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Abstract 
In the context of threatened global food security, precision agriculture provides a solution which can 

maximize yield to meet the increased demands of food while minimizing both economic and 

environmental costs of food production. Detailed information regarding crop status is crucial for precision 

agriculture. Remote sensing provides an efficient way to obtain crop biophysical status information, such 

as canopy nitrogen content, leaf coverage, and plant biomass. However, individual sensors do not 

normally meet both spatial and temporal requirements for precision agriculture. Therefore, this study 

investigates different fusion methods which can be used to combine imagery from various sensors to 

overcome the limitations of each individual sensor. The imagery utilized in the current study consists of 

multispectral satellite (Formosat-2) and hyperspectral Unmanned Aerial Vehicle (UAV) imagery of a 

potato field in the Netherlands. 

The imagery from both platforms was combined in two ways. Firstly, data fusion methods brought the 

spatial resolution of the Formosat-2 imagery (8 m) down to the spatial resolution of the UAV imagery (1 

m). Two data fusion methods were applied: an unmixing-based algorithm and the Spatial and Temporal 

Adaptive Reflectance Fusion Model (STARFM). The unmixing-based method produced vegetation 

indices which were highly correlated to the measured LAI (rs= 0.866) and canopy chlorophyll values 

(rs=0.884), whereas the STARFM showed lower correlations (rs=0.477 and rs=0.431, respectively).  

Secondly, a Spectral-Temporal Reflectance Surface (STRS) was constructed to interpolate daily 101-band 

reflectance spectra using both sources of imagery. The STRS were interpolated using a new method, 

which utilizes Bayesian theory to obtain realistic spectra and accounts for sensor uncertainties. The 

resulting surface obtained a high correlation to LAI (rs=0.858) and canopy chlorophyll (rs=0.788) 

measurements at field level. 

The usefulness of these multi-sensor datasets was further analyzed regarding their ability to map crop 

status variability and predict yield. The results showed the capability of the multi-sensor datasets to 

characterize significant differences of crop status due to differing nitrogen fertilization regimes from June 

to August. Meanwhile, the yield prediction models based purely on the vegetation indices extracted from 

the unmixing-based fusion dataset explained 52.7% of the yield variation, which is lower than that 

explained by the STRS (72.9%). Around 75.3% of the yield can be explained by a regression model using 

direct field LAI and chlorophyll measurements.  

The results of the current study indicate that the limitations of each individual sensor can be largely 

surpassed by combining multiple sources of imagery. This can be very beneficial for precision agriculture 

management decisions, which require require reliable and high-quality information. Further research 

could focus on the integration of data fusion and STRS techniques, and the inclusion of imagery from 

additional sensors.  
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Samenvatting 
 

In een wereld waar toekomstige voedselzekerheid bedreigd wordt, biedt precisielandbouw een oplossing 

die de oogst kan maximaliseren terwijl de economische en ecologische kosten van voedselproductie 

beperkt worden. Om dit te kunnen doen is gedetailleerde informatie over de staat van het gewas nodig. 

Remote sensing is een manier om biofysische informatie, waaronder stikstof gehaltes en biomassa, te 

verkrijgen. De informatie van een individuele sensor is echter vaak niet genoeg om aan de hoge eisen 

betreft ruimtelijke en temporele resolutie te voldoen. Deze studie combineert daarom de informatie 

afkomstig van verschillende sensoren, namelijk multispectrale satelliet beelden (Formosat-2) en 

hyperspectral Unmanned Aerial Vehicle (UAV) beelden van een aardappel veld, in een poging om aan de 

hoge informatie eisen van precisielandbouw te voldoen.  

Ten eerste werd gebruik gemaakt van datafusie om de acht Formosat-2 beelden met een resolutie van 8 m 

te combineren met de vier UAV beelden met een resolutie van 1 m. De resulterende dataset bestaat uit 

acht beelden met een resolutie van 1 m. Twee methodes werden toegepast, de zogenaamde STARFM 

methode en een unmixing-based methode. De unmixing-based methode produceerde beelden met een 

hoge correlatie op de Leaf Area Index (LAI) (rs= 0.866) en chlorofyl gehalte (rs=0.884) gemeten op 

veldnieveau. De STARFM methode presteerde slechter, met correlaties van respectievelijk rs=0.477 en 

rs=0.431. Ten tweede werden Spectral-Temporal Reflectance Surfaces (STRSs) ontwikkeld die een 

dagelijks spectrum weergeven met 101 spectrale banden. Om dit te doen is een nieuwe STRS methode 

gebaseerd op de Bayesiaanse theorie ontwikkeld. Deze produceert realistische spectra met een 

overeenkomstige onzekerheid. Deze STRSs vertoonden hoge correlaties met de LAI (rs=0.858) en het 

chlorofyl gehalte (rs=0.788) gemeten op veldnieveau. 

De bruikbaarheid van deze twee soorten datasets werd geanalyseerd door middel van de berekening van 

een aantal vegetatie-indexen. De resultaten tonen dat de multi-sensor datasets capabel zijn om significante 

verschillen in de groei van gewassen vast te stellen tijdens het groeiseizoen zelf. Bovendien werden 

regressiemodellen toegepast om de bruikbaarheid van de datasets voor oogst voorspellingen. De 

unmixing-based datafusie verklaarde 52.7% van de variatie in oogst, terwijl de STRS 72.9% van de 

variabiliteit verklaarden.  

De resultaten van het huidige onderzoek tonen aan dat de beperkingen van een individuele sensor 

grotendeels overtroffen kunnen worden door het gebruik van meerdere sensoren. Het combineren van 

verschillende sensoren, of het nu Formosat-2 en UAV beelden zijn of andere ruimtelijke 

informatiebronnen, kan de hoge informatie eisen van de precisielandbouw tegemoet komen. 

 



vii 
 

Acknowledgements 
 

The current research would not have been possible without the help of many people. Firstly, Dr. Lammert 

Kooistra from the WU-GRS, who served as an external supervisor for this thesis. Thank you for 

providing me with the opportunity to work on this subject and for all your helpful comments and 

guidance. Many thanks also to Dr. Juha Suomalainen from the WU-GRS who developed the UAV system 

and processed the imagery, and to Dr. Javier García-Haro from the University of Valencia who played a 

significant role in developing the unmixing-based fusion method used in this paper. 

I would also like to thank my supervisor at Lund University, Jing Tang for her help in the development of 

this thesis. And to all the team behind the LUMA-GIS program, who I have not (yet) been able to thank 

face-to-face, but who have put together a wonderful Master’s program. This provides a unique 

opportunity for many students throughout the world, and I personally am very happy that I was able to 

participate. 

The help of Dr. Cheng-Chien Liu of National ChengKung University is acknowledged for kindly 

providing the Formosat-2 spectral response data. 

Finally, I would also like to take this opportunity to thank my family. For their patience and support. 

  



viii 
 

Table of Contents 
 

 Introduction ........................................................................................................................................................... 1 

 Objectives ............................................................................................................................................................. 4 

 Background ........................................................................................................................................................... 5 

3.1 Data fusion ................................................................................................................................................... 5 

3.2 Spectral-Temporal Reflectance Surfaces (STRS) ........................................................................................ 5 

3.3 Vegetation indices ........................................................................................................................................ 6 

3.4 Yield prediction ............................................................................................................................................ 7 

 Data and Methodology .......................................................................................................................................... 9 

4.1 Study area ..................................................................................................................................................... 9 

4.2 Data ............................................................................................................................................................ 11 

4.2.1 Formosat-2 imagery .......................................................................................................................... 11 

4.2.2 UAV imagery .................................................................................................................................... 12 

4.2.3 Field data ........................................................................................................................................... 12 

4.3 Methods ...................................................................................................................................................... 13 

4.3.1 Data pre-processing ........................................................................................................................... 14 

4.3.2 Data Fusion ....................................................................................................................................... 16 

4.3.3 STRS ................................................................................................................................................. 16 

4.3.4 Vegetation indices ............................................................................................................................. 20 

4.3.5 Statistical analyses ............................................................................................................................. 20 

 Results ................................................................................................................................................................. 22 

5.1 Data pre-processing .................................................................................................................................... 22 

5.1.1 Formosat-2 imagery .......................................................................................................................... 22 

5.1.2 Yield interpolation ............................................................................................................................. 22 

5.2 Data fusion ................................................................................................................................................. 23 

5.3 STRS .......................................................................................................................................................... 26 

5.4 Vegetation indices ...................................................................................................................................... 28 

5.5 Statistical analysis ...................................................................................................................................... 29 

5.5.1 Variation detection during the growing season ................................................................................. 29 

5.5.2 Yield prediction ................................................................................................................................. 31 

 Discussion ........................................................................................................................................................... 35 

6.1 Combination of multi-sensor imagery ........................................................................................................ 35 

6.2 Vegetation indices ...................................................................................................................................... 36 

6.3 Fused datasets for in-season crop status analysis and yield prediction .................................................... 36 

6.4 Yield prediction .......................................................................................................................................... 37 

 Conclusions ......................................................................................................................................................... 38 

 References ........................................................................................................................................................... 39 

 Series from Lund University ............................................................................................................................... 44 

Appendix 1: Atmospheric correction of Formosat-2 imagery .................................................................................. 1 

Appendix 2: Data fusion parameter optimization .................................................................................................... 1 

Appendix 3: Vegetation indices ............................................................................................................................... 1 

Appendix 4: WHISPERS 2014 Submission ............................................................................................................. 1 

 



1 
 

 Introduction 
Global food security is threatened by increased demands from a growing global population, increased 

competition for land, and the need for sustainable production with lower environmental externalities 

(Godfray et al. 2010). Precision agriculture is often flagged as a key “sustainable intensification” method, 

as it aims to maximize the agricultural production in a sustainable manner (The Royal Society 2009). One 

of the key steps is to quantify both spatial and temporal variations of crop conditions and apply various 

management strategies within a field according to these differences (Gebbers and Adamchuk 2010). By 

applying the exact amount of input resources where and when it is needed, the yield can be maximized 

while reducing the application of fertilizer and pesticides - which is  economically beneficial for the 

farmer and environmentally beneficial for the general population (Gebbers and Adamchuk 2010; Clay 

and Shanahan 2011). 

Remote sensing is capable of identifying variation in biophysical parameters such as canopy nitrogen 

content and plant biomass (Clevers and Kooistra 2012). It plays a key role in agricultural monitoring 

(Jones and Vaughan 2010), especially in the identification of nitrogen stress (Mcmurtrey et al. 2003; 

Goffart et al. 2008; Diacono et al. 2012). It is recognized as one of the key methods to quantify both 

temporal and spatial variations of crop conditions which are essential for the application of precision 

agriculture (Gebbers and Adamchuk 2010). Yield-prediction models are often based on the assumption 

that yield production is influenced by measureable biophysical parameters such as LAI and chlorophyll, 

variations in which can be identified in remotely-sensed images through the use of vegetation indices 

(Bala and Islam 2009; Shillito et al. 2009; Gontia and Tiwari 2011; Neale and Sivarajan 2011; Rembold 

et al. 2013; Ramírez et al. 2014). Yield prediction based on remotely sensed biophysical parameters is 

more challenging in the current situation, as potato tubers are grown below-ground (Ramírez et al. 2014). 

Optical remote sensing imagery can be divided into multispectral satellite imagery and hyperspectral 

imagery. Multispectral imagery consists of a limited number of broad spectral bands (Christophe et al. 

2005), and contains general information regarding vegetation structure and crop greenness (Zarco-Tejada 

et al. 2005). Hyperspectral imagery contains more than 100 spectral bands, which are also much narrower 

than multispectral imagery and provide a continuous reflectance spectrum (Christophe et al. 2005). Such 

imagery is capable of providing more detailed information and specific crop physiological parameters, 

such as chlorophyll, carotenoids, and water conditions (Zarco-Tejada et al. 2005). Multispectral imagery 

has been available longer and is more widespread, however the increased precision of hyperspectral 

imagery for vegetation monitoring is increasingly being recognized in the international community 

(Haboudane et al. 2004). 

Many studies describe the use of multispectral satellite imagery for precision agriculture applications 

(Plant 2001; Cohen et al. 2010; Lee et al. 2010; Lunetta et al. 2010; Ge et al. 2011; Diacono et al. 2012). 

However, factors such as inadequate spatial or temporal resolution (Merlin et al. 2010) and cloud cover 

(Mulla 2013) have limited the effectiveness of utilizing such satellite imagery (Dorigo et al. 2007). 

Alternatively, Unmanned Aerial Vehicles (UAV) have been proposed for precision agriculture 

applications (Berni et al. 2009; Kooistra et al. 2012; Zhang and Kovacs 2012; Kooistra et al. 2013) as 

they can provide imagery with a higher spatial resolution and more flexible acquisition times compared to 
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satellite imagery (Zhang and Kovacs 2012). Furthermore, UAVs fly under the clouds allowing them to 

obtain imagery on cloudy days, which is a great benefit in areas with frequent cloud cover, such as the 

Netherlands1. However, operational requirements may inhibit monitoring of large areas and the frequency 

of flights (Zhang and Kovacs 2012). The current research investigates the integration of reflectance 

information from multispectral satellite imagery and hyperspectral UAV imagery in two ways: (1) data 

fusion to compare sensors of differing spatial resolution and (2) the creation of Spectral-Temporal 

Reflectance Surfaces (STRS) to integrate the spectral and temporal resolutions of multiple sensors. 

A potato field near Reusel, the Netherlands was selected for the study area (Kooistra et al. 2013).  Four 

dates of UAV images were obtained over the study area during the growing season of 2013. Formosat-2 

satellite imagery is available over the zone at eight dates in the same growing season. Moreover, an 

experimental set-up divided the field into four zones which were treated with four different nitrogen 

application rates at the beginning of the growing season. During the entire growing season, weekly field 

measurements of leaf chlorophyll, Leaf Area Index (LAI), and spectral reflectance were obtained for a 

number of experimental plots. This creates a unique experimental set-up to analyze synergistic methods to 

combine UAV and Formosat-2 imagery, and further enable us to evaluate the results using field data.  

Data fusion is a possible method to combine imagery from sensors with differing spatial resolutions (Pohl 

and Van Genderen 1998). Recently, many researchers have investigated the application of data fusion 

between medium spatial-resolution imagery such as MODIS (Gao et al. 2006) and MERIS (Zurita-Milla 

et al. 2008; Amorós-López et al. 2013) and high spatial-resolution datasets such as Landsat to obtain a 

fused image dataset with a daily temporal resolution and a spatial resolution of 30 m. Two prevalent data 

fusion methods are the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) (Gao et al. 

2006) and unmixing-based data fusion (Zurita-Milla et al. 2008; Amorós-López et al. 2013). 

STARFM is the most widely-used data fusion algorithm for Landsat and MODIS imagery (Emelyanova 

et al. 2013). It is one of the few data fusion methods which obtains surface reflectance calibrated to the 

high-resolution image (Singh 2011). The method is particularly useful for detecting gradual changes over 

large land areas, such as phenology studies (Gao et al. 2006; Hilker et al. 2009). Disadvantages of the 

STARFM method include the requirement of a base pair of high- and medium-resolution images for 

reference, dependency on the availability of homogenous medium-resolution pixels (Zhu et al. 2010), and 

sensitivity to temporal variation of land cover (Gevaert and García-Haro 2014).  

On the other hand, unmixing-based data fusion methods do not require corresponding spectral bands. It 

therefore allows for the downscaling of additional spectral bands of the medium-resolution sensor (Zurita-

Milla et al. 2011; Amorós-López et al. 2013) and do not require a base image pair. The unmixing-based 

method is less sensitive to temporal variations, and provides more stable errors (Gevaert and García-Haro 

2014). An important difference with the STARFM method is that the unmixing-based method retains the 

spectral information of the medium-resolution image, and thus does not provide reflectance calibrated to 

                                                      

1 During the growing season of 2013, the meteorological station nearest to the study area (Eindhoven) reported 

79.1% of the days were at least half-clouded, and 57.8% of the days were heavily clouded (KNMI 2014).  
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the high-resolution image (Zurita-Milla et al. 2011; Amorós-López et al. 2013). A more detailed analysis 

comparing various data fusion methods can be found in Gevaert (2013). 

The current thesis hypothesizes that these two data fusion methods are also suitable for combining 

multispectral Formosat-2 satellite imagery with hyperspectral UAV imagery. The fused dataset could 

benefit from the spatial resolution of the UAV imagery (1 m), and the added temporal frequency of the 

Formosat-2 imagery. 

However the fused datasets obtained through both methods contain only four spectral bands, and do not 

benefit from the additional spectral information contained in the UAV imagery. STRS are 4-dimensional 

image datasets (row, line, wavelength, time) which illustrate how the spectrum of a certain pixel changes 

over time. Previous studies have applied STRS to Landsat-5/TM and Landsat-7/ETM+ imagery to 

characterize sugarcane harvests in Brazil (Mello et al. 2013), and to MERIS and MODIS imagery to 

create a cloud-free image time series (Villa et al. 2013). A STRS is formed by interpolating the 

reflectance of each pixel along the wavelength and temporal dimensions. Mello et al. (2013) utilized the 

Polynomial Trend Surface (PTS) and Collocation Surface (CS) methods to interpolate the spectral and 

temporal dimensions directly. Villa et al. (2013) first interpolated MERIS and MODIS spectra along the 

wavelength dimension using a spline interpolation, and then interpolated along the temporal dimension 

separately.  

However, these STRS implementation methods have a number of limitations. Firstly, they do not account 

for the physical characteristics of reflectance spectra. Therefore, the interpolated spectra may be 

unrealistic, such as a missing red-edge for vegetation spectra (Figure 7 in Mello et al. 2013; Figure 1 in 

Villa et al. 2013). Secondly, all imagery observations are weighted equally – the uncertainty of each 

image is not taken into account. This thesis utilizes a new methodology to obtain STRS based on 

Bayesian theory which could these limitations (Mello et al. 2013; Villa et al. 2013).  

In sum, the purpose of this study is to investigate methods to combine multiple sources of imagery to 

obtain a product which provides reliable information regarding crop status for precision agriculture 

applications. Data fusion methods are applied to combine the spatial and spectral information from 

satellite and UAV data. STRS methods are applied to combine the spectral and temporal information from 

the multispectral and hyperspectral imagery. Finally, the ability of these methods to document variations 

in crop biophysical parameters during the growing season and to explain yield variability are analyzed 

through statistical methods. 
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 Objectives 
The objective of the current research is to develop methods to combine the high temporal resolution of 

multispectral Formosat-2 imagery and the high spatial and spectral resolution of hyperspectral UAV 

imagery for precision agriculture applications.  

This objective was achieved by completing the following steps: 

 Exploring a systematic scheme of combining multispectral and hyperspectral imagery for 

precision agriculture.  

 Applying current data fusion methods for MODIS/MERIS and Landsat fusion to UAV and 

Formosat-2 imagery. 

 Exploring the use of STRS to take advantage of the hyperspectral information of the UAV 

imagery, and to provide daily reflectance data at plot level. 

 Analyzing the influence of differing initial fertilization regimes on crop status variability during 

the growing season, as captured by fused datasets. 

 Analyzing the influence of differing initial fertilization regimes on potato yield, and the ability of 

crop status parameters obtained from fused datasets during the growing season to explain this 

yield variability. 
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 Background 

3.1 Data fusion 
By applying cross-sensor data fusion, two or more datasets are combined to create a result which exceeds 

the physical limitations of the individual input datasets (Lunetta et al. 1998). Previous studies have 

applied cross-sensor data fusion between medium- and high-resolution imagery for applications such as 

phenology analysis (Hwang et al. 2011; Bhandari et al. 2012; Walker et al. 2012; Feng et al. 2013), forest 

disturbance mapping (Hilker et al. 2009; Arai et al. 2011; Xin et al. 2013), the estimation of biophysical 

parameters (Anderson et al. 2011; Singh 2011; Gao et al. 2012), and public health (Liu and Weng 2012). 

In this study, two data fusion methods are applied. These were chosen because a literature study 

suggested that these two methods represent two major groups of data fusion methods applied to combine 

optical satellite imagery (Emelyanova et al. 2012; Villa et al. 2013).  

The first method is the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM), which was 

designed for fusing Landsat and MODIS imagery (Gao et al. 2006) to create a fused product with a spatial 

resolution of 30 m obtained from the Landsat dataset and a daily temporal resolution obtained from the 

MODIS imagery. It is one of the few data fusion methods which result in synthetic calibrated surface 

reflectance (Singh 2011). This method is particularly useful for detecting gradual changes over large land 

areas, such as phenology studies (Gao et al. 2006; Hilker et al. 2009). However, the disadvantages of this 

method are: the quality of the fused product is highly dependent on the availability of input imagery, and 

both sensors must have corresponding spectral bands (Emelyanova et al. 2013; Gevaert 2013). 

A second set of data fusion algorithms are based on unmixing techniques (Zurita-Milla et al. 2008; 

Amorós-López et al. 2013). These methods rely on the linear spectral mixture model to extract 

endmembers and abundances on a sub-pixel scale (Bioucas-Dias et al. 2012). In unmixing-based data 

fusion, the number of endmembers and their relative abundances within a medium-resolution pixel are 

obtained from the high-resolution dataset, while the spectral signature of the endmembers is unmixed 

from the medium-resolution dataset. This method has previously been applied to Landsat and MERIS 

data (Zurita-Milla et al. 2009; Zurita-Milla et al. 2011; Amorós-López et al. 2013). The main advantage 

of unmixing-based method is that, unlike the STARFM-based methods, it does  not require the high-

resolution and medium-resolution data to have corresponding spectral bands (Amorós-López et al. 2013) 

which allows for two additional possibilities. Firstly, unmixing-based data fusion can be used to 

downscale extra spectral bands and/or biophysical parameters to increase the spectral resolution of the 

high-resolution data sets. Secondly, the input high-resolution data does not necessarily have to be a 

satellite image, but auxiliary datasets such land cover can alternatively be used to control the grouping of 

spectrally similar pixels into clusters (Zurita-Milla et al. 2011). In the current study, both methods are 

applied to the UAV and Formosat-2 imagery to determine which is more applicable in the study area. 

3.2 Spectral-Temporal Reflectance Surfaces (STRS) 
The purpose of STRS is to combine imagery obtained from multiple sensors along the spectral and 

temporal dimensions to obtain images with a spectral and temporal resolution defined by the user. STRS 

provide predicted daily surface reflectance during a defined period rather than restricting the user to the 
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dates for which images are available. It also allows for the combination of spectral information from 

different sensors through the use of interpolation techniques.  

The STRS methodology presented here is inspired by previous works (Mello et al. 2013; Villa et al. 

2013). These previous works are limited because there is no restriction that the resulting spectra be 

representative of the physical surface reflectance characteristics. For example, the spline interpolation 

used in Villa et al. (2013) of the Formosat-2 spectra between the red and near infrared (NIR) spectra 

would create a smooth spectrum, but lose the characteristic red-edge of vegetation (Gilabert et al. 2010). 

Another limitation of the previously documented methodologies is that all observations are weighted 

equally which is unrealistic as the surface reflectance obtained from some data sources (such as UAV 

imagery) are more reliable than others (such as Formosat-2).  

Therefore, an improved methodology is strongly needed and in this study, a STRS based on Bayesian 

theory Bayesian theory is proposed. The inclusion of Bayesian theory allows the user to define sensor 

uncertainties (Murphy 2012), and puts model uncertainties into a probabilistic framework (Fasbender et 

al. 2008).  

3.3 Vegetation indices 
The spectral signature of green vegetation is determined by leaf pigments such as chlorophyll in the 

visible spectrum, cell structure in the near infrared (NIR) spectrum, and leaf water content in the 

shortwave infrared (SWIR) region (Gilabert et al. 2010). The reflectance in the visible spectrum can be 

related to nitrogen concentrations and chlorophyll, whereas the NIR region is related to biophysical 

parameters such as biomass and LAI (Clevers and Kooistra 2012). The sharp increase in reflectance 

around 700 nm is characteristic of live green vegetation, and is known as the red-edge (Figure 1). 

Vegetation indices take advantage of such characteristics, calculating ratios between spectral bands in 

different regions to obtain an index which can be related to certain biophysical properties (Gilabert et al. 

2010).  

Vegetation indices are sensitive to variations in plant biophysical parameters while remaining robust to 

external factors such as atmosphere, solar geometry, and soil background (Gilabert et al. 2010). However, 

each vegetation index is a simplification of original surface reflectance, and therefore portray only a part 

of the information contained within the original bands (Govaerts et al. 1999). Furthermore, many 

vegetation indices relating red and NIR spectral bands display saturation at higher vegetation densities 

(Myneni et al. 1995) and are dependent on canopy structure and land cover (Gilabert et al. 2010). 
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Figure 1: Spectral reflectance of a potato plant obtained from the UAV imagery. The bandwidths of the four Formosat-2 spectral bands are 
indicated by colored blocks. Many vegetation indices take advantage of the difference between the high reflectance in the NIR region 
(≈0.55) and the low reflectance in the red region (≈0.05). 

NDVI is the most well-known index, but although it clearly separates vegetation from soil in a wide range 

of illumination conditions, it also tends to be sensitive to soil background effects and saturates at very 

dense vegetation levels (Broge and Leblanc 2001). The GNDVI uses the same formula, but replacing the 

red band with the green band, on the basis that the green band is less sensitive to background and 

atmospheric effects (Gitelson et al. 1996). Similarly, the WDVI attempts to limit the influence of the 

background soil effect by introducing the parameter C, the slope of the so-called soil-line formed by 

plotting soil reflectance on a scatterplot with the reflectance in the red spectrum on the x-axis and NIR 

reflectance on the y-axis (Clevers 1989). Other hyperspectral indices, such as MCARI focus on the red-

edge spectrum characterized by the significant rise in the reflectance of vegetation from the red to the 

NIR region to counter the saturation effects of dense vegetation (Daughtry et al. 2000). The MCARI 

index also limits the influence of atmospheric effects by taking into account the reflectance in the blue 

spectrum (Haboudane et al. 2004). 

3.4 Yield prediction 
Previous studies attempt to relate the potato yield factors such as topographical parameters (Persson et al. 

2005), soil moisture content and salinity (Dai et al. 2011), and physical and chemical soil properties (Po et 

al. 2010). However, biophysical parameters such as LAI and chlorophyll concentration represent crop 

conditions and are also indirectly related to yield (Bala and Islam 2009; Fortin et al. 2011; van Evert et al. 

2012; Rahman et al. 2012; Ramírez et al. 2014). Therefore, a number of studies attempt to develop 

regression models relating the yield of various crops to vegetation indices during the growing season 

(Zarco-Tejada et al. 2005; Fortin et al. 2011; Rembold et al. 2013). However, these regressions are only 

applicable to the spatial and temporal extent of the study area due to the complexity of the relations 

between crop conditions and yield and variability of growth conditions (Rudorff and Batista 1990), and 

can therefore not be used in a general manner (Baret et al. 1989). This problem is exacerbated when the 

harvestable yield of the crop in question is below ground (Hayes and Decker 1996), such as potato. 
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Regression models developed for predicting agricultural yield often focus on using vegetation indices of 

individual images, the maximum value during the growing season, cumulative values, or integrated values 

(Rembold et al. 2013). For example, Bala and Islam (2009) related potato yield in India to NDVI, LAI 

and the fraction of Photosynthetically Active Radiation (fPAR) data obtained from MODIS imagery. 

They calculated the coefficient of determination (R2) between the three parameters for 19 MODIS images 

to the yield, and developed a regression model in which the potato yield was based on the mean NDVI 

during the growing season. Rahman et al. (2012) compared inter-annual potato yield variation to weekly 

Vegetation Condition Indices (VCI) obtained from AVHRR imagery. Neale and Sivarajan (2011) 

compared potato yield to the SAVI at three stages in the growing season, and the integrated SAVI during 

the entire growing season. Each of these studies obtained linear regression models based on vegetation 

indices which explained a large part of the yield variability.  

 



9 
 

 Data and Methodology  

4.1 Study area 
A potato field along the border between the Netherlands and Belgium, near the Dutch village of Reusel 

was selected for the current study (Figure 3). The field is located at 51°10’N, 5°19’W and has an area of 

approximately 11 ha. The surrounding area is characterized by a temperate climate. The nearest 

meteorological station is in Eindhoven, at a distance of 24 km from the potato field.  

The mean monthly temperature and rainfall over the period 1951-2013 (KNMI 2014) is presented in the 

boxplots in Figure 2. The mean average temperature ranges from 2.6 °C in January to 17.6 °C in July. The 

lowest mean precipitation is in March (47.6 mm), and the highest is in July (75.4 mm). The higher 

temperatures during the summer months often cause a rainfall deficit in this period (Buishand and Velds 

2010), which has important consequences for agriculture.  

Figure 2 also illustrates that 2013 had a particularly cold spring, but high summer temperatures. In 2013, 

the potato growing season of this particular field was from April 22nd to October 6th. The rainfall during 

the growing season was particularly low, except for April and August which were much higher 

precipitation than average. The land use in the area is mainly intended for agricultural production and 

interspaced with forests (CBS 2011). 

 

(a) 
 

(b) 

Figure 2: Average monthly temperature (a) and monthly rainfall (b) recorded between 1951 and 2013 at the Eindhoven meteorological 
station. The horizontal red line of the boxplot represents the median value, surrounded by a blue box presenting the 25th and 75th 
percentiles. The ends of the whiskers are the minimum and maximum values not considered outliers, which are marked with a red cross (+). 
The dark blue line with the diamond markers indicate the average monthly temperature and total monthly rainfall for 2013. 
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Figure 3: Location of the study area and setup of the nitrogen application rates and experimental plots on the potato field.  

This study site was selected for the current research due to a large amount of field data, as well as the 

application of variable nitrogen fertilization rates at the beginning of the season. This field was subject of 

a research project executed by the Wageningen University (WU) Laboratory of Geo-information Science 

and Remote Sensing (GRS) under the Smart Inspectors project (www.smartinspectors.net). At the 

beginning of the 2013 growing season, four distinct nitrogen fertilization rates (0, 90, 162 and 252 kg 

N/ha) were applied to the field. Twelve 30 m x 30 m experimental plots (six per fertilization regime) were 

defined within the field (Figure 3).  

Between June 6th and August 23rd 2013, weekly measurements of chlorophyll, LAI and the spectral profile 

of the potato crop using the 16 band Cropscan multispectral radiometer were taken of the third and tenth 

rows on both sides of the driving path. Furthermore, a hyperspectral UAV system developed by GRS-WU 

was flown above the field at four dates (Kooistra et al. 2013). In the current study, each experimental plot 

was divided in half to analyze the parts to the left and right of the driving plot separately. This created a 
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larger number of plots with a smaller spatial scale to improve the statistical analysis between the satellite 

imagery and field data. It also removed the tractor driving path from the experimental plots, as the lack of 

vegetation on the driving path would affect the plot surface reflectance obtained from imagery. Therefore, 

the current study makes use of 24 13 m x 30 m experimental plots.  

4.2 Data 

4.2.1 Formosat-2 imagery 
There were 42 Formosat-2 images available between March 1st and September 25th, 2013. However, only 

eight scenes (Figure 4 and Table 1) were cloud-free over the study area. The images display the temporal 

dynamics of the potato growth. From April 24th to June 8th, the field shows no vegetation as the potato 

crop is growing. By July 2nd, the canopy has almost closed and the field is much greener, the field is green 

in all images from July 8th onwards as the potato crop has matured. Slight differences in the colors of the 

images (i.e. the green between July 18th and July 22nd) are due to atmospheric effects. 

Only the multispectral bands with spatial resolution of 8 m were used for this study, as the additional 

information provided by panchromatic bands does not improve results when quantifying biophysical 

parameters (Rodrigues et al. 2009). The multispectral images were downloaded from the Netherlands 

Space Office’s (NSO) portal DataDoors (http://nso.datadoors.net/dd3/).  

 
April 24th 

 
June 6th 

 
June 8th 

 
July 2nd 

 
July 8th (A) 

 
July 8th (B) 

 
July 18th 

 
July 22nd 

 
August 2nd 

 

Figure 4: A subset of the Formosat-2 images available during the 2013 growing season, displayed as a true color composite. 

Table 1: Dates of the Formosat-2, and UAV imagery utilized in the research. 

Formosat-2 imagery UAV imagery Field data 

24-04-2013 

06-06-2013 

08-06-2013 

 

 

 

 

06-06-2013 

 

14-06-2013 

 

 

 

06-06-2013 

 

14-06-2013 

21-06-2013 

26-06-2013 

http://nso.datadoors.net/dd3/
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Formosat-2 imagery UAV imagery Field data 

02-07-2013 

 

08-07-2013 (x2) 

 

18-07-2013 

22-07-2013 

 

02-08-2013 

 

05-07-2013 

 

 

17-07-2013 

 

05-07-2013 

12-07-2013 

 

17-07-2013 

 

26-07-2013 

31-07-2013 

 

16-08-2013 

23-08-2013 

4.2.2 UAV imagery 
UAV imagery was available for four dates: June 6th, June 14th, July 5th, and July 17th (Figure 5 and Table 

1). The geographical extent of each UAV image in Figure 5 is identical, the differences in image extent 

are due to the UAV flight path, which was slightly different on each date. As with the Formosat-2 

imagery, the UAV image on June 6th displays practically no vegetation. On June 4th, the image already 

obtains a green color due to increased leaf cover, which is full grown in the images of July 5th and 17th. 

The hyperspectral images are obtained with the Specim ImSpector V10 2/3” spectrograph. A GPS inertia 

navigation system (INS, XSens, MTi-G-700) and a Panasonic GXI +14 mm camera obtained the 

geographical location and the latter provided data for a Digital Surface Model (DSM) with which the 

hyperspectral images were orthorectified. Auxiliary instruments included a Digital Signal Processor 

(DSP) frame grabber, PhotoFocus SM2-D1312 computer, and a LiPo battery. The system was mounted 

on an Aerialtronics Altura AT8 octocopter. This platform has a maximum payload of 2 kg and a flight-

time of 5-8 minutes (Kooistra et al. 2013). 

 

 
June 6th 

 
June 4th 

 
July 5th 

 
July 17th 

Figure 5: UAV imagery available over the study area, portrayed as a true color composite. 

4.2.3 Field data 
The field data consisted of chlorophyll, LAI and spectral reflectance data at weekly intervals (Table 1). 

The yield data was measured by the harvesting tractor on October 6th, 2013 using the Yieldmaster PRO 
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(Figure 6). There were a total of 27,081 sample points providing the potato yield (ton/ha), each 

experimental plot containing between 76 and 112 (an average of 94) yield sample points. The yield 

histogram is left-skewed, possibly due to the large amount of low-yield sample points located on the 

tractor driving paths. 

 
(a) 

 

 
 

 

 

 

 

 

 

(b) 

Figure 6: The yield sample points obtained from the harvesting tractor (a), and a histogram displaying the yield measured at the sample 
points (b). 

4.3 Methods 
The methodology of the current research can be divided into four phases (Figure 7). The first phase 

consisted of pre-processing the available data. The Formosat-2 imagery was geometrically and 

atmospherically corrected. Both Formosat-2 and UAV imagery were clipped to the study extent and 

prepared for the data fusion. The yield data was interpolated using Empirical Bayesian Kriging. The 

second phase examines methods to combine the Formosat-2 and UAV imagery. The unmixing-based and 

STARFM data fusion methods to obtain a dataset with the temporal and spectral resolution of the 

Formosat-2 imagery and the spatial resolution of the UAV imagery. The results were validated through 

conventional data fusion indicators (Gao et al. 2006; Zurita-Milla et al. 2011) and a comparison to 

biophysical parameters measured at plot level. STRS were used to combine the spectral and temporal 

attributes of reflectance data – creating a reflectance surface displaying the hyperspectral reflectance 

spectrum on a daily basis. The third phase consisted of the calculation of various vegetation indices. The 

vegetation index which most accurately represented the spatial and temporal variations of the measured 

field data was identified and used for further statistical analyses. Finally, the fourth phase consisted of the 
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statistical analysis to validate the results and analyze crop status and yield variability (Section 4.3.5). This 

phase focused on the evaluation of the fused dataset to represent (i) the crop nitrogen status during the 

growing season and (ii) the yield variability distribution.  

 

Figure 7: Flowchart of the methodology employed in the current research. 

Each step was coupled to a validation process based on the in-situ LAI and chlorophyll measurements. 

The acquired field data was used to identify the most adequate atmospheric correction method (Step 1), 

validate the quality of the data fusion methods (Step 2), identify the vegetation index which best 

represents crop status (Step 3), and to verify crop growth variability during the growing season (Step 4). 

4.3.1 Data pre-processing 

4.3.1.1 Formosat-2 imagery 

The images were provided at a level 1A – raw data which had been corrected radiometrically for sensor 

distortions (Liu 2006). Firstly, the images were geometrically corrected. All images were georeferenced 

using the Ground Control Points (GCPs) and coregistered to the Formosat-2 image on June 6th. Then, the 

images were reprojected to the UTM 31N projection system and resampled to the Formosat-2 spatial 

resolution of 8 m x 8 m using the bilinear interpolation method in ArcGIS 10.2.  
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The images were then converted from satellite Digital Number (DN) values to Top of Atmosphere (TOA) 

radiances by using the physical gain parameters obtained from the metadata (Liu 2006). The images were 

atmospherically corrected using DOS, ATCOR, QUAC, FLAASH, empirical line calibration and 

radiometric normalization (see Appendix 1). The resulting surface reflectance were compared to the UAV 

data, of which the QUAC method followed by an empirical line calibration and radiometrically 

normalized to UAV data obtained the highest correlation and lowest root mean square error (RMSE). 

Further information regarding this process can be found in Appendix 1. 

A unique situation was presented as the study area was located in the overlap between two Formosat-2 

scenes on July 8th. Thus, we have access to two distinct Formosat-2 images separated by four seconds. By 

comparing the processed images of the study area, we can gain insight to the errors induced by the 

Formosat-2 image processing chain. To this end, the RMSE and correlation between both images was 

calculated. We hypothesize that these RMSE and correlations obtained in between the two Formosat-2 

images on July 8th can be generalized to represent the errors of the other Formosat-2 images in the time 

series. 

4.3.1.2 UAV imagery 

The radiometrically, atmospherically and geometrically corrected UAV imagery was provided by WU-

GRS. Pre-processing steps had included the conversion of raw data to reflectance, an empirical line 

correction, and orthorectification using a DSM obtained from the camera onboard the octocopter. Further 

details regarding the processing of UAV imagery can be found in Kooistra et al. (2013). 

For each date, two UAV flights were made, each of which covered half the experimental plots. In the 

current study, both images were mosaicked using ENVI 5.0 for each date. Invalid data at the edges of the 

UAV imagery were masked, and the images from various dates were subsetted to the same extent.  

4.3.1.3 Yield data 

Statistical interpolation models such as kriging derive the spatial influence of proximal samples from the 

characteristics of the dataset (Krivoruchko 2011). Unfortunately, kriging requires the interpolated data to 

have a normal distribution, which the yield sample points are not as the histogram is bounded to positive 

values and is left-skewed (Figure 6b). Therefore, the Empirical Bayesian Kriging (EBK) was used to 

interpolate the yield data. 

The EBK method provides accurate interpolations even when using non-stationary and non-Gaussian data 

(Pilz and Spöck 2008; Krivoruchko and Gribov 2014). Firstly, outliers were identified in the histogram 

and removed from the dataset. The EBK method was then applied using the Geostatistical Wizard 

function of ArcGIS 10.2. The prediction quality was analyzed using the mean prediction error, the RMSE, 

and the root-mean-square standardized error (RMSSE). The RMSSE divides the prediction error by the 

standard deviation and normalizes it (Eq. 1.). Therefore, an RMSSE value greater than one indicates an 

underestimation of data variability, and an RMSSE less than one indicates an overestimation of data 

variability. The yield prediction and model prediction errors were exported to raster format with the same 

spatial resolution and extent as the UAV imagery. 
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𝑅𝑀𝑆𝑆𝐸 =  √
∑ [(𝑦𝑖̂ − 𝑦𝑖)/𝜎]2𝑛

𝑖=1

𝑛
 

Eq. 1.  

Where 𝑦𝑖 is the yield measured at a sample point,  𝑦𝑖̂ is the predicted yield at that point, 𝜎 is the standard 

deviation of the measured yield, and 𝑛 is the number of points. 

4.3.2 Data Fusion 
Optimal input parameters were determined for both fusion algorithms (Appendix 2) and utilized to apply 

data fusion to each Formosat-2 image. Each time, the Formosat-2 image was utilized as the input 

medium-resolution image for data fusion. The input high-resolution was always the most recent preceding 

UAV image. By using only preceding UAV imagery we simulate a practical application in which data 

fusion is applied during the growing season to monitor crop growth. 

As mentioned before, the STARFM method requires a base medium- and high-resolution image pair on 

the same date. In the current study, coincident Formosat-2 imagery was only available for two dates (June 

6th and July 18th). Therefore, only the June 6th and July 17th UAV images can be included in the time 

series through STARFM fusion. However, the unmixing method only requires an input UAV image, no 

corresponding Formosat-2 image is needed. Therefore, all four UAV images were used as input for the 

unmixing-based method.  

4.3.3 STRS 

4.3.3.1 Theoretical basis 

4.3.3.1.1 Spectral interpolation: Bayesian imputation 
Proximal hyperspectral bands often display a high covariance (Mewes et al. 2009). Therefore, given the a 

priori covariance of hyperspectral UAV spectral bands, the mean reflectance and distribution at the 

known Formosat-2 wavelengths, a 101-band reflectance spectrum can be inferred using Bayesian 

imputation. Thus, rather than fitting the four Formosat-2 spectral bands with a smooth spline 

interpolation, for example, the physical reflectance characteristics of vegetation are mimicked to create a 

realistic reflectance spectrum. 

Suppose 𝒙𝒗𝒊
 represents the surface reflectance at the Formosat-2 wavelengths and 𝒙𝒉𝒊

 represents the 

unknown surface reflectance at the 5 nm intervals between 450 and 950 nm (corresponding to the UAV 

imagery) at date i. The distributions are jointly Gaussian, defined as follows: 

 𝑝(𝑥ℎ) =  𝒩(𝑥ℎ|𝝁𝒉, 𝚺𝒉𝒉) Eq. 2.  

 𝑝(𝑥𝑣) =  𝒩(𝑥𝑣|𝝁𝒗, 𝚺𝒗𝒗)  Eq. 3.  

 

Given the a priori mean and distribution of the Formosat-2 spectral reflectance (𝝁𝒗, 𝚺𝒗𝒗 ), and the 

covariance matrix 𝚺 of the UAV spectra, the posterior conditional distribution can be obtained: 

 𝑝(𝑥ℎ𝑖
|𝑥𝑣𝑖

) = 𝒩(𝑥𝑖|𝜇(ℎ|𝑣), Σℎ|𝑣) 

 

Eq. 4.  

 𝝁
(𝑥ℎ𝑖

|𝑥𝑣𝑖
)

= 𝝁𝒉 + 𝚺𝒉𝒗𝚺𝒗𝒗
−𝟏(𝑥𝑣 − 𝝁𝒗) Eq. 5.  



17 
 

 𝚺
(𝑥ℎ𝑖

|𝑥𝑣𝑖
)

= 𝚺𝒉𝒉 − 𝚺𝒉𝒗𝚺𝒗𝒗
−𝟏𝚺𝒗𝒉 Eq. 6.  

 

From the posterior mean and distribution (𝝁
(𝑥ℎ𝑖

|𝑥𝑣𝑖
)
, 𝚺

(𝑥ℎ𝑖
|𝑥𝑣𝑖

)
), the missing spectral value is inferred. 

 𝑥𝑖𝑗 =  𝔼[𝑥𝑗|𝒙𝒗𝒊
, 𝜽] Eq. 7.  

 

Although hyperspectral bands display a high covariance between wavelengths, the nature of this 

covariance will vary depending on the surface properties, i.e. soil vs. vegetation. Therefore, it is important 

to select adequate a priori 𝝁𝒗 and 𝚺𝒗𝒗. The study area of the current application consists of a potato field, 

so the endmembers within the image range from soil to green vegetation in various stages of growth. It is 

assumed that the surface spectra within the boundaries of the STRS are represented within the available 

UAV imagery. 

4.3.3.1.2 Temporal Interpolation: Bayesian inference 
Previous studies regarding STRS apply standard 2D interpolation techniques to combine the spectral 

information of various sensors (Mello et al. 2013; Villa et al. 2013). However, in practice imagery 

obtained from differing sensors often present slightly different spectral reflectance values due to differing 

wavelengths, bandwidths, radiometric precision, solar geometry and processing chains (Song and 

Woodcock 2003), etc. Such inconsistencies may degrade the quality of the interpolated surface. An 

alternative methodology is presented here, which interpolates the temporal dynamics of surface 

reflectance through a Bayesian inference method.  

This method infers a vector of true spectral reflectance x from a number of noisy observations y. The 

mathematical formulation is set up as a linear Gaussian system, defining the error as having a normal 

distribution: 

 𝑦 = 𝑨𝑥 + 𝜖 Eq. 8.  

 𝜖~ 𝒩(0, Σ𝑦), Σy = 𝜎2𝐼 Eq. 9.  

 

In these equations, x represents the vector of true reflectance values, y is the vector of UAV and 

Formosat-2 observations of this vector. 𝑨 is a logical NxD matrix of the N number of observations, or 

available images, and D is the length of the date vector which will be interpolated. This matrix A is used 

to select the dates for which images are available. The noise is assumed to have normal Gaussian 

distribution (Eq. 9.) with a mean 0 and distribution equal to the observation noise 𝜎2 multiplied by an 

identity matrix 𝐼. 

The prior, x, is also defined as a Gaussian distribution (Eq. 10). The temporal profile is assumed to be 

smooth, meaning that the value of x at date j is the average of its neighbors (Eq. 11) altered by Gaussian 

noise (Eq. 12).  

 𝑝(𝑦|𝑥) = 𝒩(𝜇𝑦|𝑥 , Σ𝑥) Eq. 10.  

 𝜇𝑦|𝑥 =  −𝑳1
𝑇𝑳2𝒙 Eq. 11.  
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 Σx = (𝜆2𝑳𝑇𝑳)−1 Eq. 12.  

 
𝑳 =

1

2
(

−1 2 −1
…

−1 2 −1

) 
Eq. 13.  

 

Where 𝑳 is a tri-diagonal matrix (Eq. 13) which selects the central observation as well as the previous and 

following observations. By multiplying this matrix by the prior precision 𝜆 , the user can define the 

strength of the prior distribution. If the user defines a prior precision 𝜆  relatively high compared to the 

uncertainty of the surface reflectance data (𝜆 ≥ 𝜎2), the resulting temporal profile will be relatively 

smooth. However, if the user defines a prior precision which is lower (𝜆 < 𝜎2 ), the weight of the 

observations will be relatively higher and the temporal profile will adjust more to the imagery reflectance. 

More information regarding the formulations of Bayesian imputation and inference can be found in 

Murphy (2012). 

In the current application, the uncertainty 𝜎2  was obtained from the standard deviation of spectral 

measurements on the experimental plot. The uncertainty of the Formosat-2 spectra contained an 

additional error: the variance of the posterior distribution in the imputation step (Eq. 14). 

 𝜎𝐹2𝑡𝑜𝑡 =  √𝜎𝐹2 + 𝚺
(𝑥ℎ𝑖

|𝑥𝑣𝑖
)
 Eq. 14.  

 

4.3.3.2 Application 

To obtain realistic spectra in the STRS, the Formosat-2 spectral reflectance were first interpolated in the 

spectral domain before applying the temporal interpolation. Firstly, a priori information regarding the 

spectra of endmembers within the scene was obtained by creating a spectral library listing all the UAV 

spectral reflectance in the four available images. This spectral library was convolved using the Formosat-

2 normalized spectral response curve to obtain four spectral ‘bands’ comparable to the Formosat-2 

reflectance.  

 

 
(a) 

 
(b) 
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Figure 8: Illustrative figures indicating the spectral imputation method. (a) The Formosat-2 reflectance (red dot), closest samples from the 
UAV spectral library (black), and UAV reflectance convolved using the Formosat-2 spectral response function (green). (b) The Formosat-2 
spectra imputed to 101 bands on various dates. Note how the characteristic vegetation spectrum is preserved. 

For each experimental plot for each Formosat-2 image, 100 similar UAV spectra were selected from the 

convolved spectral library Figure 8. The average, standard deviation and covariance was calculated for 

each of the hyperspectral UAV bands of these 100 samples, and used as the a priori input for Bayesian 

imputation. Selecting the a priori information separately for each experimental plot allows the imputed 

spectra to represent spatial and temporal variation – i.e. it differentiates between plots with low vegetation 

growth and a close canopy, allowing for a more accurate interpolation. It is important to note that this 

methodology assumes that the spectral signatures within the spectral library are representative all the 

spectra in the STRS. In the current situation, there is a large number of sample spectra (n=73,132), and 

the library adequately represents the variation in crop growth which is expected to be present within the 

experimental plot STRS.  

The temporal interpolation of the UAV and imputed Formosat-2 spectra was done on a band-by-band 

basis. For each wavelength, the UAV and imputed Formosat-2 observations were selected, along with 

their corresponding uncertainties. The observations of the neighboring spectral bands were also utilized as 

input, but with a doubled uncertainty. In this way, although the temporal interpolation was applied 

separately for each band (Figure 9), the observations of neighboring bands were also included in the 

interpolation. 

  

Figure 9: Example of a temporal profile inferred from uncertain UAV and Formosat-2 measurements. 

Three STRS were created to illustrate the added value of the described methodology. The first dataset 

utilized the four Formosat-2 and 101 UAV spectral bands directly as input values, and calculated the 

STRS using the cubic-spline interpolation method. The second and third methods utilized the imputed 

Formosat-2 spectra (described above) and the UAV spectra as input. The second method utilized a 
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standard cubic spline interpolation method, whereas the third utilized the Bayesian approach method 

consisting of spectral imputation followed by temporal inference as described previously. 

4.3.4 Vegetation indices 
The third phase consisted of the calculation of various vegetation indices to prepare for the statistical 

comparison of the images to the field and yield data. The current study applies a number of multispectral 

and hyperspectral vegetation indices (Appendix 3). The vegetation index with the highest correlation to 

LAI and chlorophyll data measured at the field level was selected for the subsequent analysis steps. A 

number of multi- and hyperspectral vegetation indices were also calculated from the Bayesian-theory 

based STRS.  

To compare the fused and STRS datasets to the reference field data, the WDVI was also calculated from 

the Cropscan multispectral radiometer field measurements, henceforth known as field WDVI. It should 

also be noted that the correlations were calculated on four dates for the fused imagery dataset, and nine 

dates for the STRS – due to the availability of coinciding field data. 

4.3.5 Statistical analyses 
The statistical analysis of the current study addresses the following four questions: (1) Can the results of 

data fusion and STRS be validated by field data? (2) Can vegetation indices be used to identify effects of 

different nitrogen fertilization rates on crop growth during the growing season? And (3) can yield 

variability be explained by crop growth parameters obtained from the image sets?  

The first question requires validating the results of data fusion and STRS using the field data. The WDVI 

(Appendix 3) was selected because previous studies with this UAV imagery indicated a good correlation 

to the field LAI data (Kooistra et al. 2013). The WDVI was calculated for the fused datasets on the 

reference dates: June 6th, July 5th, July 18th, and August 2nd. It was assumed that biophysical parameters 

did not change significantly within a three day interval (e.g. between the Formosat-2 imagery of July 5th 

and the field data of July 2nd and August 2nd vs. July 31st). These values were then compared to the 

corresponding vegetation indices, chlorophyll, and LAI measured at the field level using the RMSE and 

Spearman’s correlation coefficient.  Similarly, the validation of the STRS calculated Spearman’s 

correlation coefficient between the WDVI and MCARI (Appendix 3) vegetation indices obtained from 

the STRS on all nine dates for which field data was available. 

Regarding the second question, the vegetation index displaying the highest correlation to the biophysical 

parameters measured at field level were used to create a temporal profile for each experimental plot. The 

ability of the fused images to identify crop status variability due to differing initial nitrogen fertilization 

rates was analyzed using a statistical variance test. A Kruskal-Wallis statistical test (Sheskin 2003) was 

applied in Matlab R2012b to determine whether the vegetation index variance is significantly different 

between the nitrogen application rate regimes. This provides insight to whether the nitrogen application 

rates cause significant differences in crop growth, and at which dates such differences were visible. 

The third question attempted to relate the yield variability to biophysical parameters during the growing 

season. Again, a grouped Kruskal-Wallis test was applied to determine if the four different fertilization 

regimes caused differences in yield, and which regime obtained the highest mean yield. Then, a stepwise 

multivariate regression analysis (Fidell and Tabachnik 2012) was applied in IBM SPSS Statistics 22 to 
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determine the relation between the yield and a number of independent parameters at experimental plot 

level. The entry threshold for a variable was p=0.05, and the exit threshold of the stepwise regression was 

p=0.10.  

Ten regression models were developed, based on differing input parameters. The first two models were 

based on the measured field data. It was hypothesized that the first model, based on the LAI and 

chlorophyll measurements, would explain the largest amount of yield variability, as these parameters are 

direct indicators of crop status. The second model used parameters based on the GNDVI measured at field 

level. It was hypothesized that this gives an indication of the largest amount of yield variability which can 

be explained based on vegetation indices rather than biophysical parameters. The other eight models were 

based on the following parameters obtained from either the unmixing-based, Formosat-2, or UAV images 

or the STRS: 

1. The GNDVI of each available image,  

2. The integrated GNDVI up to the date in question to represent crop status variability (Comar et al. 

2012). This was obtained using the trapezoidal integration method in Matlab R2012b on the 

temporal GNDVI profiles (date along the x-axis and GNDVI along the y-axis, see Figure 10 a). 

3. The sum of the Euclidean distance between the GNDVI of the experimental plot with the highest 

yield and the experimental plot in question for each available image. This represents the 

difference between the GNDVI profile of a plot and the GNDVI profile of the plot with the 

highest yield (Figure 10 b). 

 

               (a)           (b) 

Figure 10: The integrated GNDVI (a) is calculated by changing the temporal profile into a series of trapezoids under the temporal GNDVI 
profile, and summing the area of each trapezoid up to the date in question. The Euclidean distance, marked in red, (b) is calculated by 
summing the difference between the GNDVI profile of the plot in question and the GNDVI of the plot with the highest yield (“reference plot” 
in the example) at each available image date. 

Models 3-6 used all four types of input parameters to predict yield variability (one for each dataset: 

unmixing-based imagery, Formosat-2 imagery, UAV imagery, or STRS). It was hypothesized that the 

Euclidean distance parameter has the highest relation to yield, because the more the temporal GNDVI 

profile of a plot deviates from that of the plot with the highest yield, the more likely it is to have a lower 

yield. However, this parameter is only available at the end of the season. Therefore, a second group of 

models (Models 7-10) used only the GNDVI per image and integrated GNDVI as input parameters, 

simulating an application in which yield variability can be predicted during the growing season. 
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 Results 

5.1 Data pre-processing 

5.1.1 Formosat-2 imagery 
A combination of the QUAC and empirical line atmospheric correction methods obtained the most 

accurate Formosat-2 surface reflectance when compared with UAV data (see details in Appendix 1). 

Figure 11 presents the reflectance spectra of one pixel for all Formosat-2 images using the QUAC method 

(a), and after the empirical line calibration (b). The empirical line calibration clearly normalizes the 

spectra of images at different dates, facilitating temporal analyses. 

 

(a) (b)  

Figure 11: Comparison between the reflectance values of the same pixel for all Formosat-2 images corrected by the QUAC method (a), and 
after empirical line calibration (b). 

The surface reflectance of two images on July 8th over the study area were also compared. The strong 

correlation between the spectral reflectance of all bands is significant (r=0.9991 at α<0.001; RMSE = 

0.0047) suggest the errors induced by the processing chain are minimal.  

5.1.2 Yield interpolation 
The results of the EBK interpolation of yield data points obtained a mean error of -0.03 ton/ha, an RMSE 

of 8.05 ton/ha and a RMSSE of 0.87. The low mean error indicates a low bias and high accuracy in yield 

predictions. The satisfactory RMSE indicates a good precision of the model. The RMSSE is slightly less 

than one, indicating a slight overestimation of the yield variance (Krivoruchko 2011).  

Figure 12 displays the interpolated yield map and prediction errors. The tractor driving paths are clearly 

visible in the interpolated yield map, as well as the influence of the no initial fertilization zone. The 

prediction error map displays more similarity between measuring points in the North-South direction than 

in the East-West direction. This is due to the systematic linear sampling pattern of yield data along the 

tractor driving paths.  
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(a) (b) 

Figure 12: The interpolated yield map (a) and prediction errors (b) in ton/ha. 

5.2 Data fusion 
Using the parameters defined in Appendix 2, both fusion methods were applied to create fused images for 

each date with available Formosat-2 imagery. For example, Figure 13 displays a time series of the 

GNDVI calculated from the results of the unmixing method and Figure 14 displays the GNDVI from the 

results of the STARFM method. 

Figure 13 indicates that differences in crop status due to differing fertilization rates can be identified 

starting from July 2nd. The STARFM method (Figure 14) only displayed clear differences between the 

differing nitrogen fertilization rate zones after July 18th. This difference is likely due to the algorithm 

requirements, which allows the unmixing method to utilize input UAV images with no corresponding 

Formosat-2 imagery. Therefore, the fused dataset of July 2nd is based on the UAV image on June 14th in 

the unmixing-method, but on the UAV image of June 6th in the STARFM method. 
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Figure 13: The GNDVI calculated from images fused by the unmixing-based method. 

    

    

 
Figure 14: The GNDVI calculated from images fused by the STARFM method. 

The Spearman’s correlation coefficients (rs) between the WDVI calculated from the fused images and the 

measured LAI and chlorophyll concentration (Chl) on June 6th, July 5th, July 18th, and August 2nd are 

given in Table 2. All correlations are significant (at α<0.001).The table indicates that the STARFM 
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WDVI has the lowest correlation to all field data. The correlation coefficient of the unmixing-based 

WDVI (rs=0.802) to the field data is comparable to the correlations obtained from the original UAV 

(rs=0.847) and Formosat-2 (rs=0.808) data. The RMSE of the unmixing-based method is equal to that of 

the Formosat-2 WDVI (0.310) whereas the STARFM method the same RMSE as UAV WDVI (0.214). 

This is logical as the unmixing-based method obtains spectral reflectance from the Formosat-2 imagery, 

whereas the STARFM method obtains spectral reflectance from the UAV imagery.  

Table 2: Correlation coefficients (rs), RMSE and probability of the Wilcoxon rank sum test between field data and WDVI calculated from the 
UAV imagery, Formosat-2 imagery (F2), results of unmixing-based fusion (UM) and STARFM-based fusion (SM). All correlations are at 
significant at α<0.01. 

Method Field data WDVI 

 

 

UM SM UAV F2 

 Field WDVI 0.802 0.463 0.847 0.808 

Spearman’s r LAI 0.866 0.477 0.872 0.861 

 Chl (g/m2) 0.884 0.431 0.882 0.869 

RMSE Field WDVI 0.310 0.214 0.214 0.310 

 

 

                     (a)     (b) 

Figure 15: Scatterplot between WDVI measured at field level and WDVI calculated from the STARFM (a) and unmixing-based fusion (b). The 
red circles indicate negative WDVI values. 

A scatterplot of the field WDVI against the WDVI obtained from the fused images is given in Figure 15. 

The WDVI obtained from the fused imagery displays slightly negative values (marked by red circles), this 

is possible due to the soil background in the imagery. The field WDVI does not contain negative values as 

the hand multispectral radiometer was pointed directly at vegetation when obtaining measurements, 

significantly reducing soil background effects. Although the STARFM method is often closer to the 1:1 

line, it is highly sensitive to variations between input images on different dates. For example, for the same 

range of field WDVI values from 0.4 - 0.6, there is one group of STARFM WDVI concentrated between 

0.1 and 0.2, and another group between 0.3 and 0.6 (Figure 15). This illustrates the instability of the 

STARFM errors, and explains the low correlation between the STARFM WDVI and field parameters in 

Table 2. 



26 
 

From each dataset, temporal profiles can be constructed to analyze the crop status during the growing 

season. Figure 16 presents the normalized temporal GNDVI profiles of two of the experimental plots 

receiving maximal initial fertilization (a) and no initial fertilization (b). These two plots are representative 

for the temporal profiles of all the other plots, which are not displayed here.  

Figure 16 illustrates that the UAV GDNVI closely follows the field observations, but no UAV imagery is 

available after July 17th (day 87 of the growing season). Unmixing-based data fusion contains the spectral 

information of the Formosat-2 imagery, which is why the Unmixing-based and Formosat-2 temporal 

profiles are so similar. The STARFM method clearly shows the influence of the input base image pair, 

and does not provide consistent results compared to the field data. However, the temporal variation of the 

Formosat-2 and unmixing-based imagery follows the temporal pattern of the field data, although the 

absolute GNDVI is systematically lower. Furthermore, the GNDVI profile of the fused imagery extends 

to after the last collection of the UAV imagery, displaying the temporal resolution advantages of data 

fusion in the current application. 

 
(a) (b) 

 
Figure 16: Temporal WDVI profiles of experimental plot AL under the maximal fertilization regime (a), and field BL with no initial fertilization 
(b).  

5.3 STRS 
The STRS of an experimental plot using each of the three methods are presented in Figure 17 and Figure 

18. The other 23 experimental plots with similar results will not be presented here. All figures display low 

reflectance values at the beginning of the season, as there is little vegetation and a large influence of the 

soil background. The reflectance increase and reach a maximum at the beginning of July, where the high 

reflectance in the green and NIR regions are characteristic for green vegetation. At the end of the season, 

the green and NIR reflectance decrease again due to leaf senescence. 

By imputing the Formosat-2 spectra first as in Figure 17 (b), the resulting spectra at each date of the 

STRS retain the traditional spectral characteristics of vegetation. However, if these spectra are 

interpolated directly without taking into account the uncertainty of the individual sensors, the cubic spline 

interpolation causes spectra to change rapidly in short time periods. For example, the mean Formosat-2 
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reflectance on July 8th and July 18th are slightly lower than the UAV reflectance on July 5th and July 17th. 

This causes the two peaks in green reflectance (≈560 nm) at these dates. 

 

 

                     (a)     (b) 

Figure 17: STRS of experimental plot AL created by cubic spline interpolation of UAV and original Formosat-2 (a) vs. imputed Formosat-2 (b) 
spectra. Note the flattening of the red-edge marked by a red circle (a), causing unrealistic vegetation spectra at the end of July. Also note 
two ‘peaks’ in the green spectrum marked by a red circle in (b). 

 

Figure 18: STRS of experimental plot 1 using the new Bayesian approach. 

The STRS presented in Figure 18 contains realistic spectra with smooth temporal changes – which could 

be expected from growing vegetation. Moreover, the vegetation indices obtained from this STRS method 

obtains better correlations to field data than the other two methods (Table 3). 

The reflectance spectra of the STRS were validated by calculating vegetation indices (i.e. WDVI and 

MCARI, see Appendix 3), and comparing these to the indices obtained from the Cropscan measurements 

in field. The correlation between the WDVI obtained through the STRS and the field data is similar for all 

three methods. However, the MCARI obtained through the Bayesian approach method has a much higher 

correlation to field data than the other two methods.  
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Table 3: Correlation coefficient between vegetation indices obtained from STRS and the same vegetation index obtained in the field as well 
as the field LAI and canopy chlorophyll measurements. 

W
D

V
I 

 Direct spline Impute + spline Bayesian approach 

Field OSAVI 0.987 0.956 0.980 

LAI 0.857 0.863 0.857 

Canopy Chl 0.821 0.788 0.788 

 
M

C
A

R
I 

 Direct spline Impute + spline Bayesian approach 

Field MCARI 0.384 0.584 0.934 

LAI 0.333 0.646 0.856 

Canopy Chl 0.094 0.623 0.781 

 

5.4 Vegetation indices 
The vegetation indices with the highest correlations to field LAI and canopy chlorophyll measurements 

were selected for both the fused imagery and the STRS. Section 5.2 indicated that the unmixing-based 

method provided fused images with more stable prediction errors, whereas the STARFM method had 

highly variable prediction errors, as indicated in previous studies (Gevaert and García-Haro 2014). 

Therefore, the unmixing-based method was used for further analyses regarding optimal vegetation 

indices, temporal analysis and yield applications.  

 

                     (a)     (b) 

Figure 19: The correlation of vegetation indices calculated from the unmixing-based imagery to the LAI (a) and canopy chlorophyll (b) 
measured at field level. 

Figure 19 gives the correlation between various vegetation indices (calculated from the unmixing-based 

images) and the LAI (Figure 19 a) and canopy chlorophyll (Figure 19 b) measured at field level for the 

same four dates used above (see Section 5.2). The index of GNDVI displayed the highest correlation to 

both LAI (rs=0.899) and canopy chlorophyll (rs=0.819). The other vegetation indices displayed 

correlations above 0.859 to the LAI and above 0.726 to the canopy chlorophyll. It was concluded that the 

GNDVI obtained from the unmixing-based imagery was most representative of the field data in the 

current study, and was therefore used in the further analyses. 
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Correlation coefficients between vegetation indices obtained from the Bayesian STRS and field data is 

given in Figure 20. The WDVI (rs=0.857; rs=0.778) and WDVIgreen (rs=0.857; rs=0.788) obtained the 

highest correlations to LAI and chlorophyll respectively, followed by the hyperspectral MCARI index 

(rs=0.856; rs=0.781). As was observed from the correlation results of the fused imagery, many vegetation 

indices obtained similar performances. The WDVI was selected as the vegetation index most 

representative of the plant biophysical parameters, and utilized in further analyses. 

 

                     (a)     (b) 

Figure 20: The correlation of vegetation indices calculated from the STRS to the LAI (a) and canopy chlorophyll (b) measured at field level. 
The first seven indices (OSAVI [750,705] - TCARI) require narrow hyperspectral bands not present in the Formosat-2 imagery, and the last 
five vegetation indices (OSAVI – NDVI) only require broader multispectral bands. 

5.5 Statistical analysis 

5.5.1 Variation detection during the growing season 
The objective of in-season crop status variation detection is twofold. The first is to determine whether 

different plots display significant GNDVI differences during the observed days, and if these differences 

can be related to the four initial nitrogen application rate regimes. The second objective is to identify 

where in the growing season the largest differences are visible. This step was applied to the unmixing-

based data fusion time series and the STRS separately. 

Figure 21 displays the mean GNDVI per fertilization regime for each fused image. In general, the GNDVI 

displays different stages of crop growth for each regime. The GNDVI increases from April 24th until June 

2nd, when it reaches a plateau, representing the mature crop growth stage. Towards the end of the growing 

season (i.e. August 2nd), the GNDVI decreases due to leaf senescence. After July 8th, the GNDVI of plots 

from different fertilization groups displayed significant differences (α<0.05), indicating that the initial 

fertilization regime caused significant differences in crop growth at these dates. Plots with the highest 

initial fertilization rates had the highest GNDVI values, whereas those receiving no initial fertilization had 

lower GNDVI values. 
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Figure 21: Temporal GNDVI profiles of the fused images grouped by fertilization regime. Asterisks indicate significantly different means from 
the other fertilization regimes (α<0.05; n=1140) on the same day according to the Kruskal-Wallis test. The error bar of each column 
represents the standard deviation of the GNDVI within each experimental plot per fertilization regime. 

 

Figure 22: Temporal profiles displaying the average WDVI per fertilization regime. The black outline marks dates where the Kruskal-Wallis 
test indicates that there are significant differences in the WDVI distributions. The dashed lines represent the standard deviations. 

The WDVI profiles obtained from the STRS illustrate similar vegetation patterns as the fused imagery 

(Figure 22), reaching a maximum at the beginning of July. The regime with no initial fertilization has a 

WDVI significantly lower than the other plots after June 16th, the 90 kg N/ha regime became significantly 

different after June 29th, and the fertilization rate regime of 162 kg N/ha only deviated from the 252 kg 

N/ha on July 3rd. The Kruskal-Wallis test failed to reject the H0 (α=0.01) after July 21st, indicating that the 

initial nitrogen fertilization regime no longer caused significantly different WDVI distributions after this 

time. 
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5.5.2 Yield prediction 
A Kruskal-Wallis test indicated that the yield distributions of plots grouped by the four different 

fertilization regimes were significantly different from all other groups (n=2311 per group, α<0.01). The 

results show that within the experimental plots, the 162 kg N/ha nitrogen application rate regime obtained 

the highest mean potato yield (Figure 23), with 77.41±8.56 ton/ha. This was closely followed by the 252 

kg N/ha regime (73.48±7.55 ton/ha), and the regime with no initial fertilization received the lowest yield 

(64.60±9.22 ton/ha). Note that the yield of the experimental plots has excluded the tractor driving paths 

(i.e. no yield) from the yield averages. 

 

Figure 23: A boxplot depicting potato yield statistics grouped by fertilization regime. The horizontal red line represents the median, 
surrounded by a blue box presenting the 25th and 75th percentiles. The ends of the whiskers are the minimum and maximum values not 
considered outliers, which are marked with a red +. 

Next, an attempt was made to determine how much of the yield variability can be described by GNDVI 

fluctuations obtained from the fused imagery during the growing season. Firstly, the correlation between 

the field data and the yield variability were defined (Table 4). The results indicate that the GNDVI is 

significantly correlated to the LAI (correlation coefficients of 0.550 to 0.633) between June 26th and July 

18th. The canopy chlorophyll content (Chl) obtains the strongest correlations, above 0.72, at the end of the 

growing season (August 16th and 23rd). The GNDVI at field level obtains significant correlation 

coefficients between 0.431 and 0.462 between June 26th and July 18th and up to 0.634 on August 23rd. 

Table 4: Correlation between parameters measured at field level and yield variability. All correlations significant at α<0.05 are marked with * 
and significance at α<0.01 are marked with ** (n=24). 

Field data: GNDVI LAI Chl 

6-Jun 0.247 0.034  -0.422* 

14-Jun 0.198 -0.01 0.394 

21-Jun 0.186 0.254 0.081 

26-Jun 0.477* 0.633** 0.211 

5-Jul 0.431* 0.550** 0.077 
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Field data: GNDVI LAI Chl 

12-Jul 0.436* 0.580** -0.203 

18-Jul 0.462* 0.612** -0.173 

26-Jul 0.335 0.182 -0.098 

31-Jul 0.430* 0.194 0.097 

16-Aug 0.575** 0.058 0.798** 

23-Aug 0.634** 0.399 0.721** 

 

Figure 24: Temporal variation of the correlation between vegetation indices at certain dates and the yield. 

The correlation coefficients between the WDVI obtained from the STRS surface and the yield are 

presented in Figure 24. The STRS obtains a higher correlation to yield than the Formosat-2 imagery, 

fused imagery, and canopy chlorophyll measurements throughout the growing season. Only the LAI on 

June 26th obtains a markedly higher correlation to the yield than the STRS data. 

Next, a stepwise multivariate regression was applied to the three images series (fused images, Formosat-2 

imagery and UAV imagery) and STRS separately. Table 5 displays the correlation between each of the 

imagery input parameters and yield. The table presents a number of interesting patterns: 

1) The single image GNDVI of July 18th (or 17th for the UAV) had a significant correlation to yield 

for all three image series. Other days showing significant correlations to yield are July 8th (fused 

image series), August 2nd (Formosat-2 image series), June 14th and July 2nd (UAV image series). 

2) The GNDVI obtained from a single image obtains stronger correlations to yield variability than 

the integrated GNDVI. This pattern is repeated for all three image series. 

3) The correlation values between GNDVI and yield obtained from fused imagery and original 

Formosat-2 imagery are comparable.  

4) The total Euclidean distance of the GNDVI per plot to the GNDVI of the plot with the highest 

yield had the highest correlation with the yield for each image series. However, this parameter 

can only be determined at the end of the season, as the plot with the highest yield must be known 

in order to calculate this parameter.  
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Table 5: Correlations between each input variable of the multivariate analysis and the yield. All correlations significant at α<0.05 are marked 
with * and significance at α<0.01 are marked with ** (n=24). 

Factor UM Formosat-2  UAV 

S
in

g
le

 i
m

a
g

e 
G

N
D

V
I 

24-Apr 0.353 0.253   

6-Jun 0.022 0.19 6-Jun 0.108 

8-Jun -0.091 0.257 14-Jun 0.421* 

2-Jul 0.141 0.184 5-Jul 0.549** 

8-Jul 0.534** 0.401   

18-Jul 0.564** 0.526** 17-Jul 0.633** 

22-Jul 0.381 0.399   

2-Aug 0.326 0.567**   

In
te

g
ra

te
d

 G
N

D
V

I 

24-Apr 0.353 0.253   

6-Jun 0.214 0.267 6-Jun 0.108 

8-Jun 0.204 0.269 14-Jun 0.159 

2-Jul 0.231 0.347 5-Jul 0.426* 

8-Jul 0.317 0.364   

18-Jul 0.442* 0.413* 17-Jul 0.569** 

22-Jul 0.458* 0.427*   

2-Aug 0.456* 0.459*   

deuclidean   -0.590** -0.708**  -0.651** 

 

Table 6 displays two regression models for each of the three image series. The Models 3-6 utilizes all 

input parameters listed in Table 5 above for each dataset (unmixing-based, Formosat-2, UAV, and STRS 

respectively). The UAV imagery obtained the lowest correlation in this case. Models 7-10 exclude the 

total Euclidean distance parameter from the analysis.  

A multivariate regression utilizing the field data of LAI and chlorophyll measurements explained 75.3% 

of yield variability. The two input parameters were the LAI in the mid-season (July 18th) and the 

chlorophyll concentration at the end of season (August 16th). A multivariate regression utilizing the 

GNDVI and total Euclidean distance parameter for the field GNDVI explained 76.3% of the yield 

variability.  

Models 3-5 use all the parameters listed in Table 5 for each dataset (unmixing-based, Formosat-2, and 

UAV) as input parameters. Model 4, based on Formosat-2 imagery, explained the highest amount of yield 

variability (62.7%) and the UAV imagery explained the least amount of variability (42.4%). Model 6 used 

the STRS datasets as input, and explained 72.9% of yield variability, which is very close to the amount of 

yield variability explained by field measurements (Models 1 & 2). 

When excluding the total Euclidean distance from the analysis (Models 7-10), only one explanatory 

parameter was selected for each of the three image series. When utilizing a single image to explain the 

yield variability, the UAV GNDVI explains more yield variability (40.1%) than the unmixing-based 
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(31.8%) and Formosat-2 (32.2%) imagery. The STRS explained even more yield variability (47.3%), 

using the formula of Model 10.  

The regression models without the Euclidean distance (Models 7-10) utilized the STRS WDVI on July 

20th as an input parameter (Model 10), similar to the selection of the GNDVI on July 18th by the fused 

imagery (Model 7), July 17th by the UAV imagery (Model 9), and the LAI on July 18th (Model 1) by the 

field data regressions.  

Table 6: Regression models of potato yield based on input image series. For each series, two models are given, the first including all the 
input parameters listed in Table 5, the second excluding the total Euclidean distance parameter (d) from the regression. Pearson’s 
correlation coefficient (r), the coefficient of determination (R2) and the standard error (SE) are given for each model. 

Model 

No. 

Input data Formula r R2 SE 

(ton/ha) 

 Stepwise regression models using reference field data 

1 LAI and Chl 𝑦𝑖𝑒𝑙𝑑 = 2.5 ∗ 𝐿𝐴𝐼𝐽𝑢𝑙−18 + 1.7 ∗ 𝑀𝑆𝑃𝐴𝐷𝐴𝑢𝑔−16 − 9.4 0.868 0.753 3.66 

2 Field 

GNDVI 

𝑦𝑖𝑒𝑙𝑑 =  112.6 ∗ 𝐺𝑁𝐷𝑉𝐼𝐽𝑢𝑙−12 + 198.9 ∗ 𝐺𝑁𝐷𝑉𝐼𝐴𝑢𝑔−23

− 149.43  
0.874 0.763 3.59 

 Stepwise regression models using all input parameters 

3 UM  𝑦𝑖𝑒𝑙𝑑 = 696.0 ∗  𝐺𝑁𝐷𝑉𝐼𝐴𝑝𝑟−24 − 808.7 ∗ 𝑑 − 202.5 0.726 0.527 4.99 

4 Formosat-2  𝑦𝑖𝑒𝑙𝑑 = 363.7 ∗  𝐺𝑁𝐷𝑉𝐼𝐴𝑝𝑟−24 − 102.8 ∗ 𝑑 − 63.3 0.812 0.627 4.23 

5 UAV  𝑦𝑖𝑒𝑙𝑑 =  −78.8 ∗ 𝑑 + 79.1 0.651 0.424 5.38 

6 STRS  𝑦𝑖𝑒𝑙𝑑 =  −5.88 ∗ 𝑊𝐷𝑉𝐼𝐽𝑢𝑙𝑦−09 𝑖𝑛𝑡 − 6.40 ∗ 𝑑 + 148.7 0.854 0.729 3.78 

 Stepwise regression models excluding the Euclidean distance parameters 

7 UM  𝑦𝑖𝑒𝑙𝑑 = 234.4 ∗ 𝐺𝑁𝐷𝑉𝐼𝐽𝑢𝑙−18 − 70.5 0.564 0.318 5.85 

8 Formosat-2  𝑦𝑖𝑒𝑙𝑑 = 279.8 ∗ 𝐺𝑁𝐷𝑉𝐼𝐴𝑢𝑔−2 − 82.9 0.567 0.322 5.84 

9 UAV  𝑦𝑖𝑒𝑙𝑑 = 155.3 ∗ 𝐺𝑁𝐷𝑉𝐼𝐽𝑢𝑙−17 − 38.0 0.633 0.401 5.48 

10 STRS  𝑦𝑖𝑒𝑙𝑑 = 103.0 ∗ 𝑊𝐷𝑉𝐼𝐽𝑢𝑙−20 + 23.0 0.688 0.473 5.14 

 

The results of the Kruskal-Wallis test indicate that plots under an initial fertilization rate of 162 kg N/ha 

obtained significantly higher yields than those under both 90 and 252 kg N/ha. This suggests that the 

relation between the biophysical parameters and yield should be quadratic rather than linear. However, 

when a quadratic stepwise regression (including the squared GNDVI values of each date as input 

independent parameters) was applied in SPSS, the same models presented in Table 6 above were 

produced. That is to say that a quadratic regression did not produce better results than the linear 

regressions. 
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 Discussion 
6.1 Combination of multi-sensor imagery 

The current study made use of two data fusion algorithms: the STARFM method (Gao et al. 2006) and an 

unmixing-based method (Zurita-Milla 2008; Gevaert 2013). Both fusion algorithms were originally 

designed to be applied to Landsat and MODIS imagery. In the current scenario, there were three main 

differences which had to be taken into account, compared with the conventional application of these 

algorithms: (1) radiometric normalization to calibrate surface reflectance from different sensors, (2) the 

assumption of homogenous temporal variations within a spectral cluster, and (3) hyperspectral vs. 

multispectral imagery. 

Regarding the first point, the quality of the radiometric normalization in the current application is limited 

due to: (1) the extent of the UAV imagery which limits the number of homogenous Formosat-2 pixels 

available, (2) inconsistency of Formosat-2 atmospheric correction methods (Appendix 1), and (3) the 

restricted availability of UAV and Formosat-2 imagery on corresponding dates (only on June 6th and July 

17th/18th. In future applications, it would be useful to fly the UAV over large homogenous spectral 

surfaces (preferably one light, one dark and both having temporally stable surface reflectance) when the 

other imagery is being obtained. This would allow for an empirical line correction using these spectra to 

atmospherically correct the satellite imagery and greatly reduce the spectral differences and WDVI 

differences between the Formosat-2 and UAV imagery.  

A second important issue when applying data fusion to the current application is the assumption of both 

data fusion algorithms that pixels which are spectrally similar on a base date will also be spectrally 

similar on the prediction date. This is the main reason for the differing quality of the fused imagery on 

July 8th (Figures 13 and 14): the STARFM algorithm utilized the UAV image on June 6th to define 

spectrally similar pixels whereas the unmixing-based method utilized the UAV image on July 5th. In the 

June 6th image, no differences between nitrogen application regimes was visible, so the STARFM 

algorithm ‘assumes’ that there will also be no differences on July 8th. The unmixing-based algorithm 

obtains better predictions for July 8th by using the UAV image of July 5th to select spectrally similar 

pixels. 

Thirdly, the medium-resolution imagery (MODIS/MERIS) contained more spectral bands than the high-

resolution imagery (Landsat) in previous applications of these data fusion algorithms. This was an 

additional benefit of the unmixing-based algorithm as it served to down-scale the additional spectral 

information. However, in this study, the high spatial-resolution imagery (UAV) contains more spectral 

bands than the medium spatial-resolution Formosat-2 imagery.  

To make full use of the hyperspectral information in the UAV imagery, STRS can be utilized. The STRS 

based on a novel Bayesian method more accurately the actual spectral characteristics and temporal 

variations documented by field data than two more simplistic methods (Figure 18). Correlations between 

WDVI calculated from STRS and field data was similar for all three STRS methods. However the 

MCARI obtained from the Bayesian-based STRS had a higher correlation to field data than the other two 

methods (Table 4). This is likely due to the fact that the WDVI is based on surface reflectance at 670 nm 
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and 800 nm – both of which fall within the Formosat-2 spectral bands. The MCARI, however, also 

utilizes surface reflectance data at 700 nm, which is not present in Formosat-2 imagery (Table 1).  

Although vegetation indices calculated from the STRS showed high correlations to field measurements 

throughout the growing season, it is important to remember that it is always an interpolation. This is 

especially important for larger temporal intervals without observations, such as the lack of satellite data 

between June 8th and July 2nd. Such limitations may be partially alleviated by introducing other satellite 

imagery into the STRS. The only additional parameters needed would be the satellite images themselves 

and the spectral response functions of the sensors.  

6.2 Vegetation indices 
Comar et al. (2012) indicated that vegetation indices are highly correlated. This was also the case in the 

current study. All vegetation indices (with the notable exception of the EVI) achieved a Spearman’s 

correlation with the fused imagery of between 0.859 and 0.899 with LAI and between 0.726 and 0.819 

with canopy chlorophyll (Figure 19); this was rs=0.680-0.858 and rs=0.580-0.788 respectively for the 

STRS surface (Figure 20). As most vegetation indices have similar correlations to reference field data, 

future applications could select a vegetation index based on a priori information (Broge and Leblanc 

2001; Haboudane et al. 2004; Zarco-Tejada et al. 2005; Clevers and Kooistra 2012) rather than 

performing extensive studies to determine the optimal index in that particular application. 

Although the vegetation indices obtained from imagery show a high correlation to the field data, there 

were absolute differences between the indices obtained from different datasets. The UAV GNDVI values 

were slightly lower field GNDVI, but the Formosat-2 GNDVI was substantially lower than UAV and 

field GNDVI. An attempt to explain this difference indicated that the difference in NIR surface 

reflectance of UAV vs. Formosat-2 imagery is larger than the surface reflectance differences in the green 

region. This may be due to differences in the spectral bands or the atmospheric correction method 

employed for the Formosat-2 imagery. Improved radiometric normalization (as discussed above) may 

make spectral reflectance and derivatives thereof (such as vegetation indices) more comparable. 

Furthermore, the vegetation index differences between the image datasets and the field measurements are 

due to how the field measurements were taken. The Cropscan multispectral radiometer was directed at the 

green vegetation of potato crops. Therefore, there was very little soil background to influence these 

spectra and no negative WDVI values (Figure 15). UAV and Formosat-2 imagery are influenced by the 

soil background and can therefore obtain negative WDVI values when the potato plants are still small. 

6.3 Fused datasets for in-season crop status analysis and yield prediction 
One of the objectives of the current study was to analyze the ability of using fused datasets to identify 

yield variation during the growing season. The results indicate that as of June 8th, different initial 

fertilization regimes caused significant differences in the GNDVI, where the higher the initial 

fertilization, the higher the GNDVI (Figure 24). The STRS first detected significantly different WDVI 

distributions between July 3rd and July 21st. These difference may be due to the number of samples used 

for each of the methods: 48 per plot in the fused imagery, and 1 per plot for the STRS. 

In the current application, no Formosat-2 imagery was available between June 8th and July 2nd, or after 

August 2nd. The STRS interpolated the spectra for these dates, but the large lapse between images (24 
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days) makes the predictions more uncertain. This stage in the potato growth cycle could be important for 

precision farming management, as field data indicated that biophysical parameters had significant 

correlations to field variation at the end of June and during the month of August (Table 4). The problem 

of obtaining satellite imagery in cloudy locations has often been mentioned as a hindrance for precision 

farming applications (Zhang and Kovacs 2012), and can be partially overcome by utilizing multiple 

sensory platforms as in the current study. In future scenarios, alternative platforms such as UAVs could 

replace satellite imagery on cloudy days, or imagery from additional satellites could be incorporated into 

the STRS. 

6.4 Yield prediction 
Yield prediction based on remotely sensed biophysical parameters is difficult in the current situation, as 

potato tubers are grown below-ground. Therefore, the first two regression models were based on field 

data, to give an indication of the maximum yield model quality in the current application, which was 

R2=0.763. The results of the regression analyses indicated that the GNDVI of Formosat-2 imagery 

(R2=0.322) had a slightly higher correlation to the yield than the GNDVI of individual images of the 

fused time series (R2=0.318). This is logical because the additional data manipulation inferred by the 

fusion implies the introduction of more uncertainty to the processing chain. As the correlations to yield 

are measured at experimental plot level, the added value of the enhanced spatial resolution of the fused 

imagery is not exploited.  

Regression models obtained from the UAV imagery, in turn, obtained the highest correlation to yield 

when using only single-date GNDVI input (R2=0.424). However, when adding seasonal input parameters 

to the multivariate regression, such as the total Euclidean distance to the GNDVI of the plot with the 

highest yield, the UAV obtained lower correlations than the other datasets. This is most likely due to the 

limited temporal extent of the UAV series (June 6th – July 17th) compared to the Formosat-2 and fused 

image series (April 24th – August 2nd). The regression model obtained from the STRS (R2=0.729) 

explained almost as much of the yield variation as the LAI and canopy chlorophyll measurements at field 

level (R2=0.753). The better performance of the STRS regression models than the models based on fused, 

UAV and Formosat-2 imagery could be due to the increased temporal resolution of the dataset or the 

differing number of sample points in the regression analysis. 

Although the coefficients of the regression models are restricted to the scope of the current study, the 

parameters included in the stepwise regression are important. For example, the stepwise multivariate 

regression models utilized few input parameters even though the GNDVI had significant correlations to 

yield variability on various dates. This suggests that the GNDVI high a covariance between dates. 

Furthermore, the unmixing-based, UAV, and STRS regression models defined the vegetation indices at 

July 18th, 17th, and 20th respectively as the date with the highest correlation to yield. This could indicate 

that crop status around 80-90 days after planting plays an important role in potato yield; information 

which could be useful for future potato growth studies.  

Furthermore, it is important to note that all regression models presented here were able to predict the yield 

to a RMSE of between 3.59 and 5.85 ton/ha. This is much lower than the RMSE of the yield interpolation 

through EBK was 8.05 ton/ha. Improved yield data collection methods could improve the quality of the 

regression models. 
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 Conclusions 
The aim of the current research was to develop methods to combine imagery from multiple platforms in 

order to meet the data requirements of precision agriculture applications. Two data fusion methods were 

analyzed to provide high spatial-resolution information regarding crop status more often during the 

growing season. The unmixing-based fusion method provided higher correlations to reference LAI and 

chlorophyll levels measured at field level than the STARFM method. This implies that the unmixing-

based fusion method provides more stable predictions of crop status, and is more suited to in-season crop 

monitoring than the STARFM method. 

STRS methods were developed using a novel Bayesian methodology, which provided daily hyperspectral 

crop spectra for a number of experimental plots. The STRS displayed a high correlation to the reference 

LAI and chlorophyll measurements. Yield prediction models based on the STRS achieved almost the 

same accuracy as yield prediction models based on direct LAI and chlorophyll measurements during the 

growing season. Therefore, the STRS method developed here can accurately describe crop status 

variability at high spectral and temporal resolutions. This method may also be useful for many other 

applications which require continuous surface reflectance information. 

The methods proposed in this study showed sufficiency in meeting the stringent data requirements of 

precision agriculture. Integrating various image sources along the spatial-temporal domains (data fusion) 

and spectral-temporal domains (STRS) is an important step towards surpassing physical limitations of 

sensors to meet precision agricultural needs. A combination of data fusion and STRS has the potential to 

provide daily hyperspectral reflectance at a spatial resolution of 1 m. 

With the abundance of availability of satellite and UAV sensors, these methods utilizing the spatial and 

temporal resolutions from multiple sensors can provide more accurate information on crop status.This 

information on crop status variability could then be used to optimize nitrogen fertilization application 

rates, thus reducing the economic costs for the farmers at a local level and impacts on the balance of 

ecosystem at a regional level, and serving as a sustainable agriculture intensification method to safeguard 

food security at a global level. 
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Appendix 1:  Atmospheric correction of 

Formosat-2 imagery 
Methodology 

A number of different atmospheric correction methods were applied to the Formosat-2 imagery, and 

compared to the UAV reflectance to ascertain which is most applicable in the current situation. Firstly, 

Formosat-2 images were subsetted to an area of approximately 76 km2 bounded by the UTM coordinates 

(647300, 5694000) and (654140, 5682800). Although this extent is much larger than the field which is 

analyzed in the current application, it was presumed that a larger study area increased the amount of 

endmembers in the image and the possibility of locating dark vegetation pixels and pseudo-invariant 

features (PIFs). It was hypothesized that this allowed for a more accurate atmospheric correction. After 

the atmospheric correction, the Formosat-2 images were subsetted to the extent of the potato field under 

study. 

The following atmospheric correction methods were selected based on software availability (ERDAS 

Imagine 2013, ENVI 5.0.3 and Matlab R2012b): 

 Dark object Subtraction (DOS) – This method is one of the most elementary atmospheric 

correction methods, though it is widely-used (Song et al. 2001). It assumes the existence of pixels 

within the scene which have negligible reflectance – such as dense dark vegetation or shadows. 

Therefore, the minimal reflectance value per band is due to atmospheric scattering effects. The 

algorithm assumes that the atmospheric effects are constant throughout the scene, and can be 

corrected by subtracting this minimal reflectance from each pixel in the scene (Chavez 1988).  

 ATCOR – is based on the MODTRAN 4 radiative transfer code, integrated into ERDAS Imagine 

software. Apart from the required input atmospheric and ancillary data, it allows for the selection 

of input reference spectra (Manakos et al. 2011). In the current application, a rural mid-latitude 

summer atmosphere was assumed. As the images had no clouds and Formosat-2 imagery contains 

no water vapor bands, these ATCOR functions were not utilized. 

 FLAASH –is also based on MODTRAN 4 (Felde et al. 2003), and is integrated into ENVI 

software (version 5.0). It includes a number of high-level atmospheric correction functions such 

as adjacency correction, water vapor retrieval and spectral polishing (Weng 2011). FLAASH was 

run using the same input parameters as ATCOR. 

 QUAC – assumes there is a linear relationship between the actual spectral reflectance of a 

surface, and the reflectance observed by the satellite. The bias of this relationship is obtained by 

the minimal pixel value per spectral band. The gain is calculated by comparing the average 

spectrum of endmembers within the scene to the average spectrum of reference spectra from a 

library. Benefits of this method include: fast computation, no ancillary information requirements, 

and it can be applied to spectrally uncalibrated data (Bernstein et al. 2012). This method is also 

integrated in ENVI. 

 Empirical line correction – requires two or more known reflectance in the image, preferably one 

bright and one dark. A linear regression is formed between the image spectra and the reference 

spectra, and it is assumed that the gain and offset are applicable to the rest of the image 
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(Karpouzli and Malthus 2003). In the current application, reference spectra were not available. 

Therefore, the reference spectra were determined by the surface reflectance of defined PIFs. The 

PIFs were selected by calculating the standard deviation of surface reflectance values in all the 

Formosat-2 imagery. Pixels with a standard deviation of less than 0.06 (a threshold determined by 

analyzing the histogram of the variance image) in surface reflectance throughout the time series 

were defined as PIFs. These pixels were masked, and an erode filter was applied. This supported 

the selection of homogenous areas, and decreased the influence of geolocation errors and 

adjacency effects. The surface reflectance of the resulting pixels on June 6th were used as input 

for the empirical line correction. 

 Radiometric calibration - normalizes all the images in a time series to a reference image. This is 

done by selecting PIFs in the images, defining a linear regression between the spectral values of 

the reference image and each other image, and applying the gain and bias of the regression to the 

entire image. It is often helpful if the reference image is in absolute surface reflectance 

(Schroeder et al. 2006). In the current application, the empirical line correction (above) was used 

to normalize the surface reflectance of Formosat-2 for all images in the time series. Then, the 

radiometric calibration method was applied to calibrate the Formosat-2 reflectance to the UAV 

reflectance. 

The first four methods were applied to all Formosat-2 imagery. The images of June 6th and July 18th were 

selected as reference images. The mean reflectance of the UAV spectral bands corresponding to the 

Formosat-2 spectral bands were calculated and compared to the Formosat-2 reflectance values obtained 

through the different atmospheric correction methods for the images on June 6th and July 18th. Spearman’s 

correlation coefficient and the RMSE were utilized as quality indicators for determining the most 

adequate correction method.  

The most adequate atmospheric correction method was determined, and a radiometric calibration between 

the Formosat-2 image corrected by the optimal method and the UAV image of June 6th was applied. 

Again, the results of the six atmospheric correction methods were compared using Spearman’s correlation 

coefficient and RMSE. The atmospheric correction method with the highest correlation and lowest RMSE 

to the UAV imagery was selected for further processing. 

Results 
Firstly, the atmospheric correction methods ATCOR, DOS, FLAASH, and QUAC were applied to the 

Formosat-2 imagery and compared to the UAV data on the same day (June 6th). The correlation 

coefficient for the DOS and QUAC methods were the highest, whereas ATCOR and FLAASH obtained 

slightly lower correlation coefficients (Figure 25). The QUAC method also had lowest RMSE for the 

first, second and third spectral bands, although the FLAASH and ATCOR methods provided lower 

RMSE values for the fourth spectral band (Figure 26). It was concluded that although the accuracy of all 

methods was quite similar, the precision of the QUAC method is slightly better in the current study and 

therefore the preferable method of atmospheric correction. Therefore, the QUAC method was utilized as 

input for the empirical line calibration to normalize reflectance throughout the time series and a 

radiometric calibration to the UAV imagery.  
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Figure 25: Spearman’s correlation coefficient (rs) between the Formosat-2 image after the application of various atmospheric correction 
methods and the UAV imagery on the same date. 

 

Figure 26: RMSE between the Formosat-2 image after the application of various atmospheric correction methods and the UAV imagery on 
the same date. 
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Appendix 2:  Data fusion parameter 

optimization 
Methodology 

Before the application of data fusion to an image time series, a number of input parameters related to 

fusion processes were optimized (Gao et al. 2006; Zurita-Milla et al. 2011). In the optimization phase, 

two tests were used to obtain the optimal parameters. The first test used input Formosat-2 and UAV 

imagery to ‘predict’ the fused image of the same day (in this case, both input imagery and prediction date 

was June 6th). This gives an indication to the quality of the fused image in a situation where there is input 

imagery available close to the prediction date, simulating a situation of no temporal change. The second 

test used input Formosat-2 and UAV imagery from a base date (June 6th), and Formosat-2 imagery on a 

prediction date (July 18th) to predict the fused image on July 18th. This second test is important as it 

simulates a realistic situation in which the input imagery is not temporally close to the prediction date. 

This could happen in real-life applications in which, for example, cloudy periods limit the number of 

available satellite data. Using the results of both simulations to define the input parameters allows for the 

selection of robust parameters which function well the application of data fusion to situations of various 

degrees of temporal change. 

For the application of unmixing-based data fusion, two input parameters must be optimized: the size of 

the moving window (𝜔) and the number of clusters (𝑘) (Zurita-Milla et al. 2009). To do this, the 

unmixing code was run using various input values (Table 7).  The moving-widow size parameter ranged 

from the minimum window size (3x3 pixels) to the entire image (29x29 pixels). Similarly, the number of 

clusters is always minimally 2, and ranged to a maximum of 16 clusters after which the clusters were 

observed to be too small to meet the minimum fraction requirement of unmixing-based fusion algorithm. 

Table 7: The range of input parameter values used for the parameter optimization step. 

Image fusion methods Parameters Tested range 

Unmixing indicator Moving-window size (𝜔) 3 – 29 Formosat-2 pixels (steps of 4) 

Number of clusters (𝑘) 2 – 16 (steps of 2) 

STARFM indicator Search distance 5m – 30m (steps of 5) 

15m – 105m (steps of 15) 

Number of spectral slices 24 – 80 (steps of 4) 

10 – 40 (steps of 10) 

 

For the STARFM method, the search distance and number of spectral slices must be optimized (Gao et al. 

2006). The parameters were varied as indicated in Table 7, based on the same criteria as the moving-

window and number of cluster intervals in the unmixing-based method. Furthermore, the STARFM 

method requires the images to have corresponding spectral bands (Gao et al. 2006). Formosat-2 imagery 

has four spectral bands, while the UAV hyperspectral imagery has 110 spectral bands. The STARFM 

method was tested using the UAV bands corresponding to the center of the Formosat-2 bands, and using 

the UAV band which was optimally correlated to each Formosat-2 band (Table 8). For the latter, 
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Spearman’s correlation coefficient was used to identify the optimal correlation. Scatterplots between 

Formosat-2 and optimally correlated UAV bands are given in Figure 27. 

Table 8: The UAV bands selected for STARFM data fusion tests. Source for the Formosat-2 spectral band information: (Liu et al. 2010). 

Spectrum Formosat-2 band UAVcentral UAVoptimal 

 Band 

no 

𝜆𝑟𝑎𝑛𝑔𝑒  

(nm) 

𝜆𝑐𝑒𝑛𝑡𝑒𝑟  

(nm) 

Band 

no 

𝜆𝑐𝑒𝑛𝑡𝑒𝑟  

(nm) 

rs Band 

no 

𝜆𝑐𝑒𝑛𝑡𝑒𝑟  

(nm) 

rs 

Blue 1 455-515 485 8 485 0.863 11 500 0.8702 

Green 2 525-595 560 23 560 0.810 30 595 0.848 

Red 3 630-690 660 43 660 0.845 42 635 0.854 

NIR 4 765-895 830 77 830 0.646 87 880 0.658 

 

  

  
Figure 27: Scatterplots showing the relation between the Formosat-2 spectral bands and corresponding UAV bands with the highest 
correlations. 

The optimal input parameters for each data fusion method were defined by using various quality 

indicators. For the unmixing-based fusion, the spectral (Wald 2002) and spatial (Lillo-Saavedra et al. 
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2005) Erreur Relative Globale Adimensionnelle de Synthèse (ERGAS) were used. For the STARFM 

method, the RMSE, bias and Spearman’s correlation coefficient (r) were used.  

Results 
The unmixing process utilizes an automatic k-means clustering. Clusters will not be identical if the same 

test is run twice. Therefore, the unmixing-based tests in the parameter optimization stage were run twice, 

to give an indication of the variability of the fusion quality. As the ERGAS indicators for smaller 

numbers of clusters are closer together, it suggests that the unmixing-based fusion results using smaller 

numbers of clusters are more stable than those using more clusters. However, using smaller numbers of 

clusters also causes the results of unmixing-based data fusion to become more homogenous and less 

sensitive to variation within the scene. 

The results indicate that for low moving window sizes (w) and high numbers of clusters (k), the fusion 

results have higher ERGAS values, indicating a lower quality. Furthermore, the spectral ERGAS is 

similar for both the same day tests, using the input images from June 6th to predict the same date (Figure 

28) and the July 18th predictions, still using the June 6th input images (Figure 29). However, the spatial 

ERGAS is worse for the second test. This could be due to the significant changes in vegetation between 

June 6th (low crops and no visible differences between fertilization rates) and July 18th, where the 

different fertilization zones are obvious. The optimal input parameters were defined as a window size of 

9x9 Formosat-2 pixels, and 10 clusters.  This supports the guideline that the number of pixels within the 

moving window (𝜔2) be much larger than the number of clusters to be unmixed (García‐Haro et al. 

2005). The 10 clusters obtains a higher quality fusion than larger numbers of clusters, whereas the use of 

fewer clusters compromises the heterogeneity of the unmixed image. 

 
(a) (b) 

Figure 28: The spectral (a) and spatial (b) ERGAS resulting from unmixing-based fusion with varying input parameters - same-day prediction. 
Window size (𝝎) is given along the x axis, while varying numbers of classes (k) is given in different colors. 
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(a) 

 

(b) 

Figure 29: The spectral (a) and spatial (b) ERGAS resulting from unmixing-based fusion with varying input parameters - different-day 
prediction. Window size (𝝎) is given along the x axis, while varying numbers of classes (k) is given in different colors. 

Unlike the unmixing-based data fusion results, the STARFM method does show substantial differences 

between the quality of June 6th and July 18th predictions. This is due to the nature of the STARFM 

method; if there is no change between the spectral reflectance of the medium-resolution image between 

the base and prediction date, the predicted high-resolution pixel will be assigned the same value as the 

high-resolution pixel on the base image date. Therefore, Spearman’s rs is equal to 1.000 and the RMSE is 

equal to 0.000 for all input parameters of first June 6th predictions. 

A second comparison in the STARFM optimization phase addressed the question of which UAV band 

should be used in the data fusion process – the band corresponding to the center of each Formosat-2 band 

or the optimally correlated band. The results (Figures 30 and  31) indicate that the usage of the UAV 

spectral band corresponding to the center of the Formosat-2 band produces a slightly lower RMSE and 

slightly higher correlation coefficient (r) and is therefore preferred.  

The input number of spectral slices has very little influence on the predictions, barely changing the RMSE 

or r. The search distance slightly alters the RMSE (a range of 1.335-1.345 x 10-5) and r (0.71-0.715) 

(Figure 31). Therefore, the quality of the STARFM fusion in the current scenario appears to be relatively 

robust to changes in the input parameters. For the current application, a search distance of 105 and 30 

spectral slices were defined as the optimal input parameters. 

(a) (b) 

Figure 30: The RMSE (a) and r (b) resulting from STARFM fusion with varying input parameters - different-day prediction and central band 
selection. Search distance is presented along the x-axis whereas number of slices is given in different colors. 



Appendix 2 - 5 
 

(a) (b) 

Figure 31: The RMSE (a) and r (b) resulting from STARFM fusion with varying input parameters - different-day prediction and highest 
correlated band selection. Search distance is presented along the x-axis whereas number of slices is given in different colors. 
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Appendix 3: Vegetation indices 
Name Formula Source 

Multispectral indices 

EVI 𝐸𝑉𝐼 = 2.5 ∗
𝑁𝐼𝑅 − 𝑅

1 + 𝑁𝐼𝑅 + 6𝑅 − 7.5𝑥𝐵
 (Kerr and Ostrovsky 2003) 

GNDVI 𝐺𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅 − 𝐺

𝑁𝐼𝑅 + 𝐺
 (Osborne et al. 2004) 

GRVI 𝐺𝑅𝑉𝐼 = 𝑁𝐼𝑅/𝐺 (Sripada et al. 2008) 

MCARI2 𝑀𝐶𝐴𝑅𝐼2 =
1.5∗[2.5∗(𝑁𝐼𝑅−𝑅)−1.3∗(𝑁𝐼𝑅−𝐵)

√(2∗𝑁𝐼𝑅+1)2−(6∗𝑁𝐼𝑅−5∗√𝑅)−0.5 

 ] (Haboudane et al. 2004) 

MTVI 
𝑀𝑇𝑉𝐼 =

1.2 ∗ [1.2 ∗ (𝑁𝐼𝑅 − 𝐺) − 2.5 ∗ (𝑅 − 𝐺)]

√(2 ∗ 𝑁𝐼𝑅 + 1)2 − (6 ∗ 𝑁𝐼𝑅 − 5 ∗ √𝑅) − 0.5

 
(Haboudane et al. 2004) 

NDVI 𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅 − 𝑅

𝑁𝐼𝑅 + 𝑅
 (Tucker 1979) 

WDVI1 𝑊𝐷𝑉𝐼 = 𝑁𝐼𝑅 − 𝐶 ∗ 𝑅 (Clevers 1989) 

SAVI2 𝑆𝐴𝑉𝐼 =
(1 + 𝐿) ∗ (𝑁𝐼𝑅 − 𝑅)

𝑁𝐼𝑅 + 𝑅 + 𝐿
 (Huete 1988) 

TVI 𝑇𝑉𝐼 = 100 ∗ √
𝑁𝐼𝑅 − 𝑅

𝑁𝐼𝑅 + 𝑅 + 0.5
 (Broge and Leblanc 2001) 

OSAVI 𝑂𝑆𝐴𝑉𝐼 =
1.16 ∗ (𝑁𝐼𝑅 − 𝑅)

𝑁𝐼𝑅 + 𝑅 + 0.16
 (Gamon et al. 1997) 

Hyperspectral indices 

MCARI 𝑀𝐶𝐴𝑅𝐼 = [(𝜌700 − 𝜌670) − 0.2 ∗ (𝜌700 − 𝜌550)] ∗ (
𝜌700

𝜌670
) (Daughtry et al. 2000) 

WDVIgreen 𝑊𝐷𝑉𝐼𝑔𝑟𝑒𝑒𝑛 = 𝜌780 − 1.6 ∗ 𝜌570 
(Clevers and Verhoef 

1993) 

TCARI 𝑇𝐶𝐴𝑅𝐼 = 3[(𝜌700 − 𝜌670) − 0.2(𝜌700 − 𝜌550) ∗ (𝜌700/𝜌670)] (Haboudane et al. 2002) 

NDRE 𝑁𝐷𝑅𝐸 = (𝜌790 − 𝜌720)/(𝜌790 + 𝜌720) (Barnes et al. 2000) 

MSAVI 
𝑀𝑆𝐴𝑉𝐼 = 0.5 ∗ (2 ∗ 𝜌780 + 1 − √(2 ∗ 𝜌780 + 1)2 − 8(𝜌780

− 𝜌670) 
(Qi et al. 1994) 

TCARI[705,750]3 
𝑇𝐶𝐴𝑅𝐼705,750 = 3[(𝜌750 − 𝜌750) − 0.2(𝜌750 − 𝜌550)

∗ (𝜌750/𝜌750)] 
(Wu et al. 2008) 

OSAVI[705,750]3 𝑂𝑆𝐴𝑉𝐼705,750 =
1.16 ∗ (𝜌750 − 𝜌705)

𝜌750 + 𝜌705 + 0.16
 (Wu et al. 2008) 

TCARI [705,750] / 

OSAVI [705,750]3 
𝑇𝐶/𝑂𝑆[705,750] =

𝑇𝐶𝐴𝑅𝐼705,750

𝑂𝑆𝐴𝑉𝐼705,750
 (Wu et al. 2008) 

1C = 2 for the current study area (Kooistra et al. 2013). 2L = 0.5 3[705,750] means the indices utilize the 705 nm and 750 nm 

wavelengths rather than 670 nm and 800 nm as in the original indices. 

 

 



 

 

Appendix 4: WHISPERS 2014 Submission 
 

  



 

 

COMBINING HYPERSPECTRAL UAV AND MULTISPECTRAL FORMOSAT-2 IMAGERY 

FOR PRECISION AGRICULTURE APPLICATIONS 
C.M. Gevaert1, J.Tang1, F.J. García-Haro2, J. Suomalainen3 & L. Kooistra3 

 
1 Department of Physical Geography and Ecosystem Science, Lund University, Sölvegatan 12, S-223 62 

Lund, Sweden 
2 Department of Earth Physics and Thermodynamics, University of Valencia, Dr. Moliner, 50. 46100 

Burjassot, Valencia, Spain 
3 Laboratory of Geo-Information Science and Remote Sensing, Wageningen University, P.O. Box 47, 

6700 AA Wageningen, the Netherlands 

 

 
ABSTRACT 

 

Remote sensing is a key tool for precision agriculture 

applications as it is capable of capturing spatial and 

temporal variations in crop status. However, satellites 

often have an inadequate spatial resolution for precision 

agriculture applications. High-resolution Unmanned 

Aerial Vehicles (UAV) imagery can be obtained at 

flexible dates, but operational costs may limit the 

collection frequency. The current study utilizes data fusion 

to create a dataset which benefits from the temporal 

resolution of Formosat-2 imagery and the spatial 

resolution of UAV imagery with the purpose of 

monitoring crop growth in a potato field. The correlation 

of the Weighted Difference Vegetation Index (WDVI) 

from fused imagery to measured crop indicators at field 

level and added value of the enhanced spatial and 

temporal resolution are discussed. The results of the 

STARFM method were restrained by the requirement of 

same-day base imagery. However, the unmixing-based 

method provided a high correlation to the field data and 

accurately captured the WDVI temporal variation at field 

level (r=0.969). 

 

Index Terms— UAV, STARFM, unmixing-based 

data fusion, precision agriculture, WDVI 

 

1. INTRODUCTION 

 

Precision agriculture aims to maximize agricultural 

production in a sustainable manner by optimizing the use 

of input resources. This may provide economic and 

environmental benefits and play an important role in 

global food security. The key behind precision agriculture 

is quantifying spatial and temporal variation in crop 

conditions in order to apply variable management 

strategies within a field (Gebbers and Adamchuk 2010).  

Remote sensing is capable of observing such variation 

in plant growth indicators such as canopy nitrogen content 

and plant biomass (Clevers and Kooistra 2012). A number 

of studies describe the use of multispectral satellite 

imagery for precision agriculture applications (Diacono et 

al. 2012). However, factors such as inadequate spatial or 

temporal resolution and cloud cover (Mulla 2013) have 

limited the effectiveness of utilizing satellite imagery. 

Alternatively, Unmanned Aerial Vehicles (UAV) have 

been proposed for precision agriculture applications 

(Kooistra et al. 2013) as they can provide hyperspectral 

imagery with a higher spatial resolution and more flexible 

acquisition times (Zhang and Kovacs 2012). However, 

operational requirements may inhibit monitoring of large 

areas and the frequency of flights. 

Recently, much research has been done on the 

application of data fusion between medium-resolution 

imagery such as MODIS (Gao et al. 2006) and MERIS 

(Zurita-Milla et al. 2008) and high-resolution datasets 

such as Landsat to obtain a fused image dataset with a 

daily temporal resolution and a spatial resolution of 30 m. 

Two prevalent data fusion methods are the Spatial and 

Temporal Adaptive Reflectance Fusion Model (STARFM) 

(Gao et al. 2006) and unmixing-based data fusion (Zurita-

Milla et al. 2008). These methods could be adapted to fuse 

multispectral satellite imagery such as Formosat-2 with 

hyperspectral imagery obtained from an UAV platform for 

precision agriculture applications.  

The objective of the current study is to develop a 

method for data fusion between Formosat-2 imagery and 

hyperspectral UAV imagery of a potato field in the 

Netherlands to obtain a fused dataset for crop monitoring 

in precision agriculture applications. The resulting image 

time series benefits from an increased temporal resolution 

obtained from the multispectral satellite imagery, and an 

increased spatial resolution obtained from the UAV 

dataset. 

 

2. METHODOLOGY 

 

2.1. Study Area 

 

The study area is a potato field at 51°19’ N and 5°10’14” 

E, near the village of Reusel in the Netherlands. At the 

beginning of the 2013 growing season, the field was 



 

 

divided into four zones and applied with differing initial 

nitrogen fertilization rates: 0, 90, 162 and 252 kgN.ha-1. 

Six experimental plots of 13x30 m were delimited per 

zone, for which chlorophyll was measured using a Minolta 

SPAD-502, Leaf Area Index (LAI) was measured with a 

LAI-2000, and spectral reflectances were obtained using a 

Cropscan Multispectral Radiometer (MSR16R). 

Measurements were taken weekly between June 6th and 

August 23rd, 2013.  More information regarding the 

experimental setup can be found in Kooistra et al. 

(Kooistra et al. 2013). 

 

2.2. Imagery 

 

A hyperspectral system on an UAV consisting of a Specim 

ImSpector V10 2/3” spectrograph mounted on an 

Aerialtronics Altura AT8 octocopter was developed by the 

Wageningen University (WU) Laboratory of Geo-

information Science and Remote Sensing (GRS) under the 

Smart Inspectors project (Kooistra et al. 2013). This UAV 

was flown over the study area at four dates (June 6, June 

14, July 5 and July 17, 2013) to obtain imagery with 101 

spectral bands at a spatial resolution of 1 m. All images 

have been georeferenced, orthorectified and 

atmospherically corrected (Kooistra et al. 2013). 

Formosat-2 imagery have a spatial resolution of 8 m, 

and consists of four multispectral bands (Liu 2006). 

During the 2013 growing season, eight cloud-free 

Formosat-2 images were available over the study area: 

April 24, June 6, June 8, July 2, July 8, July 18, July 22, 

and August 2, 2013. The images were georeferenced and 

radiometrically corrected using the coefficients provided 

in the metadata. A high-resolution aerial photograph was 

used to coregister the UAV and Formosat-2 imagery. The 

QUAC method was applied to atmospherically correct the 

Formosat-2 image of June 6th. An empirical line 

correction was then applied between all the other 

Formosat-2 images and the June 6th image, to calibrate 

the spectral signature throughout the time series. Finally, 

calibration coefficients were obtained from the UAV and 

Formosat-2 images of June 6th, and all Formosat-2 images 

were calibrated to the UAV imagery. 

 

2.3. Data fusion 

 

The current study made use of two data fusion algorithms: 

an unmixing-based algorithm and STARFM. The 

unmixing-based algorithm is based on previous works by 

(Zurita-Milla et al. 2008). It considers a linear mixing 

model in which the resolution of the medium-resolution 

imagery is assumed to be a summation of the spectra of 

each endmember within the pixel weighted by the 

abundance of the endmember within the pixel. The 

endmembers are obtained by performing a clustering 

algorithm, in this case a k-means clustering, on the high-

resolution input data (i.e. the UAV imagery). The 

abundances of each endmember can be calculated by 

overlaying the medium-resolution imagery and the high-

resolution unsupervised classification. The unmixing-

based method is applied using a moving-window to allow 

for spectral heterogeneity of endmembers throughout the 

scene.  

Spectral unmixing may produce unrealistic spectra if the 

process is not restricted. This is often done by limiting 

reflectance values to positive values and certain upper 

limits [9]. The current application utilized Bayesian theory 

to restrain the unmixing process by including a priori 

spectral information selected from a homogenous 

Formosat-2 pixel of each endmember (Gevaert and 

García-Haro 2014). 

The STARFM method is based on the premise that 

both high- and medium-resolution imagery observe the 

same spectral reflectances, biased by a systematic error. 

This error is consistent over short spatial and temporal 

intervals. Using a reference pair of high- and medium-

resolution images on a base date, the bias is calculated by 

selecting neighbors based on selection criteria (Gao et al. 

2006) within a set search distance to form a linear system 

of equations. Once the bias has been obtained from the 

base image pair, it can then be applied to a medium-

resolution image on a different day to obtain a synthetic 

high-resolution image. In the current application, 

Formosat-2 provided the medium-resolution imagery and 

the UAV provided the high-resolution imagery. To apply 

the STARFM method, both sources of imagery must have 

corresponding spectral bands. Therefore, the spectral 

bands of the hyperspectral UAV imagery corresponding to 

the wavelengths of each of the four Formosat-2 bands was 

averaged to create a UAV image with four spectral bands. 

The input parameters of each algorithm were first 

optimized by applying data fusion to the UAV imagery on 

June 6th and the Formosat-2 imagery on July 17th, which 

allowed for the comparison of the fused image to the 

actual UAV image of July 17th. For the unmixing-based 

method, the moving window size was varied from 3x3 to 

29x29 Formosat-2 pixels in steps of 4 and the number of 

spectral clusters was varied from 2 to 16 in steps of 2. The 

quality of the fusion was determined by calculating the 

spectral and spatial ERGAS. For the STARFM method, 

the maximum search distance was varied from 15 m to 

105 m, and the number of spectral slices was varied from 

10 to 40. The fusion quality was analyzed by calculating 

Spearman’s correlation and the RMSE to the ground-truth 

UAV image. 

Next, data fusion was applied to each Formosat-2 

image. For the unmixing-based method, each Formosat-2 



 

 

image was fused with the closest preceding UAV image. 

As there was no UAV image preceding April 24th, this 

Formosat-2 image was fused with the UAV image on June 

6th. The STARFM method requires an input base pair of 

Formosat-2 and UAV imagery on the same date. 

Therefore, only the UAV images on June 6th and July 

17th could be used to create the data fusion time series. 

 

2.4. Validation 

 

The Weighted Difference Vegetation Index (WDVI) 

(Clevers 1989) 

was used to calculate the correlation between the imagery 

and the field data. Canopy chlorophyll was calculated by 

multiplying the leaf chlorophyll measurements by the 

LAI.  
The image WDVI, field WDVI, LAI and canopy 

chlorophyll were averaged to plot level. The imagery on 

the dates June 6, July 2, July 18 and August 2 were 

compared to the field data on June 6, July 5, July 17, and 

July 31, assuming that a 3-day interval presented no 

significant changes to the WDVI. Furthermore, temporal 

WDVI profiles were made for an experimental plot 

receiving no initial fertilization. 

 

3. RESULTS AND DISCUSSION  
 

In the parameter optimization stage for unmixing, a 

window size of 9x9 Formos-2 pixels and 10 clusters 

obtained the best quality indicators (spatial ERGAS = 

2.76; spectral ERGAS = 0.98). STARFM produced the 

best results with a search distance of 105 m and 30 

spectral slices (r=0.715; RMSE = 0.133x10-5). However, 

through all the variations in input parameters, the 

STARFM correlation coefficient only varied between 

0.710 and 0.715 and the RMSE varied from 1.335 – 1.345 

x10-5. This suggests that STARFM is relatively insensitive 

to variations in the input parameters in the current 

application, and future applications could dedicate less 

time to the parameter optimization phase. 

The WDVI calculated from the Formosat-2 imagery 

has a high correlation to crop status indicators (Table 1), 

which indicates that it contains relevant information 

regarding crop status and is a valuable input for data 

fusion methods. The unmixing-based method provides 

similar correlation coefficients to the Formosat-2 imagery. 

This is expected as the spectral information in the 

unmixing-based data is derived from the Formosat-2 

imagery, and the correlation coefficients presented in 

Table 1 are averaged at a plot level of 15x30 m. The added 

spatial resolution is thus not taken into account in these 

correlation coefficients, although Figure 1 clearly 

illustrates the added value of the improved spatial 

resolution.   

The STARFM method presented the lowest 

correlation to the field observations, which is likely due to 

the use of only two of the UAV images as high-resolution 

input for the fused time series. As the unmixing-based 

method can utilize all four UAV images as input, spatial 

variation is captured at an earlier stage in the growing 

season. For the image on July 8th, for example, unmixing-

based fusion could utilize the input UAV image on July 

5th and thus correctly differentiates the vegetation status 

of the different nitrogen application rate zones (Figure 1). 

As there is no corresponding Formosat-2 image on July 

5th, the STARFM method must use the imagery of June 

6th as a base date and cannot differentiate crop growth 

variation between fertilizer application-rate zones. 

From each image source, temporal profiles can be 

constructed to analyze the crop status during the growing 

season. Figure 2 presents the normalized temporal WDVI 

profiles of one of the experimental plots receiving no 

initial fertilization. The UAV WDVI closely follows the 

Reference indicator Unmixing STARFM UAV F2 

Field WDVI 0.802 0.463 0.847 0.808 

LAI 0.866 0.477 0.872 0.861 

Canopy 

chlorophyll (g/m2) 

0.884 0.431 0.882 0.869 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 

Fig. 1. WDVI obtained from the Formosat-2 satellite image on July 8th (a), the UAV image on July 5th (b), and the fused product of the 

unmixing-based algorithm (c), and STARFM (d) on July 8th. 
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Table 1. Spearman's correlation coefficient between the average 

WDVI per plot calculated from imagery and reference data. All 

correlations are significant at p<0.001. 



 

 

field observations, but no UAV imagery is available after 

July 17th. The STARFM method once again clearly shows 

the influence of the input base image pair, and does not 

provide consistent results in the current study. However, 

the relative temporal variation of the Formosat-2 and 

unmixing-based imagery follows the temporal pattern of 

the field data – although the WDVI is systematically 

lower. During the growing season, the farmer applied 

additional fertilization in mid-July which causes the 

increase in WDVI at this time. There was no UAV 

imagery available after this date to capture the changes, 

but the increase in WDVI is correctly captured in the 

unmixing-based WDVI profile. This is an example of the 

added value of the enhanced temporal resolution provided 

by data fusion. 
 

 4. CONCLUSIONS 

 

The current study demonstrates the utility of applying data 

fusion methods to combine satellite imagery with UAV 

imagery for precision agriculture applications. The 

STARFM method is limited in the current situation by the 

requirement of base imagery from both sources on the 

same date and therefore presents temporally unstable 

results. This could be mitigated by coinciding UAV 

operations with satellite collection dates in future studies. 

The unmixing-based method presented a high correlation 

to the WDVI (r=0.969), LAI (r=0.896) and canopy 

chlorophyll (r=0.788) measured at field level. The WDVI 

obtained from unmixing-based data fusion presented a 

bias to the UAV WDVI, which is likely due to differing 

processing chains of the UAV and Formosat-2 data. 

However, the relative phenological variations were more 

accurately captured by the time series created by the 

unmixing-based method. This study indicates how the 

fused dataset can combine the temporal resolution of the 

Formosat-2 imagery and the spatial resolution of the UAV 

imagery for precision agriculture applications.  
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Fig. 2. Temporal Normalized WDVI profiles of an experimental 

plot receiving no initial fertilization. Normalized values are 

obtained by dividing by the maximum seasonal WDVI per 
dataset. 


