2,788 research outputs found

    40 Years Theory and Model at Wageningen UR

    Get PDF
    "Theorie en model" zo luidde de titel van de inaugurele rede van CT de Wit (1968). Reden genoeg voor een (theoretische) terugblik op zijn wer

    Launching the Grand Challenges for Ocean Conservation

    Get PDF
    The ten most pressing Grand Challenges in Oceans Conservation were identified at the Oceans Big Think and described in a detailed working document:A Blue Revolution for Oceans: Reengineering Aquaculture for SustainabilityEnding and Recovering from Marine DebrisTransparency and Traceability from Sea to Shore:  Ending OverfishingProtecting Critical Ocean Habitats: New Tools for Marine ProtectionEngineering Ecological Resilience in Near Shore and Coastal AreasReducing the Ecological Footprint of Fishing through Smarter GearArresting the Alien Invasion: Combating Invasive SpeciesCombatting the Effects of Ocean AcidificationEnding Marine Wildlife TraffickingReviving Dead Zones: Combating Ocean Deoxygenation and Nutrient Runof

    Insights to plant–microbe interactions provide opportunities to improve resistance breeding against root diseases in grain legumes

    Get PDF
    Root and foot diseases severely impede grain legume cultivation worldwide. Breeding lines with resistance against individual pathogens exist, but these resistances are often overcome by the interaction of multiple pathogens in field situations. Novel tools allow to decipher plant–microbiome interactions in unprecedented detail and provide insights into resistance mechanisms that consider both simultaneous attacks of various pathogens and the interplay with beneficial microbes. Although it has become clear that plant‐associated microbes play a key role in plant health, a systematic picture of how and to what extent plants can shape their own detrimental or beneficial microbiome remains to be drawn. There is increasing evidence for the existence of genetic variation in the regulation of plant–microbe interactions that can be exploited by plant breeders. We propose to consider the entire plant holobiont in resistance breeding strategies in order to unravel hidden parts of complex defence mechanisms. This review summarizes (a) the current knowledge of resistance against soil‐borne pathogens in grain legumes, (b) evidence for genetic variation for rhizosphere‐related traits, (c) the role of root exudation in microbe‐mediated disease resistance and elaborates (d) how these traits can be incorporated in resistance breeding programmes

    Compared to conventional, ecological intensive management promotes beneficial proteolytic soil microbial communities for agro-ecosystem functioning under climate change-induced rain regimes

    Get PDF
    Projected climate change and rainfall variability will affect soil microbial communities, biogeochemical cycling and agriculture. Nitrogen (N) is the most limiting nutrient in agroecosystems and its cycling and availability is highly dependent on microbial driven processes. In agroecosystems, hydrolysis of organic nitrogen (N) is an important step in controlling soil N availability. We analyzed the effect of management (ecological intensive vs. conventional intensive) on N-cycling processes and involved microbial communities under climate change-induced rain regimes. Terrestrial model ecosystems originating from agroecosystems across Europe were subjected to four different rain regimes for 263 days. Using structural equation modelling we identified direct impacts of rain regimes on N-cycling processes, whereas N-related microbial communities were more resistant. In addition to rain regimes, management indirectly affected N-cycling processes via modifications of N-related microbial community composition. Ecological intensive management promoted a beneficial N-related microbial community composition involved in N-cycling processes under climate change-induced rain regimes. Exploratory analyses identified phosphorus-associated litter properties as possible drivers for the observed management effects on N-related microbial community composition. This work provides novel insights into mechanisms controlling agro-ecosystem functioning under climate change

    New frontiers in agriculture productivity : optimised microbial inoculants and in situ microbiome engineering

    Get PDF
    Increasing agricultural productivity is critical to feed the ever-growing humanpopulation. Being linked intimately to plant health, growth and productivity, harnessing the plant microbiome is considered a potentially viable approach for the next green revolution, in an environmentally sustainable way. In recent years, our understanding of drivers, roles, mechanisms, along with knowledge to manipulate the plant microbiome, have significantly advanced. Yet, translating this knowledge to expand farm productivity and sustainability requires the development of solutions for a number of technological and logistic challenges. In this article, we propose new and emerging strategies to improve the survival and activity of microbial inoculants, including using selected indigenous microbes and optimising microbial delivery methods, as well as modern gene editing tools to engineer microbial inoculants. In addition, we identify multiple biochemical and molecular mechanisms and/approaches which can be exploited for microbiome engineering in situ to optimise plant-microbiome interactions for improved farm yields. These novel biotechnological approaches can provide effective tools to attract and maintain activities of crop beneficial microbiota that increase crop performance in terms of nutrient acquisition, and resistance to biotic and abiotic stresses, resulting in an increased agricultural productivity and sustainability

    Anthropological Encounters with Economic Development and Biodiversity Conservation

    Get PDF
    Current debates on the ecological crisis and on shared responsibilities for the maintenance of the earth's commons raise fundamental anthropological questions, but anthropologists have yet to engage fully with them, or with the paradigm of sustainable development. This chapter offers a personal account of encounters between anthropology, biodiversity conservation, and economic development. Authors examining the links between biological and cultural diversity are reviewed, and recent studies of conservation and development policies critically assessed.

    Participatory conservation: a means of encouraging community biodiversity

    Get PDF
    The conservation of natural resources and biodiversity is threatened by increasing habitat loss, the degradation of the environment and the introduction of modern crop varieties. Although local landraces and crop varieties are potential sources of valuable genes that could benefit the farming community, their conservation depends to a large extent on the personal motivation of farmers and the continuation of traditional farming methods. There is growing apprehension that many landraces and site-specific genetic resources could be lost. Trait expression in these genetic resources is highly dependent upon the local environment, and has evolved over a long period of time through traditional and cultural cropping practices. Such varieties should be conserved in situ preferably on-farm. Techniques for their conservation, seed maintenance and regeneration can be fine-tuned and efficiently applied if farmer knowledge is reinforced with formal theory. Increasingly attention is being focused on participatory conservation to provide a synergy between formal-sector and farmer approaches. This paper describes how landraces and local crop varieties could be conserved by the use of field gene banks and area gene banks linked to community gene banks, and through these, to a national gene bank. Improved breeding strategies, resulting from a farmer- formal sector synergy, offer more options for providing a secure and sustainable livelihood for the large numbers of poor farmers who at present receive little or no assistance from the formal sector

    Innovating carbon-capture biotechnologies through ecosystem-inspired solutions

    Get PDF
    Rising atmospheric carbon concentrations affect global health, the economy, and overall quality of life. We are fast approaching climate tipping points that must be addressed, not only by reducing emissions but also through new innovation and action toward carbon capture for sequestration and utilization (CCSU). In this perspective, we delineate next-generation biotechnologies for CCSU supported by engineering design principles derived from ecological processes inspired by three major biomes (plant-soil, deep biosphere, and marine). These are to interface with existing industrial infrastructure and, in some cases, tap into the carbon sink potential of nature. To develop ecosystem-inspired biotechnology, it is important to identify accessible control points of CO2 and CH4 within a given system as well as value-chain opportunities that drive innovation. In essence, we must supplement natural biogeochemical carbon sinks with new bioengineering solutions

    Microbiomes in agroecosystem : diversity, function and assembly mechanisms

    Get PDF
    Soils are a main repository of biodiversity harbouring immense diversity of microbial species that plays a central role in fundamental ecological processes and acts as the seed bank for emergence of the plant microbiome in cropland ecosystems. Crop-associated microbiomes play an important role in shaping plant performance, which includes but not limited to nutrient uptake, disease resistance, and abiotic stress tolerance. Although our understanding of structure and function of soil and plant microbiomes has been rapidly advancing, most of our knowledge comes from ecosystems in natural environment. In this review, we present an overview of the current knowledge of diversity and function of microbial communities along the soil–plant continuum in agroecosystems. To characterize the ecological mechanisms for community assembly of soil and crop microbiomes, we explore how crop host and environmental factors such as plant species and developmental stage, pathogen invasion, and land management shape microbiome structure, microbial co-occurrence patterns, and crop-microbiome interactions. Particularly, the relative importance of deterministic and stochastic processes in microbial community assembly is illustrated under different environmental conditions, and potential sources and keystone taxa of the crop microbiome are described. Finally, we highlight a few important questions and perspectives in future crop microbiome research
    corecore