2,185 research outputs found

    Unmanned Aerial Vehicles (UAVs) in environmental biology: A Review

    Get PDF
    Acquiring information about the environment is a key step during each study in the field of environmental biology at different levels, from an individual species to community and biome. However, obtaining information about the environment is frequently difficult because of, for example, the phenological timing, spatial distribution of a species or limited accessibility of a particular area for the field survey. Moreover, remote sensing technology, which enables the observation of the Earth’s surface and is currently very common in environmental research, has many limitations such as insufficient spatial, spectral and temporal resolution and a high cost of data acquisition. Since the 1990s, researchers have been exploring the potential of different types of unmanned aerial vehicles (UAVs) for monitoring Earth’s surface. The present study reviews recent scientific literature dealing with the use of UAV in environmental biology. Amongst numerous papers, short communications and conference abstracts, we selected 110 original studies of how UAVs can be used in environmental biology and which organisms can be studied in this manner. Most of these studies concerned the use of UAV to measure the vegetation parameters such as crown height, volume, number of individuals (14 studies) and quantification of the spatio-temporal dynamics of vegetation changes (12 studies). UAVs were also frequently applied to count birds and mammals, especially those living in the water. Generally, the analytical part of the present study was divided into following sections: (1) detecting, assessing and predicting threats on vegetation, (2) measuring the biophysical parameters of vegetation, (3) quantifying the dynamics of changes in plants and habitats and (4) population and behaviour studies of animals. At the end, we also synthesised all the information showing, amongst others, the advances in environmental biology because of UAV application. Considering that 33% of studies found and included in this review were published in 2017 and 2018, it is expected that the number and variety of applications of UAVs in environmental biology will increase in the future

    Combining hyperspectral UAV and mulitspectral FORMOSAT-2 imagery for precision agriculture applications

    Get PDF
    Precision agriculture requires detailed information regarding the crop status variability within a field. Remote sensing provides an efficient way to obtain such information through observing biophysical parameters, such as canopy nitrogen content, leaf coverage, and plant biomass. However, individual remote sensing sensors often fail to provide information which meets the spatial and temporal resolution required by precision agriculture. The purpose of this study is to investigate methods which can be used to combine imagery from various sensors in order to create a new dataset which comes closer to meeting these requirements. More specifically, this study combined multispectral satellite imagery (Formosat-2) and hyperspectral Unmanned Aerial Vehicle (UAV) imagery of a potato field in the Netherlands. The imagery from both platforms was combined in two ways. Firstly, data fusion methods brought the spatial resolution of the Formosat-2 imagery (8 m) down to the spatial resolution of the UAV imagery (1 m). Two data fusion methods were applied: an unmixing-based algorithm and the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM). The unmixing-based method produced vegetation indices which were highly correlated to the measured LAI (rs= 0.866) and canopy chlorophyll values (rs=0.884), whereas the STARFM obtained lower correlations. Secondly, a Spectral-Temporal Reflectance Surface (STRS) was constructed to interpolate a daily 101 band reflectance spectra using both sources of imagery. A novel STRS method was presented, which utilizes Bayesian theory to obtain realistic spectra and accounts for sensor uncertainties. The resulting surface obtained a high correlation to LAI (rs=0.858) and canopy chlorophyll (rs=0.788) measurements at field level. The multi-sensor datasets were able to characterize significant differences of crop status due to differing nitrogen fertilization regimes from June to August. Meanwhile, the yield prediction models based purely on the vegetation indices extracted from the unmixing-based fusion dataset explained 52.7% of the yield variation, whereas the STRS dataset was able to explain 72.9% of the yield variability. The results of the current study indicate that the limitations of each individual sensor can be largely surpassed by combining multiple sources of imagery, which is beneficial for agricultural management. Further research could focus on the integration of data fusion and STRS techniques, and the inclusion of imagery from additional sensors.Samenvatting In een wereld waar toekomstige voedselzekerheid bedreigd wordt, biedt precisielandbouw een oplossing die de oogst kan maximaliseren terwijl de economische en ecologische kosten van voedselproductie beperkt worden. Om dit te kunnen doen is gedetailleerde informatie over de staat van het gewas nodig. Remote sensing is een manier om biofysische informatie, waaronder stikstof gehaltes en biomassa, te verkrijgen. De informatie van een individuele sensor is echter vaak niet genoeg om aan de hoge eisen betreft ruimtelijke en temporele resolutie te voldoen. Deze studie combineert daarom de informatie afkomstig van verschillende sensoren, namelijk multispectrale satelliet beelden (Formosat-2) en hyperspectral Unmanned Aerial Vehicle (UAV) beelden van een aardappel veld, in een poging om aan de hoge informatie eisen van precisielandbouw te voldoen. Ten eerste werd gebruik gemaakt van datafusie om de acht Formosat-2 beelden met een resolutie van 8 m te combineren met de vier UAV beelden met een resolutie van 1 m. De resulterende dataset bestaat uit acht beelden met een resolutie van 1 m. Twee methodes werden toegepast, de zogenaamde STARFM methode en een unmixing-based methode. De unmixing-based methode produceerde beelden met een hoge correlatie op de Leaf Area Index (LAI) (rs= 0.866) en chlorofyl gehalte (rs=0.884) gemeten op veldnieveau. De STARFM methode presteerde slechter, met correlaties van respectievelijk rs=0.477 en rs=0.431. Ten tweede werden Spectral-Temporal Reflectance Surfaces (STRSs) ontwikkeld die een dagelijks spectrum weergeven met 101 spectrale banden. Om dit te doen is een nieuwe STRS methode gebaseerd op de Bayesiaanse theorie ontwikkeld. Deze produceert realistische spectra met een overeenkomstige onzekerheid. Deze STRSs vertoonden hoge correlaties met de LAI (rs=0.858) en het chlorofyl gehalte (rs=0.788) gemeten op veldnieveau. De bruikbaarheid van deze twee soorten datasets werd geanalyseerd door middel van de berekening van een aantal vegetatie-indexen. De resultaten tonen dat de multi-sensor datasets capabel zijn om significante verschillen in de groei van gewassen vast te stellen tijdens het groeiseizoen zelf. Bovendien werden regressiemodellen toegepast om de bruikbaarheid van de datasets voor oogst voorspellingen. De unmixing-based datafusie verklaarde 52.7% van de variatie in oogst, terwijl de STRS 72.9% van de variabiliteit verklaarden. De resultaten van het huidige onderzoek tonen aan dat de beperkingen van een individuele sensor grotendeels overtroffen kunnen worden door het gebruik van meerdere sensoren. Het combineren van verschillende sensoren, of het nu Formosat-2 en UAV beelden zijn of andere ruimtelijke informatiebronnen, kan de hoge informatie eisen van de precisielandbouw tegemoet komen.In the context of threatened global food security, precision agriculture is one strategy to maximize yield to meet the increased demands of food, while minimizing both economic and environmental costs of food production. This is done by applying variable management strategies, which means the fertilizer or irrigation rates within a field are adjusted according to the crop needs in that specific part of the field. This implies that accurate crop status information must be available regularly for many different points in the field. Remote sensing can provide this information, but it is difficult to meet the information requirements when using only one sensor. For example, satellites collect imagery regularly and over large areas, but may be blocked by clouds. Unmanned Aerial Vehicles (UAVs), commonly known as drones, are more flexible but have higher operational costs. The purpose of this study was to use fusion methods to combine satellite (Formosat-2) with UAV imagery of a potato field in the Netherlands. Firstly, data fusion was applied. The eight Formosat-2 images with 8 m x 8 m pixels were combined with four UAV images with 1 m x 1 m pixels to obtain a new dataset of eight images with 1 m x 1 m pixels. Unmixing-based data fusion produced images which had a high correlation to field measurements obtained from the potato field during the growing season. The results of a second data fusion method, STARFM, were less reliable in this study. The UAV images were hyperspectral, meaning they contained very detailed information spanning a large part of the electromagnetic spectrum. Much of this information was lost in the data fusion methods because the Formosat-2 images were multispectral, representing a more limited portion of the spectrum. Therefore, a second analysis investigated the use of Spectral-Temporal Reflectance Surfaces (STRS), which allow information from different portions of the electromagnetic spectrum to be combined. These STRS provided daily hyperspectral observations, which were also verified as accurate by comparing them to reference data. Finally, this study demonstrated the ability of both data fusion and STRS to identify which parts of the potato field had lower photosynthetic production during the growing season. Data fusion was capable of explaining 52.7% of the yield variation through regression models, whereas the STRS explained 72.9%. To conclude, this study indicates how to combine crop status information from different sensors to support precision agriculture management decisions

    Remote Sensing for Precision Agriculture: Sentinel-2 Improved Features and Applications

    Get PDF
    The use of satellites to monitor crops and support their management is gathering increasing attention. The improved temporal, spatial, and spectral resolution of the European Space Agency (ESA) launched Sentinel-2 A + B twin platform is paving the way to their popularization in precision agriculture. Besides the Sentinel-2 A + B constellation technical features the open-access nature of the information they generate, and the available support software are a significant improvement for agricultural monitoring. This paper was motivated by the challenges faced by researchers and agrarian institutions entering this field; it aims to frame remote sensing principles and Sentinel-2 applications in agriculture. Thus, we reviewed the features and uses of Sentinel-2 in precision agriculture, including abiotic and biotic stress detection, and agricultural management. We also compared the panoply of satellites currently in use for land remote sensing that are relevant for agriculture to the Sentinel-2 A + B constellation features. Contrasted with previous satellite image systems, the Sentinel-2 A + B twin platform has dramatically increased the capabilities for agricultural monitoring and crop management worldwide. Regarding crop stress monitoring, Sentinel-2 capacities for abiotic and biotic stresses detection represent a great step forward in many ways though not without its limitations; therefore, combinations of field data and different remote sensing techniques may still be needed. We conclude that Sentinel-2 has a wide range of useful applications in agriculture, yet still with room for further improvements. Current and future ways that Sentinel-2 can be utilized are also discussed.This research was funded by the Spanish projects AGL2016-76527-R and IRUEC PCIN-2017-063 from the Ministerio de EconomĂ­a y Competividad (MINECO, Spain) and by the support of Catalan Institution for Research and Advanced Studies (ICREA, Generalitat de Catalunya, Spain), through the ICREA Academia Program

    Remote Sensing for Precision Agriculture: Sentinel-2 Improved Features and Applications

    Get PDF
    The use of satellites to monitor crops and support their management is gathering increasing attention. The improved temporal, spatial, and spectral resolution of the European Space Agency (ESA) launched Sentinel-2 A + B twin platform is paving the way to their popularization in precision agriculture. Besides the Sentinel-2 A + B constellation technical features the open-access nature of the information they generate, and the available support software are a significant improvement for agricultural monitoring. This paper was motivated by the challenges faced by researchers and agrarian institutions entering this field; it aims to frame remote sensing principles and Sentinel-2 applications in agriculture. Thus, we reviewed the features and uses of Sentinel-2 in precision agriculture, including abiotic and biotic stress detection, and agricultural management. We also compared the panoply of satellites currently in use for land remote sensing that are relevant for agriculture to the Sentinel-2 A + B constellation features. Contrasted with previous satellite image systems, the Sentinel-2 A + B twin platform has dramatically increased the capabilities for agricultural monitoring and crop management worldwide. Regarding crop stress monitoring, Sentinel-2 capacities for abiotic and biotic stresses detection represent a great step forward in many ways though not without its limitations; therefore, combinations of field data and different remote sensing techniques may still be needed. We conclude that Sentinel-2 has a wide range of useful applications in agriculture, yet still with room for further improvements. Current and future ways that Sentinel-2 can be utilized are also discusse

    Computer processing of peach tree decline data

    Get PDF
    There are no author-identified significant results in this report

    Geosensors to Support Crop Production: Current Applications and User Requirements

    Get PDF
    Sensor technology, which benefits from high temporal measuring resolution, real-time data transfer and high spatial resolution of sensor data that shows in-field variations, has the potential to provide added value for crop production. The present paper explores how sensors and sensor networks have been utilised in the crop production process and what their added-value and the main bottlenecks are from the perspective of users. The focus is on sensor based applications and on requirements that users pose for them. Literature and two use cases were reviewed and applications were classified according to the crop production process: sensing of growth conditions, fertilising, irrigation, plant protection, harvesting and fleet control. The potential of sensor technology was widely acknowledged along the crop production chain. Users of the sensors require easy-to-use and reliable applications that are actionable in crop production at reasonable costs. The challenges are to develop sensor technology, data interoperability and management tools as well as data and measurement services in a way that requirements can be met, and potential benefits and added value can be realized in the farms in terms of higher yields, improved quality of yields, decreased input costs and production risks, and less work time and load

    Remote Sensing in Agriculture: State-of-the-Art

    Get PDF
    The Special Issue on “Remote Sensing in Agriculture: State-of-the-Art” gives an exhaustive overview of the ongoing remote sensing technology transfer into the agricultural sector. It consists of 10 high-quality papers focusing on a wide range of remote sensing models and techniques to forecast crop production and yield, to map agricultural landscape and to evaluate plant and soil biophysical features. Satellite, RPAS, and SAR data were involved. This preface describes shortly each contribution published in such Special Issue

    Mapping Chestnut Stands Using Bi-Temporal VHR Data

    Get PDF
    This study analyzes the potential of very high resolution (VHR) remote sensing images and extended morphological profiles for mapping Chestnut stands on Tenerife Island (Canary Islands, Spain). Regarding their relevance for ecosystem services in the region (cultural and provisioning services) the public sector demand up-to-date information on chestnut and a simple straight-forward approach is presented in this study. We used two VHR WorldView images (March and May 2015) to cover different phenological phases. Moreover, we included spatial information in the classification process by extended morphological profiles (EMPs). Random forest is used for the classification process and we analyzed the impact of the bi-temporal information as well as of the spatial information on the classification accuracies. The detailed accuracy assessment clearly reveals the benefit of bi-temporal VHR WorldView images and spatial information, derived by EMPs, in terms of the mapping accuracy. The bi-temporal classification outperforms or at least performs equally well when compared to the classification accuracies achieved by the mono-temporal data. The inclusion of spatial information by EMPs further increases the classification accuracy by 5% and reduces the quantity and allocation disagreements on the final map. Overall the new proposed classification strategy proves useful for mapping chestnut stands in a heterogeneous and complex landscape, such as the municipality of La Orotava, Tenerife

    Role of Hyperspectral imaging for Precision Agriculture Monitoring

    Get PDF
    In the modern era precision agriculture has started emerging as a new revolution. Remote sensing is generally regarded as one of the most important techniques for agricultural monitoring at multiple spatiotemporal scales. This has expanded from traditional systems such as imaging systems, agricultural monitoring, atmospheric science, geology and defense to a variety of newly developing laboratory-based measurements. The development of hyperspectral imaging systems has taken precision agriculture a step further. Because of the spectral range limit of multispectral imagery, the detection of minute changes in materials is significantly lacking, this shortcoming can be overcome by hyperspectral sensors and prove useful in many agricultural applications. Recently, various emerging platforms also popularized hyperspectral remote sensing technology, however, it comes with the complexity of data storage and processing. This article provides a detailed overview of hyperspectral remote sensing that can be used for better estimation in agricultural applications
    • …
    corecore