour-

hood Search Differential Evolution (SaNSDE) was described on the beginning

of the chapter, we explore the high-performance techniques (SaNSDE) with our

(CC-FI) algorithm in the field of large-scale optimization instead of EA. We

implemented SaNSDE from the description in the literature, and engineered

CC+FI into it, using the same CC-FI framework as in our algorithm in the

previous contribution, but with one key improvement on FI as it was losing its

performance at high levels of inheritance specially on high dimension. The re-

sults conclude that the new approach to combining CC and FI involving the key

improvement in FI (nFI) represents a recommended algorithm-enhancement

strategy with SaNsDE on the ten CEC’2005 benchmark functions.

89

Chapter 6: Conclusions and Future Work

• Contribution 3 Two simple adaptive schemes for FI are investigated in the

CC-FI context in chapter 5; this done engineering these new schemes (CC-aFI)

into a sophisticated state of the art algorithm. In this case, the algorithm of

choice was DECC-DML [71]. We noticed that the mechanisms in the original

DECC-DML source code associated with calculating and updating the delta

value, incorporated some calls to function evaluations that were not accounted

for in the total which counted towards algorithm termination. Therefore, we

corrected the version of DECC-DML and compared it with our algorithm

DECC-DML-aFI. The comparison was over the CEC 2010 large scale global

optimization test suite of 20 test functions on 1000 dimensions. This suggests

that, at best, we can say that the engineering of FI into DECC-DML (via either

of the two adaptive methods) has adjusted its overall performance profile, while

not providing an overall improvement (and certainly not providing any overall

detriment) to its performance, as estimated over this particular function suite.

6.3 Future Work

Based on what we have done in this thesis, the future work may include the following

ideas:

• More experiments and explorations that could be tried, but were not in the

thesis. For instance, the number of sub-populations itself could be adaptive,

using strategies like in our methods A and B. There are also alternative ap-

proaches to CC+FI that could be tried, for example: N generations of CC,

followed by N generations of FI (with 1 population all dimensions).

• Investigate the usefulness of using different sorts of fitness inheritance such as

weighted inheritance and parental inheritance with Cooperative coevolution

framework CC on different type of functions. furthermore, these strategies

of fitness inheritance could be self adaptive, using strategies also like in our

methods A and B so we could switch between these strategies until we find

the best (inheritance strategy) for the problem.

90

Chapter 6: Conclusions and Future Work

• More investigation to understand the relationship between CC+FI parame-

ters and performance, by using meta algorithms as in algorithm configuration

studies [47], by running tuning studies on different problems, and different

groups of problems, we can get an idea of the relationship between the CC+FI

configuration and its performance on different types of problems.

• Exploring the CC+FI idea in problems with different representations (not a

parameter list). FI can be applied in any problem, but for CC it needs to

be possible to group it into lower-dimension subpopulations. This can not

obviously be done when it is a permutation-based representation, for example.

However, for such problems one could use the sort-order representation. This

is any list of N real values between 0 and 1, which encode a permutation.

91

Bibliography

[1] Roux C (1995) Registration of non-segmented images using a genetic algo-

rithm. Lecture notes in computer science, vol. 905, pp. 205211, author = D.

Goldberg, booktitle = Eiben AE, editor = Smith, J. E., publisher = Introduc-

tion to Evolutionary Computing. Springer. Jacq J, title = Genetic algorithms

in optimization, search and machine learning, "Addison Wesley, New York,

year = 1989,.

[2] S. C. Agrawal. Metamodeling: a study of approximations in queueing models.

MIT Press, 1985.

[3] J. Andre, P. Siarry, and T. Dognon. An improvement of the standard ge-

netic algorithm fighting premature convergence in continuous optimization.

Advances in engineering software, 32(1):49–60, 2001.

[4] P. J. Angeline and J. B. Pollack. Competitive Environments Evolve Better So-

lutions for Complex Tasks. in Proceedings of the 5th International Conference

on Genetic Algorithms, Urbana-Champaign, USA pp. 264-270, 1993.

[5] P. Arena, R. Caponetto, L. Fortuna, and M. Xibilia. Mlp optimal topology via

genetic algorithms. In Artificial Neural Nets and Genetic Algorithms, pages

670–674. Springer, 1993.

[6] T. Back. Evolutionary algorithms in theory and practice: evolution strate-

gies, evolutionary programming, genetic algorithms. Oxford University press

Oxford, 996, 1996.

[7] T. Back. Evolutionary algorithms in theory and practice: evolution strategies,

evolutionary programming, genetic algorithms. Oxford university press, 1996.

120

BIBLIOGRAPHY

[8] J. E. Baker. Adaptive selection methods for genetic algorithms. In Proceedings

of an International Conference on Genetic Algorithms and their applications,

pages 101–111. Hillsdale, New Jersey, 1985.

[9] J. E. Baker. Reducing bias and inefficiency in the selection algorithm. In

Proceedings of the second international conference on genetic algorithms, pages

14–21, 1987.

[10] R. Barbour, D. Corne, and J. McCall. Accelerated optimisation of chemother-

apy dose schedules using fitness inheritance. In Evolutionary Computation

(CEC), 2010 IEEE Congress on, pages 1–8. IEEE, 2010.

[11] R. K. Belew, J. McInerney, and N. N. Schraudolph. Evolving networks: Using

the genetic algorithm with connectionist learning. In In. Citeseer, 1990.

[12] R. E. Bellman. Dynamic programming. Ser. Dover Books on Mathematics.

Princeton University Press, 1957.

[13] J. O. Berkey and P. Y. Wang. Two-dimensional finite bin-packing algorithms.

Journal of the operational research society, pages 423–429, 1987.

[14] H.-G. Beyer and H.-P. Schwefel. Evolution strategies–a comprehensive intro-

duction. Natural computing, 1(1):3–52, 2002.

[15] M. A. Bhatti. Optimization problem formulation. In Practical Optimization

Methods, pages 1–45. Springer, 2000.

[16] T. Blickle and L. Thiele. A comparison of selection schemes used in genetic

algorithms, 1995.

[17] T. Blickle and L. Thiele. A comparison of selection schemes used in genetic

algorithms, 1995.

[18] T. Blickle and L. Thiele. a comparison of selection schemes used in evolution-

ary algorithms," evolutionary computation, vol. 4. pp, 361, 1997.

[19] E. K. Burke, J. P. Newall, and R. F. Weare. Initialization strategies and

diversity in evolutionary timetabling. 6:1, 1998.

121

BIBLIOGRAPHY

[20] E. Cantú-Paz. A survey of parallel genetic algorithms. Calculateurs paralleles,

reseaux et systems repartis, 10(2):141–171, 1998.

[21] Z. Cao, L. Wang, Y. Shi, X. Hei, X. Rong, Q. Jiang, and H. Li. An effective

cooperative coevolution framework integrating global and local search for large

scale optimization problems. In Evolutionary Computation (CEC), 2015 IEEE

Congress on, pages 1986–1993. IEEE, 2015.

[22] D. Corne. Bin-packing problem, data. https://www.macs.hw.ac.uk/

~dwcorne/Teaching/data.txt. Accessed: 2013-02-30.

[23] Y. Davidor. Epistasis variance: Suitability of a representation to genetic al-

gorithms. Complex Systems, 4(4):369–383, 1990.

[24] L. Davis. Handbook of genetic algorithms. 1991.

[25] E. D. de Jong. The Incremental Pareto-Coevolution Archive. in Proceedings

of Genetic and Evolutionary Computation Conference pp. 525-536, 2004.

[26] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist mul-

tiobjective genetic algorithm: Nsga-ii. IEEE transactions on evolutionary

computation, 6(2):182–197, 2002.

[27] G. Dosa. First Fit Algorithm for Bin Packing, pages 1–5. Springer US, Boston,

MA, 2008.

[28] K. L. Downing. pp. 381406, title = Tantrix: A minute to learn, 100 (ge-

netic algorithm) generations to master," Genetic Programming and Evolvable

Machines, vol. 6, no. 4, year = 2005,.

[29] A. E. Eiben, J. E. Smith, et al. Introduction to evolutionary computing, vol-

ume 53. Springer, 2003.

[30] M. El-Abd. Hybrid cooperative co-evolution for large scale optimization. In

Swarm Intelligence (SIS), 2014 IEEE Symposium on, pages 1–6. IEEE, 2014.

[31] E. Feinerman and M. S. Falkovitz. Optimal scheduling of nitrogen fertilization

and irrigation. Water resources management, 11(2):101–117, 1997.

122

https://www.macs.hw.ac.uk/~dwcorne/Teaching/data.txt
https://www.macs.hw.ac.uk/~dwcorne/Teaching/data.txt

BIBLIOGRAPHY

[32] L. G. Fonseca, A. C. Lemonge, and H. J. Barbosa. A study on fitness inheri-

tance for enhanced efficiency in real-coded genetic algorithms. In Evolutionary

Computation (CEC), 2012 IEEE Congress on, pages 1–8. IEEE, 2012.

[33] J. Fontanari and R. Meir. Evolving a learning algorithm for the binary per-

ceptron. Network: Computation in Neural Systems, 2(4):353–359, 1991.

[34] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to

the Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA,

1979.

[35] C. K. Goh, K. C. Tan, C. Y. Cheong, and Y.-S. Ong. An investigation on noise-

induced features in robust evolutionary multi-objective optimization. Expert

Systems with Applications, 37(8):5960–5980, 2010.

[36] D. E. Goldberg. Using time efficiently: Genetic-evolutionary algorithms and

the continuation problem. In Proceedings of the 1st Annual Conference on Ge-

netic and Evolutionary Computation-Volume 1, pages 212–219. Morgan Kauf-

mann Publishers Inc., 1999.

[37] D. E. Goldberg. Foreward. EURASIP Journal on Applied Signal Processing,

8:731–732, 2003.

[38] D. E. Goldberg, K. Deb, and J. H. Clark. Genetic algorithms, noise, and the

sizing of populations. Urbana, 51:61801, 1991.

[39] R. L. Graham. Bounds for certain multiprocessing anomalies. Bell Labs Tech-

nical Journal, 45(9):1563–1581, 1966.

[40] R. L. Graham. Bounds on multiprocessing timing anomalies. SIAM journal

on Applied Mathematics, 17(2):416–429, 1969.

[41] K. A. Hacker, J. Eddy, and K. E. Lewis. Efficient global optimization using

hybrid genetic algorithms. In 9th AIAA/ISSMO Symposium on Multidisci-

plinary Analysis and Optimization, pages 4–6, 2002.

123

BIBLIOGRAPHY

[42] A. Hameed, D. Corne, D. Morgan, and A. Waldock. Large-scale optimization:

Are co-operative co-evolution and fitness inheritance additive? In Computa-

tional Intelligence (UKCI), 2013 13th UK Workshop on, pages 104–111. IEEE,

2013.

[43] M. Han and J. Fan. Particle swarm optimization using dynamic neighborhood

topology for large scale optimization. In Intelligent Control and Automation

(WCICA), 2010 8th World Congress on, pages 3138–3142. IEEE, 2010.

[44] F. Herrera and M. Lozano. Adaptive genetic operators based on coevolu-

tion with fuzzy behaviors. IEEE Transactions on Evolutionary Computation,

5(2):149–165, 2001.

[45] W. D. Hillis. Co-evolving parasites improve simulated evolution as an opti-

mization procedure. Physica D: Nonlinear Phenomena, 42:228–234, 1990.

[46] H. H. Hoos and T. Stützle. Stochastic local search: Foundations and applica-

tions. Elsevier, 2004.

[47] F. Hutter, H. H. Hoos, and T. Stützle. Automatic algorithm configuration

based on local search. In AAAI, volume 7, pages 1152–1157, 2007.

[48] Y. Jin. A comprehensive survey of fitness approximation in evolutionary com-

putation. Soft Computing-A Fusion of Foundations, Methodologies and Appli-

cations, 9(1):3–12, 2005.

[49] H. k. Tsai, J. m. Yang, Y. f. Tsai, and C. y. Kao. pp. 17181729, title = An

evolutionary algorithm for large traveling salesman problems," Systems, Man,

and Cybernetics, Part B: Cybernetics, IEEE Transactions on, vol. 34, no. 4,

year = 2004,.

[50] W. S. Klug, M. R. Cummings, C. Spencer, C. A. Spencer, and M. A. Palladino.

Concepts of genetics. In N. Y. a. Pearson, editor, 9th ed. USA.2008.

[51] J. Koutní’k, G. Cuccu, J. Schmidhuber, and F. Gomez. Evolving large-scale

neural networks for vision-based reinforcement learning. In Proceedings of

124

BIBLIOGRAPHY

the 15th annual conference on Genetic and evolutionary computation, pages

1061–1068. ACM, 2013.

[52] N. Krasnogor and J. Smith. A memetic algorithm with self-adaptive local

search: Tsp as a case study. In Proceedings of the 2nd Annual Conference on

Genetic and Evolutionary Computation, pages 987–994. Morgan Kaufmann

Publishers Inc., 2000.

[53] V. Kureichick, A. Melikhov, V. Miagkikh, O. Savelev, and A. Topchy. Some

new features in genetic solution of the travelling salesman problem. In Adaptive

Computing in Engineering Design and Control, volume 96, 1996.

[54] S. Lawrence, A. C. Tsoi, and A. D. Back. Function approximation with neural

networks and local methods: Bias, variance and smoothness. In Australian

conference on neural networks, volume 1621. Australian National University,

1996.

[55] X. Li and X. Yao. Cooperatively coevolving particle swarms for large scale

optimization. IEEE Transactions on Evolutionary Computation, 16(2):210–

224, 2012.

[56] A. Lipowski and D. Lipowska. Roulette-wheel selection via stochastic accep-

tance. Physica A: Statistical Mechanics and its Applications, 391(6):2193–

2196, 2012.

[57] H. Liu, Y. Wang, X. Liu, and S. Guan. Empirical study of effect of grouping

strategies for large scale optimization. In Neural Networks (IJCNN), 2016

International Joint Conference on, pages 3433–3439. IEEE, 2016.

[58] Y. Liu, X. Yao, Q. Zhao, and T. Higuchi. Scaling up fast evolutionary pro-

gramming with cooperative coevolution. In Evolutionary Computation, 2001.

Proceedings of the 2001 Congress on, volume 2, pages 1101–1108. IEEE, 2001.

[59] F. G. Lobo and D. E. Goldberg. Decision making in a hybrid genetic algo-

rithm. In Evolutionary Computation, 1997., IEEE International Conference

on, pages 121–125. IEEE, 1997.

125

BIBLIOGRAPHY

[60] S. Mahdavi, S. Rahnamayan, and K. Deb. Center-based initialization of coop-

erative co-evolutionary algorithm for large-scale optimization. In Evolutionary

Computation (CEC), 2016 IEEE Congress on, pages 3557–3565. IEEE, 2016.

[61] S. Mahdavi, M. E. Shiri, and S. Rahnamayan. Cooperative co-evolution with

a new decomposition method for large-scale optimization. In Evolutionary

Computation (CEC), 2014 IEEE Congress on, pages 1285–1292. IEEE, 2014.

[62] Y. Mei, X. Li, and X. Yao. Cooperative coevolution with route distance

grouping for large-scale capacitated arc routing problems. IEEE Transactions

on Evolutionary Computation, 18(3):435–449, 2014.

[63] E. Mezura-Montes, L. Muñoz-Dávila, and C. A. C. Coello. A preliminary

study of fitness inheritance in evolutionary constrained optimization. In Nature

Inspired Cooperative Strategies for Optimization (NICSO 2007), pages 1–14.

Springer, 2008.

[64] B. L. Miller, D. E. Goldberg, et al. Genetic algorithms, tournament selection,

and the effects of noise. Complex systems, 9(3):193–212, 1995.

[65] B. L. Miller, B. L. Miller, D. E. Goldberg, and D. E. Goldberg. Genetic

algorithms, tournament selection, and the effects of noise," complex systems,

vol. 9. pp, 193, 1995.

[66] M. Mitchell. An introduction to genetic algorithms. MIT press, 1998.

[67] D. J. Montana. Neural network weight selection using genetic algorithms.

Intelligent Hybrid Systems, 8(6):12–19, 1995.

[68] P. Moscato et al. On evolution, search, optimization, genetic algorithms and

martial arts: Towards memetic algorithms. Caltech concurrent computation

program, C3P Report, 826:1989, 1989.

[69] M. N. Omidvar, X. Li, Y. Mei, and X. Yao. Cooperative co-evolution with

differential grouping for large scale optimization. IEEE Transactions on Evo-

lutionary Computation, 18(3):378–393, 2014.

126

BIBLIOGRAPHY

[70] M. N. Omidvar, X. Li, Z. Yang, and X. Yao. Cooperative co-evolution for large

scale optimization through more frequent random grouping. In Evolutionary

Computation (CEC), 2010 IEEE Congress on, pages 1–8. IEEE, 2010.

[71] M. N. Omidvar, X. Li, and X. Yao. Cooperative co-evolution with delta

grouping for large scale non-separable function optimization. In Evolutionary

Computation (CEC), 2010 IEEE Congress on, pages 1–8. IEEE, 2010.

[72] N. Omidvar. DECC-DML source code . https://bitbucket.org/mno/. Ac-

cessed: 2019-01-30.

[73] M. Pelikan and K. Sastry. Fitness inheritance in the bayesian optimization

algorithm. In Genetic and Evolutionary Computation–GECCO 2004, pages

48–59. Springer, 2004.

[74] T. Pencheva, K. Atanassov, and A. Shannon. Modelling of a stochastic univer-

sal sampling selection operator in genetic algorithms using generalized nets. In

Proceedings of the Tenth International Workshop on Generalized Nets, Sofia,

pages 1–7, 2009.

[75] C. Peng and Q. Hui. Comparison of differential grouping and random grouping

methods on sccpso for large-scale constrained optimization. In Evolutionary

Computation (CEC), 2016 IEEE Congress on, pages 2057–2063. IEEE, 2016.

[76] E. Popovici and K. De. Jong. In ”Understanding competitive co-evolutionary

dynamics via fitness landscapes" Artificial Multiagent Symposium Part of the

2004 AAAI Fall Symposium on Artificial Intelligence, 2004.

[77] M. A. Potter and K. A. D. Jong. a co-operative co-evolutionary approach

to function optimization. in PPSN III: Proceedings of the 3rd International

Conference on Parallel Problem Solving from Nature pp. 249 257, 1994.

[78] P. Preux and E.-G. Talbi. Towards hybrid evolutionary algorithms. Interna-

tional transactions in operational research, 6(6):557–570, 1999.

127

https://bitbucket.org/mno/.

BIBLIOGRAPHY

[79] K. Price, R. M. Storn, and J. A. Lampinen. Differential evolution: a practical

approach to global optimization. Springer Science & Business Media, 2006.

[80] P. Price and B. Evolution. Saunders college publishing. 1998.

[81] M. Ptashne. How gene activators work. Scientific American, 260(1):40, 1989.

[82] A. K. Qin and P. N. Suganthan. Self-adaptive differential evolution algorithm

for numerical optimization. In Evolutionary Computation, 2005. The 2005

IEEE Congress on, volume 2, pages 1785–1791. IEEE, 2005.

[83] R. Qu. Case-based reasoning for course timetabling problems. PhD thesis,

University of Nottingham, 2002.

[84] S. Rahnamayan and G. G. Wang. Center-based sampling for population-based

algorithms. In Evolutionary Computation, 2009. CEC’09. IEEE Congress on,

pages 933–938. IEEE, 2009.

[85] T. Ray and X. Yao. A cooperative coevolutionary algorithm with correlation

based adaptive variable partitioning. pages 983–989, (Trondheim,Norway)„

2009. Proceedings of the IEEE Congress on Evolutionary Computation.

[86] I. Rechenberg. Evolutionsstrategie: optimierung technischer systeme nach

prinzipien der biologischen evolution. Frommann-Holzboog, 39:40, 1973.

[87] M. Reyes-Sierra and C. A. Coello Coello. Dynamic fitness inheritance pro-

portion for multi-objective particle swarm optimization. In Proceedings of the

8th annual conference on Genetic and evolutionary computation, pages 89–90.

ACM, 2006.

[88] J. N. Richter and D. Peak. Fuzzy evolutionary cellular automata. Proccedings

of ANNIE, 2002.

[89] M. Ridley. Evolution blackwell scientific publications. Boston, MA, 1993.

[90] C. D. Rosin and R. K. Belew. New methods for competitive co-evolution. In

Evolutionary Computation, pages 1–29. vol. 5, 1997.

128

BIBLIOGRAPHY

[91] R. Sarker, M. Mohammadian, X. Yao, E. Optimization, K. A. Publishers, and

M. A. Norwell. Usa. 2002.

[92] K. Sastry, D. E. Goldberg, and M. Pelikan. Don’t evaluate, inherit. In Proceed-

ings of the 3rd Annual Conference on Genetic and Evolutionary Computation,

pages 551–558. Morgan Kaufmann Publishers Inc., 2001.

[93] K. Sastry, M. Pelikan, and D. E. Goldberg. efficiency enhancement of genetic

algorithms via building-block-wise fitness estimation, in congress on evolution-

ary computation. 2004. CEC2004., pp. 720 727,2004.

[94] E. Sayed, D. Essam, R. Sarker, and S. Elsayed. Decomposition-based evolu-

tionary algorithm for large scale constrained problems. Information Sciences,

316:457–486, 2015.

[95] H.-P. Schwefel. Collective intelligence in evolving systems. In Ecodynamics,

pages 95–100. Springer, 1988.

[96] H.-P. Schwefel. Evolution and optimum seeking. sixth-generation computer

technology series, 1995.

[97] M. Sehrawat and S. Singh. Modified order crossover(ox) operator. Interna-

tional Journal on Computer Science and Engineering, 3(5):2019–2023, 2011.

[98] S. Shan and G. G. Wang. Metamodeling for high dimensional simulation-based

design problems. Journal of Mechanical Design, 132(5):051009, 2010.

[99] K. Sims. Evolving 3d morphology and behavior by competition. In Artificial

life, pages 353–372. 1(4, 1994.

[100] R. E. Smith, B. A. Dike, and S. A. Stegmann. fitness inheritance in genetic

algorithms. in SAC 95: Proceedings of the 1995 ACM symposium on applied

computing, pp. 345 350, ACM Press, 1995.

[101] R. E. Smith and E. Smuda. Adaptively resizing populations: Algorithm,

analysis, and first results. Complex Systems, 9(1):47–72, 1995.

129

BIBLIOGRAPHY

[102] N. Soni and T. Kumar. Study of various crossover operators in genetic al-

gorithms. International Journal of Computer Science and Information Tech-

nologies, 5(6):7235–7238, 2014.

[103] N. Soni and T. Kumar. Study of various mutation operators in genetic al-

gorithms. International Journal of Computer Science and Information Tech-

nologies, 5(6):4519–4521, 2014.

[104] M. Srinivas and L. M. Patnaik. Genetic algorithms: a survey. Computer,

27(6):17–26, June 1994.

[105] R. Storn. System design by constraint adaptation and differential evolution.

IEEE Transactions on Evolutionary Computation, 3(1):22–34, 1999.

[106] R. Storn and K. Price. Differential evolution–a simple and efficient heuristic

for global optimization over continuous spaces. Journal of global optimization,

11(4):341–359, 1997.

[107] C. Sun, Y. Jin, J. Zeng, and Y. Yu. A two-layer surrogate-assisted particle

swarm optimization algorithm. Soft computing, 19(6):1461–1475, 2015.

[108] J. Sun and H. Dong. Cooperative co-evolution with correlation identification

grouping for large scale function optimization. In Information Science and

Technology (ICIST), 2013 International Conference on, pages 889–893. IEEE,

2013.

[109] S. Surjanovic and D. Bingham. Virtual library of simulation experiments: Test

functions and datasets. Retrieved January 29, 2019, from http://www.sfu.

ca/~ssurjano.

[110] G. Syswerda. A study of reproduction in generational and steady state genetic

algorithms. Foundations of genetic algorithms, 2:94–101, 1991.

[111] E.-G. Talbi. A taxonomy of hybrid metaheuristics. Journal of heuristics,

8(5):541–564, 2002.

130

http://www.sfu.ca/~ssurjano
http://www.sfu.ca/~ssurjano

BIBLIOGRAPHY

[112] J. N. Thompson. The coevolutionary process. Chicago: University of Chicago

Press, 226:2009–07, 1994.

[113] G. A. Trunfio and A. Cooperative. Coevolutionary differential evolution algo-

rithm with adaptive subcomponents, procedia computer science. 51:834–844,

2015.

[114] T. Ueno, N. Sunaga, and H. Asada. Mechanism and control of a dynamic

lifting robot. In International Symposium on Automation and Robotics in

Construction and Mining, pages 95–102, 1996.

[115] F. van den Bergh and A. P. Engelbrecht. A cooperative approach to parti-

cle swarm optimization. IEEE Transactions on Evolutionary Computation,

8(3):225–239, 2004.

[116] D. A. V. Veldhuizen. Multiobjective evolutionary algorithms: classifications,

analyses, and new innovations. Technical report, DTIC Document, 1999.

[117] T. Weise, R. Chiong, and K. Tang. Evolutionary optimization: Pitfalls and

booby traps. Journal of Computer Science and Technology, 27(5):907–936,

2012.

[118] D. Whitley. In in Proceedings of the Third International Conference on Genetic

Algorithms. Morgan Kaufmann pp. 116121, title = The genitor algorithm and

selection pressure: Why rank-based allocation of reproductive trials is best, year

= 1989,.

[119] T. Yalcinoz, H. Altun, and M. Uzam. Economic dispatch solution using a

genetic algorithm based on arithmetic crossover. In 2001 IEEE Porto Power

Tech Proceedings (Cat. No.01EX502), volume 2, pages 4 pp. vol.2–, 2001.

[120] T. Yamada and C. Reevesm. Solving the c/sub sum/permutation flowshop

scheduling problem by genetic local search. In Evolutionary Computation

Proceedings, 1998. IEEE World Congress on Computational Intelligence., The

1998 IEEE International Conference on, pages 230–234. IEEE, 1998.

131

BIBLIOGRAPHY

[121] Q. Yang, H.-Y. Xie, W.-N. Chen, and J. Zhang. Multiple parents guided dif-

ferential evolution for large scale optimization. In Evolutionary Computation

(CEC), 2016 IEEE Congress on, pages 3549–3556. IEEE, 2016.

[122] Z. Yang, K. Tang, and X. Yao. Large scale evolutionary optimization using

cooperative coevolution. Information Sciences, 178:2986–2999, August 2008.

[123] Z. Yang, K. Tang, and X. Yao. Self-adaptive differential evolution with neigh-

borhood search. In Evolutionary Computation, 2008. CEC 2008.(IEEE World

Congress on Computational Intelligence). IEEE Congress on, pages 1110–

1116. IEEE, 2008.

[124] Z. Yang, X. Yao, and J. He. Making a difference to differential evolution. In

Advances in metaheuristics for hard optimization, pages 397–414. Springer,

2007.

[125] Z. Yang, J. Zhang, K. Tang, X. Yao, and A. C. Sanderson. An adaptive

coevolutionary differential evolution algorithm for large-scale optimization. In

Evolutionary Computation, 2009. CEC’09. IEEE Congress on, pages 102–109.

IEEE, 2009.

[126] X. Yao, Y. Liu, and G. Lin. Evolutionary programming made faster. IEEE

Transactions on Evolutionary computation, 3(2):82–102, 1999.

[127] S. Ye, G. Dai, L. Peng, and M. Wang. A hybrid adaptive coevolutionary

differential evolution algorithm for large-scale optimization. In Evolutionary

Computation (CEC), 2014 IEEE Congress on, pages 1277–1284. IEEE, 2014.

[128] J. Yen, J. C. Liao, B. Lee, and D. Randolph. A hybrid approach to modeling

metabolic systems using a genetic algorithm and simplex method. IEEE Trans-

actions on Systems, Man, and Cybernetics, Part B (Cybernetics), 28(2):173–

191, 1998.

[129] T.-S. Yo and E. D. de Jong. A comparison of evaluation methods in coevo-

lution. In Proceedings of Genetic and Evolutionary Computation Conference,

pages 479–487, England, United Kingdom, 2007. London.

132

BIBLIOGRAPHY

[130] Q. Zhang, W. Liu, E. Tsang, and B. Virginas. Expensive multiobjective op-

timization by moea/d with gaussian process model. IEEE Transactions on

Evolutionary Computation, 14(3):456–474, 2010.

[131] W.-X. Zhang, W.-N. Chen, and J. Zhang. A dynamic competitive swarm

optimizer based-on entropy for large scale optimization. In Advanced Compu-

tational Intelligence (ICACI), 2016 Eighth International Conference on, pages

365–371. IEEE, 2016.

[132] L. Zhao, W.-K. Cao, and Y.-T. He. Fitness inheritance-based evolutionary

algorithm and its application in hybrid electric vehicle design. International

Journal of Wireless and Mobile Computing, 7(2):180–186, 2014.

[133] E. Zitzler, K. Deb, and L. Thiele. Comparison of multiobjective evolutionary

algorithms: Empirical results. Evolutionary computation, 8(2):173–195, 2000.

133

	Introduction
	Optimization
	Summary
	Thesis Contributions
	Thesis Structure
	Thesis Publications

	Background
	Evolutionary Algorithms
	Outline of evolutionary algorithm
	Parents selection methods
	Generate offspring

	Approaches To Improve Evolutionary Algorithms
	Co-evolution
	Competitive coevolution
	Cooperative coevolution

	Evaluation Is Expensive
	Fitness Inheritance
	Evolution Strategies
	Self-adaptation
	Survival selection

	Differential Evolution (DE)
	Classical differential evolution:
	Differential evolution with neighbourhood search (NSDE)
	Self-adaptive differential evolution (SADE)
	Self-adaptive differential evolution with neighbourhood search (SaNSDE)

	Related Work
	Summary

	Co-operative Coevolution with Fitness Inheritance for Large-Scale Optimization
	CCEA-FI Algorithm
	Fitness Inheritance Approaches
	 Evaluating CCEA-FI
	 Experiment study 1
	Experiment study 2

	Discussion and Conclusions

	Engineering Fitness Inheritance and Co-operative Evolution into SaNSDE with one key improvement on FI
	Overview
	The key improvement on FI
	Evaluating CCDE-FI and CCDE-nFI
	Discussion and Conclusions

	Engineering Adaptive CC AND FI INTO State-of-the-Art Optimizers DECC-DML
	Overview
	Evaluating DECC-DML-aFI
	Discussion and Conclusions

	Conclusions and Future Work
	Summary
	Contributions
	Future Work

	Appendix More results of CCEA-FI, CCEA and EA-FI performance on Rastrigin, Schwefel, Rosenbrock and Ackley functions from chapter 3
	Appendix More results of chapter 4 shows the performance of (SaNSDE) with normal CC-FI algorithm and with key improvement on FI CC-nFI on each of the ten CEC'2005 functions on D500 and D1000

