2,691 research outputs found

    New Product Development Processes for IOT-Enabled Home Use Medical Devices: A Systematic Review

    Get PDF
    Background: In the new forefront of healthcare at patients’ homes, medical devices developed to use at home setting by lay users are essential. The adoption of home-use medical devices will benefit both patients and public healthcare services in terms of quality of life, enhanced outcomes, and reduced cost of care. Home use medical devices associated with Internet-Of-Things (IOT) technology assists patients in performing self-care as well as providing health information remotely to health care professionals. However, adopting technology requires understanding the nature of the medical device and medical device development (MDD). Existing studies concerning the new product development (NPD) processes or design processes were systematically reviewed to explore knowledge and expertise to provide a framework for IOT engineers or designers to adopt IOT technology to home use medical devices. Objective: This study aimed to review the published literature to explore the current studies in the field of the NPD process, design process, design methodology, and outcome of the device affecting user acceptance. Methods: A systematic review following PRISMA guidelines of the English language literature from four electronic databases and academic search engines published from 2007 to 2018 was conducted. The papers were screened and assessed following predefined inclusive and exclusive criteria. The results were analyzed according to the research questions. Results: The findings revealed state-of-the-art in the NPD process and design process (n=4), the design methodology (n=23), and the resultant outcomes of empirical or clinical research in the validation stage (n=14) of medical device development (MDD). The findings also delineated existing studies in NPD, design process, and design methodologies aimed to ensure that medical devices would be effective and safe. Human factor engineering (HFE), cognitive method, ethnographic, and other methodologies were proposed to understand users, uses and context of use. Barriers, constraints, and multidisciplinary communication were addressed. Tools, processes, and methodologies were proposed to overcome the barriers. Conclusion: As home-use medical device development (MDD) and the adoption of IOT technology is now at a crossroads. This study addresses the necessity for future academic studies related to IOT adoption to MDD, including unique risks, multidisciplinary problems, emerging from IOT technology. Finally, future studies aimed at fabricating the NPD process or design process for IOT home-use medical devices to gain user acceptance were outlined

    The Ethical Implications of Personal Health Monitoring

    Get PDF
    Personal Health Monitoring (PHM) uses electronic devices which monitor and record health-related data outside a hospital, usually within the home. This paper examines the ethical issues raised by PHM. Eight themes describing the ethical implications of PHM are identified through a review of 68 academic articles concerning PHM. The identified themes include privacy, autonomy, obtrusiveness and visibility, stigma and identity, medicalisation, social isolation, delivery of care, and safety and technological need. The issues around each of these are discussed. The system / lifeworld perspective of Habermas is applied to develop an understanding of the role of PHMs as mediators of communication between the institutional and the domestic environment. Furthermore, links are established between the ethical issues to demonstrate that the ethics of PHM involves a complex network of ethical interactions. The paper extends the discussion of the critical effect PHMs have on the patient’s identity and concludes that a holistic understanding of the ethical issues surrounding PHMs will help both researchers and practitioners in developing effective PHM implementations

    Fall prevention intervention technologies: A conceptual framework and survey of the state of the art

    Get PDF
    In recent years, an ever increasing range of technology-based applications have been developed with the goal of assisting in the delivery of more effective and efficient fall prevention interventions. Whilst there have been a number of studies that have surveyed technologies for a particular sub-domain of fall prevention, there is no existing research which surveys the full spectrum of falls prevention interventions and characterises the range of technologies that have augmented this landscape. This study presents a conceptual framework and survey of the state of the art of technology-based fall prevention systems which is derived from a systematic template analysis of studies presented in contemporary research literature. The framework proposes four broad categories of fall prevention intervention system: Pre-fall prevention; Post-fall prevention; Fall injury prevention; Cross-fall prevention. Other categories include, Application type, Technology deployment platform, Information sources, Deployment environment, User interface type, and Collaborative function. After presenting the conceptual framework, a detailed survey of the state of the art is presented as a function of the proposed framework. A number of research challenges emerge as a result of surveying the research literature, which include a need for: new systems that focus on overcoming extrinsic falls risk factors; systems that support the environmental risk assessment process; systems that enable patients and practitioners to develop more collaborative relationships and engage in shared decision making during falls risk assessment and prevention activities. In response to these challenges, recommendations and future research directions are proposed to overcome each respective challenge.The Royal Society, grant Ref: RG13082

    Wearable continuous vital sign monitoring for deterioration detection and clinical outcomes in hospitalised patients

    Get PDF
     Current practice uses physiological early warning scoring (EWS) systems to monitor “standard” vital signs, including heart rate (HR), respiratory rate (RR), blood pressure (BP), oxygen saturations (SpO2) and temperature, coupled with a graded response such as referral for a senior review or increasing monitoring frequency. Early detection of the deteriorating patient is a known challenge within hospital environments, as EWS is dependent on correct frequency of physiological observations tailored to specific patient needs, that can be time consuming for healthcare professionals, resulting in missed or incomplete observations. Wearable monitoring systems (WMS) may bring the potential to fill the gap in vital sign monitoring between traditional intermittent manual measurements and continuous automatic monitoring. However, evidence on the feasibility and impact of WMS implementation remains scarce. The virtual High Dependency Unit (vHDU) project was designed to develop and test the feasibility of deploying a WMS system in the hospital ward environment. This doctoral work aims to critically analyse the roadmap work of the vHDU project, containing ten publications distributed throughout 7 chapters. Chapter 1 (with 3 publications) includes a systematic review and meta-analysis identifying the lack of statistical evidence of the impact of WMS in early deterioration detection and associated clinical outcomes, highlighting the need for high-quality randomised controlled trials (RCTs). It also supports the use of WMS as a complement, and not a substitute, for standard and direct care. Chapter 2 explores clinical staff and patient perceptions of current vital sign monitoring practices, as well as their early thoughts on the use of WMS in the hospital environment through a qualitative interview study. WMS were seen positively by both clinical and patient groups as a potential tool to bridge the gap between manual observations and the traditional wired continuous automatic systems, as long as it does not add more noise to the wards nor replaces direct contact from the clinical staff. In chapter 3, the wearability of 7 commercially available wearables (monitoring HR, RR and SpO2) was assessed, advocating for the use of pulse oximeters without a fingertip probe and a small chest patch to improve worn times from the patients. Out of these, five devices were submitted to measurement accuracy testing (chapter 4, with 3 publications) under movement and controlled hypoxaemia, resulting in the validation of a chest patch (monitoring HR and RR) and proving the diagnostic accuracy of 3 pulse oximeters (monitoring pulse rate, PR and SpO2) under test. These results were timely for the final selection of the devices to be integrated in our WMS, namely vHDU system, explored in chapter 5, outlining the process for its development and rapid deployment in COVID-19 isolation wards in our local hospital during the pandemic. This work is now converging in the design of a feasibility RCT to test the impact of the vHDU system (now augmented with blood pressure and temperature monitoring, completing all 5 vital signs) versus standard care in an unbiased environment (chapter 6). This will also ascertain the feasibility for a multicentre RCT, that may in the future, contribute with the much-needed statistical evidence to my systematic review and meta-analysis research question, highlighted in chapter 1. Finally, chapter 7 includes a critical reflection of the vHDU project and overall doctoral work, as well as its contributions to the field of wearable monitoring.<p class="MsoNormal"/

    Med-e-Tel 2013

    Get PDF

    Usability analysis of contending electronic health record systems

    Get PDF
    In this paper, we report measured usability of two leading EHR systems during procurement. A total of 18 users participated in paired-usability testing of three scenarios: ordering and managing medications by an outpatient physician, medicine administration by an inpatient nurse and scheduling of appointments by nursing staff. Data for audio, screen capture, satisfaction rating, task success and errors made was collected during testing. We found a clear difference between the systems for percentage of successfully completed tasks, two different satisfaction measures and perceived learnability when looking at the results over all scenarios. We conclude that usability should be evaluated during procurement and the difference in usability between systems could be revealed even with fewer measures than were used in our study. © 2019 American Psychological Association Inc. All rights reserved.Peer reviewe

    Objective assessment of movement disabilities using wearable sensors

    Full text link
    The research presents a series of comprehensive analyses based on inertial measurements obtained from wearable sensors to quantitatively describe and assess human kinematic performance in certain tasks that are most related to daily life activities. This is not only a direct application of human movement analysis but also very pivotal in assessing the progression of patients undergoing rehabilitation services. Moreover, the detailed analysis will provide clinicians with greater insights to capture movement disorders and unique ataxic features regarding axial abnormalities which are not directly observed by the clinicians
    • …
    corecore