1,417 research outputs found

    Shenfun -- automating the spectral Galerkin method

    Full text link
    With the shenfun Python module (github.com/spectralDNS/shenfun) an effort is made towards automating the implementation of the spectral Galerkin method for simple tensor product domains, consisting of (currently) one non-periodic and any number of periodic directions. The user interface to shenfun is intentionally made very similar to FEniCS (fenicsproject.org). Partial Differential Equations are represented through weak variational forms and solved using efficient direct solvers where available. MPI decomposition is achieved through the {mpi4py-fft} module (bitbucket.org/mpi4py/mpi4py-fft), and all developed solver may, with no additional effort, be run on supercomputers using thousands of processors. Complete solvers are shown for the linear Poisson and biharmonic problems, as well as the nonlinear and time-dependent Ginzburg-Landau equation.Comment: Presented at MekIT'17, the 9th National Conference on Computational Mechanic

    A Panorama on Multiscale Geometric Representations, Intertwining Spatial, Directional and Frequency Selectivity

    Full text link
    The richness of natural images makes the quest for optimal representations in image processing and computer vision challenging. The latter observation has not prevented the design of image representations, which trade off between efficiency and complexity, while achieving accurate rendering of smooth regions as well as reproducing faithful contours and textures. The most recent ones, proposed in the past decade, share an hybrid heritage highlighting the multiscale and oriented nature of edges and patterns in images. This paper presents a panorama of the aforementioned literature on decompositions in multiscale, multi-orientation bases or dictionaries. They typically exhibit redundancy to improve sparsity in the transformed domain and sometimes its invariance with respect to simple geometric deformations (translation, rotation). Oriented multiscale dictionaries extend traditional wavelet processing and may offer rotation invariance. Highly redundant dictionaries require specific algorithms to simplify the search for an efficient (sparse) representation. We also discuss the extension of multiscale geometric decompositions to non-Euclidean domains such as the sphere or arbitrary meshed surfaces. The etymology of panorama suggests an overview, based on a choice of partially overlapping "pictures". We hope that this paper will contribute to the appreciation and apprehension of a stream of current research directions in image understanding.Comment: 65 pages, 33 figures, 303 reference

    Sparse Modelling and Multi-exponential Analysis

    Get PDF
    The research fields of harmonic analysis, approximation theory and computer algebra are seemingly different domains and are studied by seemingly separated research communities. However, all of these are connected to each other in many ways. The connection between harmonic analysis and approximation theory is not accidental: several constructions among which wavelets and Fourier series, provide major insights into central problems in approximation theory. And the intimate connection between approximation theory and computer algebra exists even longer: polynomial interpolation is a long-studied and important problem in both symbolic and numeric computing, in the former to counter expression swell and in the latter to construct a simple data model. A common underlying problem statement in many applications is that of determining the number of components, and for each component the value of the frequency, damping factor, amplitude and phase in a multi-exponential model. It occurs, for instance, in magnetic resonance and infrared spectroscopy, vibration analysis, seismic data analysis, electronic odour recognition, keystroke recognition, nuclear science, music signal processing, transient detection, motor fault diagnosis, electrophysiology, drug clearance monitoring and glucose tolerance testing, to name just a few. The general technique of multi-exponential modeling is closely related to what is commonly known as the Padé-Laplace method in approximation theory, and the technique of sparse interpolation in the field of computer algebra. The problem statement is also solved using a stochastic perturbation method in harmonic analysis. The problem of multi-exponential modeling is an inverse problem and therefore may be severely ill-posed, depending on the relative location of the frequencies and phases. Besides the reliability of the estimated parameters, the sparsity of the multi-exponential representation has become important. A representation is called sparse if it is a combination of only a few elements instead of all available generating elements. In sparse interpolation, the aim is to determine all the parameters from only a small amount of data samples, and with a complexity proportional to the number of terms in the representation. Despite the close connections between these fields, there is a clear lack of communication in the scientific literature. The aim of this seminar is to bring researchers together from the three mentioned fields, with scientists from the varied application domains.Output Type: Meeting Repor

    Efficient algorithms for the fast computation of space charge effects caused by charged particles in particle accelerators

    Get PDF
    In this dissertation, a Poisson solver is improved with three parts: the efficient integrated Green's function; the discrete cosine transform of the efficient integrated Green's function values; the implicitly zero-padded fast Fourier transform for charge density. In addition, the high performance computing technology is utilized for the further improvement of efficiency, such as: OpenMP API, OpenMP+CUDA, MPI, and MPI+OpenMP parallelizations. The examples and simulation results are matched with the results of the commonly used Poisson solver to demonstrate the accuracy performance

    Computing the Newton Potential in the Boundary Integral Equation for the Dirichlet Problem of the Poisson Equation

    Get PDF
    Evaluating the Newton potential is crucial for efficiently solving the boundary integral equation of the Dirichlet boundary value problem of the Poisson equation. In the context of the Fourier-Garlerkin method for solving the boundary integral equation, we propose a fast algorithm for evaluating Fourier coefficients of the Newton potential by using a sparse grid approximation. When the forcing function of the Poisson equation expressed in the polar coordinates has mth-order bounded mixed derivatives, the proposed algorithm achieves an accuracy of order (n-m log3 n), with requiring (n log2 n) number of arithmetics for the computation, where n is the number of quadrature points used in one coordinate direction. With the help of this algorithm, the boundary integral equation derived from the Poisson equation can be efficiently solved by a fast fully discrete Fourier-Garlerkin method
    • …
    corecore