2,458 research outputs found

    Metaheuristic design of feedforward neural networks: a review of two decades of research

    Get PDF
    Over the past two decades, the feedforward neural network (FNN) optimization has been a key interest among the researchers and practitioners of multiple disciplines. The FNN optimization is often viewed from the various perspectives: the optimization of weights, network architecture, activation nodes, learning parameters, learning environment, etc. Researchers adopted such different viewpoints mainly to improve the FNN's generalization ability. The gradient-descent algorithm such as backpropagation has been widely applied to optimize the FNNs. Its success is evident from the FNN's application to numerous real-world problems. However, due to the limitations of the gradient-based optimization methods, the metaheuristic algorithms including the evolutionary algorithms, swarm intelligence, etc., are still being widely explored by the researchers aiming to obtain generalized FNN for a given problem. This article attempts to summarize a broad spectrum of FNN optimization methodologies including conventional and metaheuristic approaches. This article also tries to connect various research directions emerged out of the FNN optimization practices, such as evolving neural network (NN), cooperative coevolution NN, complex-valued NN, deep learning, extreme learning machine, quantum NN, etc. Additionally, it provides interesting research challenges for future research to cope-up with the present information processing era

    Satisfiability Logic Analysis Via Radial Basis Function Neural Network with Artificial Bee Colony Algorithm

    Get PDF
    Radial Basis Function Neural Network (RBFNN) is a variant of artificial neural network (ANN) paradigm, utilized in a plethora of fields of studies such as engineering, technology and science. 2 Satisfiability (2SAT) programming has been coined as a prominent logical rule that defines the identity of RBFNN. In this research, a swarm-based searching algorithm namely, the Artificial Bee Colony (ABC) will be introduced to facilitate the training of RBFNN. Worth mentioning that ABC is a new population-based metaheuristics algorithm inspired by the intelligent comportment of the honey bee hives. The optimization pattern in ABC was found fruitful in RBFNN since ABC reduces the complexity of the RBFNN in optimizing important parameters. The effectiveness of ABC in RBFNN has been examined in terms of various performance evaluations. Therefore, the simulation has proved that the ABC complied efficiently in tandem with the Radial Basis Neural Network with 2SAT according to various evaluations such as the Root Mean Square Error (RMSE), Sum of Squares Error (SSE), Mean Absolute Percentage Error (MAPE), and CPU Time. Overall, the experimental results have demonstrated the capability of ABC in enhancing the learning phase of RBFNN-2SAT as compared to the Genetic Algorithm (GA), Differential Evolution (DE) algorithm and Particle Swarm Optimization (PSO) algorithm

    Hybrid Artificial Bee Colony Algorithm and Particle Swarm Search for Global Optimization

    Get PDF
    Artificial bee colony (ABC) algorithm is one of the most recent swarm intelligence based algorithms, which has been shown to be competitive to other population-based algorithms. However, there is still an insufficiency in ABC regarding its solution search equation, which is good at exploration but poor at exploitation. To overcome this problem, we propose a novel artificial bee colony algorithm based on particle swarm search mechanism. In this algorithm, for improving the convergence speed, the initial population is generated by using good point set theory rather than random selection firstly. Secondly, in order to enhance the exploitation ability, the employed bee, onlookers, and scouts utilize the mechanism of PSO to search new candidate solutions. Finally, for further improving the searching ability, the chaotic search operator is adopted in the best solution of the current iteration. Our algorithm is tested on some well-known benchmark functions and compared with other algorithms. Results show that our algorithm has good performance

    Enhanced artificial bee colony-least squares support vector machines algorithm for time series prediction

    Get PDF
    Over the past decades, the Least Squares Support Vector Machines (LSSVM) has been widely utilized in prediction task of various application domains. Nevertheless, existing literature showed that the capability of LSSVM is highly dependent on the value of its hyper-parameters, namely regularization parameter and kernel parameter, where this would greatly affect the generalization of LSSVM in prediction task. This study proposed a hybrid algorithm, based on Artificial Bee Colony (ABC) and LSSVM, that consists of three algorithms; ABC-LSSVM, lvABC-LSSVM and cmABC-LSSVM. The lvABC algorithm is introduced to overcome the local optima problem by enriching the searching behaviour using Levy mutation. On the other hand, the cmABC algorithm that incorporates conventional mutation addresses the over- fitting or under-fitting problem. The combination of lvABC and cmABC algorithm, which is later introduced as Enhanced Artificial Bee Colony–Least Squares Support Vector Machine (eABC-LSSVM), is realized in prediction of non renewable natural resources commodity price. Upon the completion of data collection and data pre processing, the eABC-LSSVM algorithm is designed and developed. The predictability of eABC-LSSVM is measured based on five statistical metrics which include Mean Absolute Percentage Error (MAPE), prediction accuracy, symmetric MAPE (sMAPE), Root Mean Square Percentage Error (RMSPE) and Theils’ U. Results showed that the eABC-LSSVM possess lower prediction error rate as compared to eight hybridization models of LSSVM and Evolutionary Computation (EC) algorithms. In addition, the proposed algorithm is compared to single prediction techniques, namely, Support Vector Machines (SVM) and Back Propagation Neural Network (BPNN). In general, the eABC-LSSVM produced more than 90% prediction accuracy. This indicates that the proposed eABC-LSSVM is capable of solving optimization problem, specifically in the prediction task. The eABC-LSSVM is hoped to be useful to investors and commodities traders in planning their investment and projecting their profit

    A Novel Coplanar Waveguide-Fed Compact Microstrip Antenna for Future 5G Applications

    Get PDF
    In this study, a coplanar waveguide-fed compact microstrip antenna design for applications operating at higher 5G bands was proposed. The antenna with the compact size of 8 x 12.2 mm2 on FR4 substrate, having the dielectric constant of 4.3 and the height of 1.55 mm, was considered. The dimensions of the radiating patch and ground plane were optimized with the use of artificial cooperative search (ACS) algorithm to provide the desired return loss performance of the designed antenna. The performance analysis was done by using full-wave electromagnetic package programs based on the method of moment (MoM) and the finite integration technique (FIT). The 10 dB bandwidth for return loss results obtained with the use of the computation methods show that the proposed antenna performs well for 5G applications operating in the 24.25 – 27.50 GHz, 26.50 – 29.50 GHz, 27.50 – 28.35 GHz and 37 – 40 GHz frequency bands

    Cloud Service Selection System Approach based on QoS Model: A Systematic Review

    Get PDF
    The Internet of Things (IoT) has received a lot of interest from researchers recently. IoT is seen as a component of the Internet of Things, which will include billions of intelligent, talkative "things" in the coming decades. IoT is a diverse, multi-layer, wide-area network composed of a number of network links. The detection of services and on-demand supply are difficult in such networks, which are comprised of a variety of resource-limited devices. The growth of service computing-related fields will be aided by the development of new IoT services. Therefore, Cloud service composition provides significant services by integrating the single services. Because of the fast spread of cloud services and their different Quality of Service (QoS), identifying necessary tasks and putting together a service model that includes specific performance assurances has become a major technological problem that has caused widespread concern. Various strategies are used in the composition of services i.e., Clustering, Fuzzy, Deep Learning, Particle Swarm Optimization, Cuckoo Search Algorithm and so on. Researchers have made significant efforts in this field, and computational intelligence approaches are thought to be useful in tackling such challenges. Even though, no systematic research on this topic has been done with specific attention to computational intelligence. Therefore, this publication provides a thorough overview of QoS-aware web service composition, with QoS models and approaches to finding future aspects
    corecore